超燃冲压发动机多凹腔燃烧室燃烧与流动过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以超燃冲压发动机多凹腔燃烧室为研究对象,采用实验与数值仿真相结合的方法,对多凹腔燃烧室冷流流场、燃烧流场、工作过程和阻力特性进行了研究。
     在冷流条件下,研究了不同凹腔布置方式下多凹腔燃烧室在有/无喷流时的流场结构。结果表明:凹腔串联布置时,上游凹腔和燃料射流改变了下游凹腔的来流条件,增强了下游凹腔与主流间的交换过程;凹腔并联布置时,凹腔间波系的相互作用和射流与凹腔的相互作用,有利于凹腔自由剪切层发展,加快了燃料的扩散混合。
     在气体/液体燃料喷流的燃烧状态下,研究了不同凹腔布置方式下多凹腔燃烧室流场结构。研究发现:凹腔仅与壁面附近来流相互作用,凹腔与上游燃料射流的相互作用过程决定了放热区分布;凹腔并联布置时,凹腔前/后缘激波和相对分布的放热区增强了燃烧和火焰稳定;凹腔串联布置时,上游凹腔能够延长燃料驻留时间、加速燃料着火,下游凹腔能够提供持续的点火源,并促进上游凹腔对燃料的加热和预燃。
     采用高速摄影和高速纹影对燃烧室内着火、火焰传播和熄火过程进行了研究。实验发现:上述过程与达到燃料着火条件的区域的动态变化相关;火焰能随分离区的变化而逆流传播,或者以燃料自燃或被湍流扩散火焰点燃的形式实现横向传播。
     利用直连式试验台推力测量系统,在等截面多凹腔燃烧室中,对不同凹腔布置方式下有/无反应流时的多凹腔阻力特性进行了试验研究。分析表明:在无反应流时,凹腔阻力主要由自由剪切层撞击在凹腔后壁的影响区域决定;在有反应流时,凹腔阻力主要由凹腔附近放热区的分布决定;凹腔越多阻力越大,但在高当量比时燃烧阻力小于冷流阻力。
     基于多凹腔燃烧室燃烧与流动过程研究的结果,提出了一种多凹腔燃烧室设计方法,为提高超燃冲压发动机燃烧室性能奠定了一定的技术基础。
Numerical and experimental investigations were carried out in a multi-cavity scramjet combustor, and the inner flowfield and internal drag were compared of different cavity installation schemes.
     In the supersonic cold flow, the flow structures with and without fuel injection were compared with each other by different cavities installation schemes. Results revealed that, for cavities in tandem, the flowfield of downstream cavity was altered by the incoming flow, influenced by the upstream cavity and the fuel injection, enhancing the fuel exchange rate. For cavities in parallel, the interaction between cavities and the fuel injection promoted the development of the cavity free shear layer and the blending process of the fuel and the air.
     The flowfield of different cavity installation schemes were compared with liquid and gaseous fuel combustion in the multi-cavity combustor. Results revealed that the cavity just interact with the near wall incoming flow. The main fuel heat release zone was determined by the interaction process between the cavity and the fuel injection. For cavities in parallel, the combustion intensity and the flame holding ability were improved by the shocks induced at fore-corner and aft-corner of the cavity. For cavities in tandem, the upstream cavity prolonged the fuel residence time in the combustor, which could be easily ignited in the downstream cavity. The downstream cavity provide a continuous ignition source, increasing the fuel preheating and precombustion in the upstream cavity.
     The process of ignition, flame diffusing and quenching out were investigated by high speed camera and Schlieren system. Results revealed that determined by the downstream heat release, all the processes were companioned with the change of the autoignition zones. The flame could propagate toward upstream by the evolution of the boundary separation zones, or diffuse to the opposite side by fuel autoignition or flame ignition.
     The internal drag of different cavity installation schemes were investigated in a multi-cavity combustor with constant area by the direct-connected force measurement system at the none-reaction and reaction state. It was indicated that the drag of cavity was mainly determined by the area that the free shear layer stroked the cavity rear wall in the non-reaction flow. Determined by the distribution of the main heat release zones, the cavity would produce negative or positive force in the reaction flow. More cavities lead to higher internal drag, and the drag in cold flow was higher than that in reaction flow with higher fuel equivalence ratio.
     Based on the above results, a novel multi-cavity combustor design method was proposed, which provided some technical support for higher performance scramjet combustor design.
引文
[1]刘陵.超音速燃烧与超音速燃烧冲压发动机.西安:西北工业大学出版社,1993
    [2]Heiser W H,Pratt D T,Deley D H.Hypersonic Airbreathing Propulsion.American Institute of Aeronautics and Astronautics Inc,Washington,D.C.1994
    [3]Murthy S N B,Curran E T.High-speed flight propulsion systems.1991,Vol 137.Progress in astronautics and aeronautics,1991,1(2)
    [4]Curran E T,Murthy S N.Scramjet propulsion.Progress in Astronautics and Aeronautics,2002,189
    [5]Curran E T.Scramjet engines:The first forty years.Journal of Propulsion and Power.2001,17(6):1138-1148
    [6]Andrews E H.Scramjet development and resting in the United States.AIAA 2001-1927
    [7]Waltrup P J.Liquid fueled supersonic combustion ramjet:A research perspective of the past,present and future.AIAA 86-0158
    [8]Waltrup P J.Liquid-fueled supersonic combustion ramjets:A research perspective.Journal of Propulsion and Power.1987,3(6):515-524
    [9]Waltrup P J,White M E,Zarlingo F,et al.History of U.S Navy ramjet,scramjet,and Mix-Cycle propulsion development.Journal of Propulsion and Power.2002,18(1):14-17
    [10]McClinton C R,Hunt F L,Ricketts R H,Reukauf P,et al.Airbreathing hypersonic technology vision vehicles and development dreams.AIAA 99-4978
    [11]Orton G F.Air-Breathing hypersonic research at Boeing Phantom works.AIAA 2002-5251
    [12]Cockrell C E,Engelund W C,Bittner R D.Integrated aero-propulsive CFD methodology for the Hyper-X flight Experiment.AIAA 2000-4010
    [13]Kazmar R R.Hypersonic propulsion at Pratt & Whitney - Overview.AIAA 2002-5144
    [14]Voland R T,Auslender A H,Smart M K,et al.CIAM/NASA Mach 6.5 scramjet flight and ground test.AIAA 99-4848
    [15]Bezgin L,Gouskov O,Kopchenov V,et al.CFD support of the development of hypersonic flight laboratory and model scramiet.AIAA 2002-5125
    [16]Serre L,Falempin F.PROMETHEE:the French military hypersonic propulsion program status in 2002.AIAA 2002-5141
    [17]Falempin F,Serre L.French R & T Activities on high-speed airbreathing propulsion.International Colloquium on Hypersonic Propulsion.Beijing,China,2003
    [18]Kobayashi S.Japanese Spaceplane Program Overview.AIAA 95-6002
    [19]KandaT,HiraiwaT,MitaniT,TomiokaS,ChinzeiN.Mach6 Testing of a scramjet engine model.Journal of Propulsion and Power,1997,13(4):543-551
    [20]Chinzei N,Kanda T.Scramjet engine tests at NAL of Japan.International Colloquium on Hypersonic Propulsion,Beijing,China,2003
    [21]Wakamatsu Y,Kanda T,Yatsuyanagi N.Preliminary consideration of hypersonic test vehicle for scramjet engine test.ISTS 2000-g-24,2000
    [22]Kania P.The German hypersonic technology program - Overview.AIAA 95-6005
    [23]George F O,St Louis.Air-breathing hypersonic research at BOEING phantom works.AIAA 2002-5251
    [24]Voland R T,Auslender A H,Smart M K,et al.ClAM/NASA Mach 6.5 scramjet flight and ground test.AIAA 99-4848
    [25]陈英硕.X-43A创新的世界记录.飞航导弹,2004,12:2
    [26]龙玉珍.高超音速巡航导弹用超燃冲压发动机特点与设计方案.飞航导弹,1997(8):29-37
    [27]龙玉珍.囚际性超燃冲压发动机研究进入飞行实验阶段.飞航导弹,1998(12):53-56
    [28]贺武生.超燃冲压发动机研究综述.2005,31(1):29-32
    [29]袁越.高超声速飞行技术研究的进展.中国航天,1998,7:20-23
    [30]刘英姿.国外高超音速飞行器研制动态.飞航导弹,1998,7:11-16
    [31]从敏.防区外发射高超声速攻击导弹.飞航导弹,2003,2:1-7
    [32]周军,徐文.美国高超声速研制的最新进展.飞航导弹,2003,1:31-35
    [33]周军,徐文.高超声速技术综述.飞航导弹,2003,4:1-7
    [34]从敏.美国考虑研制高超声速飞行器.飞航导弹,2003,4:22-23
    [35]http://www.slinews.com
    [36]Unmeel B Mehta,Jeffrey V.Bowles.Two-Stage-to-Orbit space plane concept with growth potential.Journal of Propulsion and Power,2001,17(6):1147-1161
    [37]Roy M M,Moteurs Thermiques.Comptes rendus de l'Academie des Science,1946,222(1)
    [38]Tsien H S and Beilock M.Heat source in a uniform flow.Journal of Aeronautical Sciences.1949,16(12)
    [39]Pinkle I I and Serafini J S.Graphical method for obtaining flow field in two-dimensional supersonic stream to which heat is added,NACA TN-2206,Nov,1950
    [40]Ferri A.Discussion on M.Roy's paper propulsion supersonic par turboreacturs et par statoreacteurs.Advances in Ameronautical Sciences,1959,1:79-112
    [41]Ferri A,Libby P A,Zakkay V.Theoretical and experimental investigations of supersonic combustion.Proceedings of the International Council of the Aeronautical Sciences,Third Congress,Stockholm,1962,Spartan,New York,1964,1089-1155.
    [42]Billig F S,Waltrup P J.Combustion processes in supersonic flow.Journal of Propulsion and Power,1998,4:209-216
    [43]Billig F S.Research on supersonic combustion.AIAA 92-0001
    [44]袁生学.论超声速燃烧.中国科学(A辑),1998,28(8):735-741
    [45]Ryan P Starkey.Investigation of Air-Breathing hypersonic missile configurations within external box constraints:[Dissertation].Department of Aerospace Engineering,University of Maryland,2000
    [46]Billig F S.Supersonic combustion ramjet missile.Journal of Propulsion and Power,1995,11(6):139-1146
    [47]Falempin,Francois.The fully reusable launcher:A new concept asking new visions.AIAA 2003-6994
    [48]Hirschel E H,Arlinger B,Lind I A.German-Scandinavian cooperation in the field of aerothermodynamics of the German Hypersonics Technology Programme.AIAA 95-6073
    [49]Lederer R,Schwab R R.Hypersonic airbreathing propulsion activities for Saenger.AIAA 91-5040
    [50]http://hapb-www.larc.nasa.gov/Langley/CIAM Axisymmetric Scramjet.htm
    [51]Alexander S Roudako,Vyacheslav L S,John W H.Recent flight test results of the joint CIAM-NASA Mach 6.5 scramjet flight program.NASA/TP-1998-206548
    [52]刘陵,张榛.超音速燃烧冲压发动机最佳设计参数.推进技术,1988,9(1):73-78
    [53]葛运圻.超燃冲压发动机燃烧室的积分分析方法.推进技术,1988,9(1):79-84
    [54]刘陵,张榛,牛海发,刘敬华.超音速燃烧室燃烧效率数学模型及气流状态参数的计算.推进技术,1989,10(2):1-7
    [55]刘陵,张榛,刘敬华.氢燃烧超音速燃烧室实验研究.航空动力学报,1993,6(3)
    [56]刘兴洲,刘敬华,王裕人,等.超声速燃烧实验研究(Ⅰ).推进技术,1991,12(2):1-8
    [57]刘兴洲,刘敬华,王裕人,等.超声速燃烧实验研究(Ⅱ).推进技术,1993,14(4):1-7
    [58]胡欲立,刘陵,刘敬华.超音速混合及燃烧的强化技术.推进技术,1994,15(5):23-27
    [59]刘敬华,刘兴洲,胡欲立,等.超音速气流中氢燃料强化混合的燃烧实验研究.推进技术,1996,17(1):1-7
    [60]朱守梅,刘陵,刘敬华.超音速气流中横向喷射氢气流场数值模拟.推进技术,1993,14(2):1-7
    [61]胡欲立,刘陵,张榛,等.超音速燃烧二元流场的数值模拟.推进技术,1995,16(4):7-13
    [62]刘陵,唐明,张榛,刘敬华.氢气超音速燃烧非定常过程数值模拟.推进技术,1996,17(3):1-5
    [63]刘陵,张榛,胡欲立,等.台阶后横喷氢气超音速燃烧流场数值模拟研究.推进技术,1996,17(2):1-7
    [64]梁剑寒,王承尧.超燃发动机燃烧室流场的数值模拟.推进技术,1996,17(1):13-17
    [65]杨爱国,刘陵,唐明,刘敬华.模型超音速燃烧室流场和性能的数值模拟.推进技术,1996,17(6):1-5
    [66]沈剑,王伟。国外高超声速飞行器研制计划.飞航导弹,2006,8:1-9
    [67]Mercier R A,Ronald T M F.US air force hypersonic technology program.AIAA 96-2123.
    [68]http://www.globalsecurity.org/military/systems/munitions/hytech.htm
    [69]http://www.globalsecurity.org/military/systems/munitions/hyfly.htm
    [70]Mercier Robert,McClinton C,Hypersonic Propulsion - Transforming the future of flight.AIAA 2003-2732
    [71]王培.法俄合作研制超燃冲压发动机.飞航导弹,1999(7):40-42
    [72]郭振玲.法国冲压发动机研制情况介绍.飞航导弹,1994(4):24-28
    [73]Marc Bouchez,Fran(?)ois Falempin,Vadim Levine,Valery Avrashkov.French-Russian partnership on hypersonic wide range ramjets:status in 2002.AIAA 2002-5254
    [74]Laurent Serre,Jean-Pierre.French potential for semi-free jet test of an experimental dual mode ramjet in Mach 4-8 conditions.AIAA 2002-5448.
    [75]周军,徐文.法国实验超声速和高超声速发动机.飞航导弹,2003(2):32-33.
    [76]Hunt J L,Johnston P J,et al.Hypersonic airbreathing missile concepts under study at Langley.AIAA 82-0316.
    [77]Kay I W,Peschke W T,and Guile R N.Hydrocarbon-fueled scramjet combustion investigation.AIAA 90-2337
    [78]张香文,米镇涛.高超声速推进用吸热燃料的几个关键技术.高超技术研讨会,北京,2003
    [79]Neal E Hass,Michael K S.Flight data analysis ofhyShot 2.AIAA 2005-3354
    [80]http://www.uq.edu.au/news/hyshot.phtml
    [81]乐嘉陵,胡欲立,刘陵.双模态超燃冲压发动机研究进展.流体力学实验与测量,2000,14(1):1-12
    [82]王振国,罗世彬,吴建军.可重复使用运载器研究进展.长沙:国防科技大学出版社,2004
    [83]张堃元,萧旭东,徐辉.非均匀流等溢角设计高超侧压进气道.推进技术,1998,19(1):20-24
    [84]张堃元,马燕荣,徐辉.非均匀流等压比变后掠高超侧压式进气道研究.推进技术,1999,20(3):40-44
    [85]张堃元,萧旭东,徐辉.非均匀超声速进气道二维绕流研究.空气动力学学报,2000,18(1):92-97
    [86]杨进军,张堃元,徐辉.双模态冲压发动机高超进气道的实验研究.推进技术,2001,22(6):473-475
    [87]张堃元,王成鹏,杨建军,徐惊雷.带高超进气道的隔离段流动特性.推进技术,2002,23(4):311-314
    [88]赵桂萍,周新海.高超声速进气道湍流流场的数值模拟.推进技术,1998,19(3):33-38
    [89]陈方,陈立红,张新宇.不同收缩比超燃冲压发动机进气道的数值研究.第十届全国激波与激波管学术讨论会,2001,绵阳
    [90]丁猛.超声速/高超声速进气道--隔离段流场的数值模拟.硕士学位论文,国防科技大学研究生院,2000.10
    [91]丁猛,李桦,范晓檣.等截面隔离段中激波串结构的数值模拟.国防科技大 学学报,2001,23(1):15-18
    [92]乐嘉陵,刘陵.高超声速飞行器的碳氢燃料双模态超燃冲压方案研究.流体力学实验与测量,1997,11(2):1-13
    [93]路艳红,凌文辉,刘敬华,等.双模态超燃燃烧室计算.推进技术,1999,20(3):56-60
    [94]刘敬华,凌文辉,胡欲立,等.亚/超双模态超音速燃烧的实验研究.推进技术,1996,17(2):48-52
    [95]刘敬华,凌文辉,马祥辉,等.超声速燃烧室流场的数值模拟研究.推进技术,1999,20(2):28-32
    [96]白菡尘,刘伟雄,贺伟,等.M6氢燃料双模态冲压模型发动机的实验研究.第十届全国激波与激波管学术讨论会,绵阳,2001
    [97]张树道,张肇元,司徒明.一种研究双燃式(超燃)冲压发动机进气道和燃烧室冷态内流场的实验方法.流体力学实验与测量,1998,12(2):51-54
    [98]张树道,张肇元,徐胜利,司徒明.双燃式(超燃)冲压发动机中激波与边界层之间相互作用对內部流动的影响.流体力学实验与测量,1999,13(2):16-21
    [99]张树道.双燃式超燃冲压发动机(DCWDCM)冷流内流现象研究.博士学位论文,中国科学技术大学,1999
    [100]司徒明,王子川,牛余涛,等.高温富油燃气超燃实验研究.推进技术,1999,20(6):75-79
    [101]陈兵,徐旭,蔡国飙.二维超燃冲压发动机尾喷管优化设计.推进技术,2002,23(5):433-437
    [102]晏至辉.超燃冲压发动机尾喷管仿真和实验研究.工学硕士学位论文,国防科学技术大学研究生院,2005
    [103]叶中元.思路决定出路,途径决定结局.2003高超技术研讨会论文集
    [104]潘宇.超燃燃烧室及其关键技术.航空航天部航空科学技术情报研究所技术报告,1991
    [105]Ben-Yakar A.Experimental investigation of mixing and ignition of transverse jets in supersonic crossflows.Ph'D Dissertation,Stanford University,2000.12
    [106]Billig F S,Orth R C,Lasky M.A unified analysis of gaseous jet penetration.AIAA Journal 1971,9(6):1048-1058
    [107]Schetz J A,Gilreath E H.Tangential slot injection in supersonic flow.AIAA Journal 1967,5(2):2149-2154
    [108]Gruber M R,Nejad A S,Chen T H,Dutton J C.Transverse injection from circular and elliptic nozzles into a supersonic crossflow.Journal of Propulsion and Power,2000,16(3):449-457
    [109]Gruber M R,Goss L P.Surface pressure measurements in supersonic transverse injection flowfields.Journal of Propulsion and Power,1999,15(5):633-641
    [110]Gregory Young,Rama Balar,Ashwani K G.Characterization of scramjet combustor with transverse fuel injection.AIAA 2006-1377
    [111]Glawe D D,Samimy M,Nejad A S,Chen T H.Effects of nozzle geometry on parallel injection into a supersonic flow.Journal of Propulsion and Power,1996,12(6):1159-1168
    [112]Tam C -J,Baurle R A,Gruber MR.Numerical study of jet injection into a supersonic crossflow.AIAA 1999-2254
    [113]Hsu K -Y,Carter C,Crafton J,et al.Fuel distribution about a cavity flameholder in supersonic flow.AIAA 2000-3585
    [114]Mathur T,Streby G D,Gruber M R,Jackson K,et al.Supersonic combustion experiments with a cavity-based fuel injector.AIAA 1999-2102
    [115]Cox-Stouffer,S K,Gruber M R,Bulman M J.A streamlined pressure-matched fuel injector for scramjet application.AIAA 2000-3707
    [116]Mathur T,Cox-Stouffer S K,Hsu K -Y,et al.Experimental assessment of a fuel injector for scramjet applications.AIAA 2000-3703
    [117]Cox-Stouffer S K,Gruber M R.Effects of injector yaw on mixing characteristics of aerodynamic ramp injectors.AIAA 1999-0086
    [118]Cox-Stouffer S K,Gruber M R.Further investigation of the effects of 'aerodynamic ramp' design upon mixing characteristics.AIAA 1999-2238
    [119]Fuller R P,Wu P -K,Nejad A S,et al.Comparison of physical and aerodynamic ramps as fuel injectors in supersonic flow.Journal of Propulsion and Power,1998,14(2):135-145
    [120]Eklund D R,Gruber M R.Study of a supersonic combustor employing an aerodynamic ramp pilot injector.AIAA 1999-2249
    [121]Eklund D R,Baurle R A,Gruber M R.Numerical study ofa scramjet combustor fueled by an aerodynamic ramp injector in Dual-Mode combustion.AIAA 2001-0379
    [122]Gruber M R,Donbar J M,Jackson T A,et al.Performance of an aerodynamic ramp fuel injector in a acramjet combustor.AIAA 2000-3708
    [123]DonbarJ M,Powell O,GruberMR,etal.Post-test analysis of flush-wall fuel injection experiments in a scramjet.AIAA 2001-3197
    [124]Gruber M R,Nejad A S,Chen T H,et al.Compressibility effects in supersonic transverse injection flowfields.Physics of Fluids,1997,9(5):1448-1461.
    [125]Tam C J,Baurle R A,Gruber M R.Comparison of air and helium injectants into a supersonic crossflow.Submitted to journal publication.
    [126]吴继平.超声速气流中燃料雾化与超燃冲压发动机动态工作过程研究.硕士学位论文,国防科大学研究生院,2003.11
    [127]Yates C L.Liquid injection into a supersonic stream.AFAPL-TR-71-97,Vol.1,Aero Propulsion Laboratory,Wright-Patterson AFB,OH,1972
    [128]Kush E A,Schetz J A.Liquid jet injection into a supersonic flow.AIAA Journal,1973,11(9):1223-1224
    [129]Lin K -C,Kennedy P J,Jackson Y A.Penetration heights of liquid jets in high-speed crossflows.AIAA 2002-0873
    [130]Lin K -C,Kennedy P J,Jackson T A.Structures of water jets in a Mach 1.94supersonic crossflow.AIAA 2004-0971
    [131]Sallam K A,Aalburg C,Faeth G M,et al.Breakup of aerated-liquid jets in supersonic crossflows.AIAA 2004-0972
    [132]Wu P -K,Kirkendall K A,Fuller R P,et al.Breakup processes of liquid jets in subsonic crossflows.Journal of Propulsion and Power,1997,13(1):64-73
    [133]Fuller R P,Wu P K,Kirkendall K A,et al.Effects of injection angle on the breakup processes of liquid Jets in subsonic crossflows.AIAA 1997-2966
    [134]Wu P K,Kirkendall K A,Fuller R P,et al.Spray structures of liquid jets atomized in subsonic crossflows.Journal of Propulsion and Power,1998,13(2):173-182
    [135]Lefebvre A H.Atomization and Sprays.Hemisphere,New York,1989
    [136]Lefebvre A H,Wang X F,Martin C A.Spray characteristics of aerated-liquid pressure atomizers.Journal of Propulsion and Power,1998,4(4):293-298
    [137]Roesler T C,Lefebvre A H.Studies on aerated-liquid atomization.International Journal of Turbo and Jet Engines,1989,6,Nos.3&4:221-229
    [138]Santangelo P J,Sojka P E.Focused-image holography as a dense-spray diagnostic.Applied Optics,1994,33(19):4132-4136
    [139]Santangelo P J,Sojka P E.A holographic investigation of the near-nozzle structure of an effervescent atomizer-produced spray.Atomization and Sprays,1995,5:137-155
    [140]Lin K -C,Kirkendall K A,Kennedy P J,et al.Spray structures of aerated liquid fuel jets in supersonic crossflows.AIAA 1999-2374
    [141]Lin K -C,Kennedy P J,Jackson T A.Spray structures of aerated-liquid jets in subsonic cossflows.AIAA 2001-0330
    [142]Lin K -C,Kennedy P J,Jackson T A.Structures of aerated-liquid Jets in high-speed crossflows.AIAA 2002-3178
    [143]Mathur T,Lin K -C,Kennedy P J,et al.Liquid JP-7 combustion in a scramjet combustor.AIAA 2000-3581
    [144]Lin K -C,Kennedy P J,Jackson T A.Structures of aerated liquid fuel jets interacting with a shock train in supersonic crossflows.Eighth International Conference on Liquid Atomization and Spray Systems,July 2000,Pasadena,CA,pp.253-260
    [145]苏义,李大鹏,刘卫东.超燃冲压发动机混合增强技术.飞航导弹,2006,11:41-46
    [146]Bushnell D M.Hypervelocity scramjet mixing enhancement.Journal of Propulsion,1994,11(5):1088-1090
    [147]Uwe Brummund,Joachim R N.Interaction of a compressible shear layer with shock waves:An experimental study.AIAA 97-0392
    [148]Nedungadi A,Lewis M J.A numerical study of fuel mixing enhancement using an oblique shock/vortex interaction.AIAA 96-2920
    [149]Obata S,Hermanson J C.Numerical simulation of shock enhanced mixing in axisymmetric turbulent jets.AIAA 2001-0149
    [150]J&Ho Kim,Jaeheon Sim,Jaehung Kim.Mixing enhancement of hydrogen diffusion flames in supersonic air using shock waves.AIAA 99-2785
    [151]Drummond J P.Enhancement of mixing and reaction in high-speed combustor flowfields.1997,NASA-97-acac-jpd
    [152]Oliger K M,Mo J D,Driver M A.Shock wave/fiat plate boundary layer injection interactions.AIAA 95-2481
    [153]Hwanil Huh,Jungyong Kim,Jam F D.Measured characteristics of flow and combustion in supersonic flame/shock wave interaction.AIAA 2001-3935
    [154]Mader B.Scramjet ignition technology.ME 8362,April 30,2002
    [155]司徒明,王春,陆惠萍,等.一种研究煤油超燃的新方案.流体力学实验与测量,2001,15(3):7-12
    [156]俞刚,李建国,陈立红,等.煤油.氢双燃料超声速点火特性研究,流体力 学实验与测量,2000,14(1):63-71
    [157]宋文艳,黎明,蔡元虎,等.超音速燃烧室碳氢燃料点火实验研究.中国航空学报(英文版),2004,17(2):65-71
    [158]Harrison A J,Weinberg F J.Flame stabilization by plasma jets.Proceedings of the Royal Society of London,1971,321(1544):95-103
    [159]A study of plasma ignition enhancement for aeroramp injectors in supersonic combustion applications
    [160]Masuya G,Komuro T,Murakami A,et al.Ignition and combustion performance of combustors with fuel injection struts.Journal of Propulsion and Power,1995,11(2):301-307
    [161]余勇,丁猛,刘卫东,等.煤油超声速燃烧的实验研究.国防科技大学学报,2004,26(1):1-4
    [162]丁猛,余勇,梁剑寒,等.碳氢燃料超燃冲压发动机点火技术实验.推进技术,2004,25(6):566-569
    [163]Tohru Mitani,Toshinori Kouchi.Flame structures and combustion efficiency computed for a Mach 6 scramjet engine.Combustion and Flame,2005(142):187-196
    [164]O'Byrne S,Doolan M,Olsen S,et al.Analysis of transient thermal choking process in a model scramjet engine.Journal of Propulsion and Power,2000,16(5):808-814
    [165]孙英英,韩肇元,司徒明,琚诒光.超声速预混可燃气流的点火与燃烧.工程物理学报,2002,23(6)
    [166]Huber P W,Schexnayder C J,McClinton C R.Criteria for self-ignition of supersonic hydrogen-air mixtures.NASA TP 1457,1979
    [167]Ben-Yakar A,Hanson R K.Experimental investigation of flame-holding capability of a transverse hydrogen jet in supersonic cross-flow.Proceeding of the 27th International Symposium on Combustion:2173-2180,1998.
    [168]Gouskov O V,Kopchenov V I.Investigation of ignition and flame stabilization behind the strut in supersonic flow.AIAA 2002-5227.
    [169]Brandstetter A,Denis S R,Kau H -P,et al.Flame stabilization in supersonic combustion.AIAA 2002-5224
    [170]Bussing T R A,Murman E M.Numerical investigation of 2-Dimensional H2-Air flame holding over ramps and rearward facing steps.AIAA 85-1250
    [171]Donel N D,Thompson D S.A two-dimensional numerical simulation of shock-enhanced mixing in a rectangular scramjet flowfield with parallel hydrogen injection.AIAA 91-0377
    [172]Northam G B,McClinton C R,Wagner T C,O'Brien W F.Development and evaluation of a plasma jet flameholder for scramjets.AIAA 84-1408.
    [173]Sabel'nikov V A,Korontsvit Y P,Ivanyushkin A K,Ivanov V V.Experimental investigation of combustion stabilization in supersonic flow using free recalculating zone.AIAA 98-1515.
    [174]Roudakov A S,Schikhmann Y,Semenov V,et al.Flight testing of an axisymmetric scramjet -Russian recent advances.International Astronautical federation,IAFpaper93-S4.485,Oct.1993
    [175]Vinagradov V,Kobigsky S A,Petrov MD.Experimental investigation of kerosene fuel combustion in supersonic flow.Journal of propulsion and power,1995,11(1):130-134
    [1176]Culter A D,Harding G C,Diskin G S.Supersonic pulsed injection.AIAA 2001-0517
    [177]Baurle R A,Tam C J,Dasgupta S.Analysis of unsteady flows for scramjet applications.AIAA 2000-3617
    [178]Gruber M R,Baurle R A,Mathur T,et al.Fundamental studies of cavity-based flameholder concepts for supersonic combustor.AIAA 99-2248
    [179]赖林.带空腔超燃发动机燃烧室喷雾流场特性研究.硕士学位论文,国防科大研究生院,2003
    [180]Gruber M R.Fundamental investigations of an integrated fuel injector/flameholder concept for supersonic combustion.ADA356336
    [181]Powell O A,Bons J P.Heat transfer to the inclined trailing wall of open cavity.AIAA 99-4889
    [182]Krishnamutry K.Acoustic Radiation from two-dimensional cutout in aerodynamic surface.NACA TN-3487.1955
    [183]Rizzetta D P.Numerical simulation of supersonic flow over a Three-Dimensional cavity.AIAAJournal,1988,26(7):799-807
    [184]Zhang X,Edwards J A.Computational analysis of unsteady supersonic cavity flows driven by thick shear layers.Aeronautical Journal,1988,92(919):365-374
    [185]Rockwell D E,Naudascher.Review--self-sustaining oscillations of flow past cavities.Journal ofFluidsEngineering,1978,100(6):152-165
    [186]Rossiter J E.Wind-tunnel experiments on the flow over rectanglar cavities at supersonic and transonic Speeds.Reports and Memo-randa No.3438,1964
    [187]Heller H H,Bliss D B.The physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their sup-pression.AIAA 75-0491
    [188]Watanabe Y.Characteristics of pressure oscillations in a supersonic flow around cavities,Doctor Thesis of Tokyo Noko University,1997
    [189]Burnes R,Parr T P,Wilson K J,et al.Investigation of supersonic mixing control using cavities:effect of fuel injection location.AIAA 2000-3618
    [190]Yu K H,Schadow K C.Role of large coherent structures in turbulent compressible mixing.Exp.Thermal and Fluid Science,1997,14:75-84
    [191]Anand Nenmen V,Yu K.Cavity-induced mixing enhancement in confined supersonic flows.AIAA 2002-1010
    [192]Sang-Hyeon Lee,Yong-Jin Kim.Mixing augmentation of transverse injection in scramjet combustor.AIAA 2000-0090
    [193]Yu K H,Schadow K C.Cavity-actuated supersonic mixing and combustion control.Combustion andFlame,1994,99:295-301
    [194]Gruber M R,Donbar J M,Carter C D.Mixing and combustion studies using cavity-based flameholders in a supersonic flow.Journal of Propulsion and Power,2004,20(5):769-778
    [195]Tishkoff J M,Drummond J P,Edwards T,et al.Future direction of supersonic combustion research:Air Force/NASA workshop on supersonic combustion.AIAA 97-1017
    [196]Ben-Yakar A,Hanson R K.Cavity flame-holders for ignition and flame stabilization in scramjets:An overview.Journal of Propulsion and Power,2001,17(4):869-877
    [197]刘欧子,胡欲立,等.超声速燃烧凹槽火焰稳定的研究动态,推进技术,2003,24(3)
    [198]Zhang X,Rona A,Edwards J A.The effect of trailing edge geometry on cavity flow oscillation driven by a supersonic shear layer.Aeronautical Journal,1998,102(1013):129-136
    [199]Baurle R A,Gruber M R.A study of recessed cavity flowfields for supersonic combustion applications.AIAA 99-0938
    [200]Quinn J E,Cutler A D,Northam G B.Drag reduction of supersonic cavities via mass injection with applications to scramjet.AIAA 97-0550
    [201]丁猛,王振国.凹腔火焰稳定器阻力特性的实验研究.航空学报,2005.12(6)
    [202]Hsu K Y,Carter C,Crafton J,et al.Fuel distribution about a cavity flameholder in supersonic flow.AIAA 2000-3585
    [203]Rasmussen C C,Driscoll J F,Hsu K Y,et al.Blowout limits of supersonic cavity-stabilized flames.AIAA 2004-3660
    [204]Li Mailiang,Zhoujin,Geng Hui,Zhai Zhen.Investigations on function of cavity in supersonic combustion using OH PEIF.AIAA 2004-3657
    [205]Owens M G,Tehranian S,Segal C,et al.Flame holding configurations for kerosene combustion in a Mach 1.8 airflow.Journal of Propulsion and Power,1998,14(4):456-461
    [206]Yu G,Li J G,Zhang X Y,Chen L H.Investigation of kerosene combustion characteristics with pilot hydrogen in model supersonic combustors.Journal of Propulsion and Power.2001,17(6):1263-1272
    [207]Yu K,Wilson K J,Schadow K C.Effect of flame-holding cavities on supersonic combustion performance.AIAA 99-2638
    [208]Ben-Yakar A,Hanson R K.Experimental investigation of flameholding capability of hydrogen transverse jet in supersonic cross-flow.27th Symposium on Combustion,1998
    [209]Ben-Yakar A,Hanson R K.Supersonic combustion of cross-flow jets and the influence of cavity flame-holders.AIAA 99-0484
    [210]ByrneIngo S O,Stotz A J,Neely R R,et al.OH PLIF imaging of supersonic combustion using cavity injection.AIAA 2005-3357
    [211]丁猛.基于凹腔的超声速燃烧火焰稳定技术研究.博士学位论文,国防科大学研究生院,2005.10
    [212]李大鹏.煤油双模态冲压发动机燃烧室工作过程研究.博士学位论文,国防科学技术大学研究生院,2006.10
    [213]Yu K,Wilson K J,R A Smith,et al.Experimental investigation on dual-purpose cavity in supersonic reacting flows.AIAA 98-0723
    [214]Zhang X,Edwards J A.Experimental investigation of supersonic flow over two cavitiesin tandem.AIAA Journal,1992,30(5):1182-190
    [215]Rho O,Hwang S.Numerical simulation of supersonic over double cavity.AIAA 94-2206
    [216]Taborda N,Bray D,Knowles K.Passive control of cavity resonances in tandem configurations.AIAA 2001-2770
    [217]Jeyakumar S,Balachandran P.Experimental investigations on supersonic stream past axisymmetric cavities.AIAA 2005-3553
    [218]Holmes S G,Landrum D B.Experimental investigation of the heat transfer to paralle tandem cavities.AIAA 95-0631
    [219]Yu K H,Wilson K J,Schadow K C.Effect of flame holding cavities on supersonic combustion performance.Journal of Propulsion and Power,2001,17(6):1287-1295
    [220]Situ M,Wang C,Lu H P.Hot gas piloted energy for supersonic combustion of kerosene with dual-cavity.AIAA 2001-0523
    [221]陈坚强,司徒明.带双凹槽燃烧室中超声速流场的数值模拟.空气动力学学报,2004,22(4)
    [222]Situ M,Wang C,Zhuang F G,Investigation of supersonic combustion of kerosene jets with hot gas piloted energy and dual-cavity.AIAA 2002-0804
    [223]Yu G,Li J G,Chang X Y,et al.Investigation of fuel injection and flame stabilization in liquid hydrocarbon-fueled supersonic combustors.AIAA 2001-3608
    [224]Adam Quick,King P I,Gruber M R,Carter C D,et al.Upstream mixing cavity coupled with downstream flameholding cavity behavior in supersonic flow.AIAA 2005-3709
    [225]潘余,李大鹏,刘卫东,等.变几何喉道对超燃冲压发动机点火与燃烧性能影响的实验研究.推进技术,2006,27(3):225-229
    [226]James Nabity,Peter Hudson,James Loundagin.Developmental testing of the fasthawk combustor.AIAA 99-0431
    [227]耿辉.超声速燃烧室中凹腔上游横向喷注燃料的流动、混合与燃烧特性研究.博士学位论文,国防科学技术大学研究生院,2007.4
    [228]Jeong-Yeol Choi,Fuhua Ma,Vigor Yang.Dynamics combustion characteristics in scramjet combustors with transverse fuel injection.AIAA 2005-4428
    [229]Fuhua Ma,Jian Li,and Vigor Yang.Thermoacoustic flow instability in a scramjet combustor.AIAA 2005-3824
    [230]Stamp G,Ghosh A,Zang A,Yu K H.Experimental characterization of acoustic wave propagation in a supersonic duct.AIAA 2005-4144
    [231]徐华舫.空气动力学基础.北京:北京航空学院出版社,1987
    [232]沈维道,郑佩芝,蒋淡安.工程热力学.北京:高等教育出版社,1983
    [233]Sean O'Byrne,Ingo Stotz,Andrew J N,Russell R B.OH PLIF imaging of supersonic combustion using cavity injection.AIAA 2005-3357
    [234]Billig F S,Dugger G L.The interaction of shock waves and heat addition in the design of supersonic combustors.Twelfth Symposium on Combustion,The combustion Inst.,Pittsburgh,PA,1969,pp.1125-1134
    [235]Fluent Inc.Fluent User Guide and Document.Fluent Inc.
    [236]Tomoaki Kitagawa,Atsushi Moriwaki,Koichi Murakami.Ignition and flame-holding characteristics of methane and hydrogen by plasma torch.AIAA 2002-5210
    [237]Howell J R,Buckius R O.Fundamentails of engineering thermodynamics.McGraw-Hill,Inc.1992
    [238]Settles G S,Willians D R,Baca B K,et al.Reattachment of a compressible turbulent free shear layer.AIAA Journal.1982,20(1):60-67
    [239]Morsi S A and Alexander A J.An investigation of particle trajectories in two-phase flow systems.J.Fluid Mech.1972,September 26,55(2):193-208
    [240]Haider A and Levenspiel O.Drag coefficient and terminal velocity of spherical and nonspherical particles.Powder Technology,1989,58:63-70
    [241]Wilcox D C.Turbulence modeling for CFD.DCW Industries,Inc.,La Canada,California,1998.
    [242]Smagorinsky J.General circulation experiments with the primitive equations(Ⅰ)The Basic Experiment.Month.Wea.Rev.,1963,91:99-164
    [243]Ranz W E and Marshall W R.Evaporation from drops,Part Ⅰ.Chem.Eng.Prog.,March 1952,48(3):141-146.
    [244]Ranz W E and Marshall W R.Evaporation from drops,Part Ⅱ.Chem.Eng.Prog.,April 1952,48(4):173-180
    [245]Horstman C C,Settles G S,Williams D R,et al.A reattaching free shear layer in compressible turbulent flow.AIAA Journal 1982,20(1):79-85
    [246]Ali M,Fujiwara T,Leblanc J E.Influence of main flow inlet configuration on mixng and flameholding in transverse injection into supersonic airstream.International journal of Engineering Science,2000,38(20):1161-1180
    [247]傅维标,卫景彬.燃烧物理学基础.北京:机械工业出版社,1984
    [248]Kanury A M,庄逢辰.Introduction to combustion phenomena.长沙:中国人民解放军国防科学技术大学出版社,1981
    [249]顾恒祥.燃料与燃烧。西安:西北工业大学出版社,1993
    [250]钱申贤.燃气燃烧原理.北京:中国建筑工业出版社,1989.6
    [251]潘余.双模态超燃冲压发动机试验与数值仿真研究.硕士学位论文,国防科技大学研究尘院,2004.10
    [252]Meredith B C,Louis J S.Scramjet fuels autoignition study.Journal of Propulsion and Power,2001,17(2):315-323
    [253]Routvsky Vladimir.Autoignition study on kerosene in supersonic flow.Technical Report,No:F61708-96-WO286
    [254]潘余,王振国,刘卫东.超燃沖压发动机燃烧效率测量发动机简介.实验流体力学,2007,21(2):68-73
    [255]宁晃,高歌.燃烧室气动力学.北京:科学出版社,1987
    [256]何立明.飞机推进系统原理.北京:国防工业出版社,2006
    [257]西北工业大学.航空发动机气动参数测量.北京:国防工业出版社,1980
    [258]戴莱J W,哈翠曼D R F.流体动力学.北京:人民教育出版社,1981
    [259]利特尔,钱翼稷.内流空气动力学.北京:国防工业出版社,1982
    [260]生井武文,井上雅弘.粘性流体力学.北京:海洋出版社,1984
    [261]张瑜.膨胀波与激波.北京:北京大学出版社,1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700