新型含氟化合物的合成及对TMV的诱导抗性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以便宜、易得的芳香醛和三氟乙酰乙酸乙酯为原料,利用简便的合成路线,合成了5种新的苯并吡喃杂环羧酸;采用枯斑法研究了其对烟草花叶病(Tobacco Mosaic Virus,TMV)的防治效果,筛选出了最优药剂;通过测定对感染烟草花叶病TMV的烟叶中叶绿素和相关防御酶活性的变化,初步了解了其对TMV的抗性机理,为开发新型、高效的抗病毒剂提供依据。结果如下:
     1.新型含氟苯并吡喃羧酸类化合物的合成:
     以水杨醛(取代水杨醛)和三氟乙酰乙酸乙酯为原料,以哌啶为催化剂,在无水乙醇中反应得到5种新的含氟苯并吡喃酯类化合物,产率80.2%~85.8%。将产品进一步在碱的醇溶液中水解、中和、分离得到5种含氟苯并吡喃羧酸类化合物,产率90.3%~95.7%。通过紫外光谱、红外光谱、核磁氢谱和碳谱进行了结构确认。该方法反应时间短、温度易控、操作简便、污染少等特点,是一个值得推广的绿色合成方法。
     2.苯并吡喃羧酸类化合物对TMV的诱导抗性:
     以心叶烟为材料,采用全叶法,对5种羧酸类化合物进行药效筛选试验,得到最优药剂。试验结果如下:总体上,各种药剂预防效果比治疗效果好。预防效果:2-羟基-2-三氟甲基-3,5-二氯-2H-苯并吡喃甲酸(2e)>2-羟基-2-三氟甲基-5-硝基-2H-苯并吡喃甲酸(2d)>2-羟基-2-三氟甲基-5-氯-2H-苯并吡喃甲酸(2b)>2-羟基-2-三氟甲基-5-溴-2H-苯并吡喃甲酸(2c)>2-羟基-2-三氟甲基-2H-苯并吡喃甲酸(2a)。当最优药剂的浓度为300μg/mL时,预防和治疗的抑制率分别为51.60%和44.41%,比市售抗病毒剂苯并噻二唑(BTH)分别高8.31%和1.62%。其次,通过在普通烟NC89上的病情指数试验得出:2-羟基-2-三氟甲基-3,5-二氯-2H-苯并吡喃甲酸(2e)>2-羟基-2-三氟甲基-5-氯-2H-苯并吡喃甲酸(2b)> 2-羟基-2-三氟甲基-5-硝基-2H-苯并吡喃甲酸(2d)>2-羟基-2-三氟甲基-5-溴-2H-苯并吡喃甲酸(2c)>2-羟基-2-三氟甲基-2H-苯并吡喃甲酸(2a),病情指数与枯斑抑制率的预防试验中效果最好的均为2-羟基-2-三氟甲基-3,5-二氯-2H-苯并吡喃甲酸。除2b、2d外,其余药剂的结果基本一致。
     3.植物体内酶活性的生化机制分析:
     经最优药剂(2e)(300μg/mL)处理后(T2),烟草叶片内的过氧化物酶(POD)活性高峰与对照苯并噻二唑(BTH 100μg/mL,T3)相比提前2d,活性峰值比BTH高0.82U/mg.min。这可能是由于施用最优药剂后,引起酚类物质氧化,木质素合成速度加快,提前达到高峰,进而引起POD活性提前达到高峰。最优药剂诱导的烟草叶片内的苯丙氨酸解氨酶(PAL)活性在接种后第9d达到最高峰,比BTH的最高活性值高22.56个酶活性单位。可能是药剂诱导刺激了机体,导致了控制PAL防御体系的基因表达量增加,促进了PAL催化的代谢产物大量合成,从而可以抵抗TMV的侵入、扩散。施用药剂后接种,烟草叶片内的多酚氧化酶(PPO)活性前期较低,从第2d开始,活性明显上升且高于其它任何处理。与BTH相比,活性高峰活性同时出现在第5d,最大峰值比BTH高97.88个酶活性单位。经最优药剂处理后接种(T2),过氧化氢酶(CAT)活性在接种后1d就达到高峰值(87.27),而其它处理的CAT活性均在第5d达到高峰。最优药剂处理后接种的烟株超氧化物歧化酶(SOD)活性峰值比BTH处理后接种晚2d出现,其酶活性最大峰值高出3.64个酶活性单位。
Five new benzopyran carboxylic acid containing fluorine were synthesized from cheap, easily available aromatic aldehyde and trifluoroacetyl ethyl acetate by simple synthetic route. The inhibition effect on Tobacco Mosaic Virus(TMV) was studied through the Necrotic lesions test and the optimal agent was screened out. The resistant mechanism of the optimal agent to TMV was preliminary studied by testing related defense of chlorophyll and related enzyme activities in tobacco infected by TMV to provide evidence for the development of new, effective antiviral agents. Results are as follows:
     1. Synthesis of novel benzopyran acids containing fluorine:
     Five new benzopyran esters was obtained from the reaction of salicylaldehyde and trifluoroacetyl ethyl acetate in the presence of piperidine with the yield of 80.2% - 85.8%. Then 5 benzopyran carboxylic acid containing trifluoine were achieved in the yield of 90.3% - 95.7% after the esters were further hydrolyzed, neutralized and isolated in the alcohol solution of alkali. The structures are confirmed by UV, IR, 1H NMR and 13C NMR. The method has such advantages as short reaction time, easy controlled temperature, simple operation and less pollution, etc.
     2. The induction resistance of benzopyran acids on TMV:
     The optimal agent was screened by the resistant test of 5 carboxylic acid compounds on Nicotiana glutinosa as the materials using the whole leaf method. The results are as follows: On the whole, the preventive effect of various agents is better than curative effect. Preventive effect: (2e)> (2d)> (2b)> (2c)> (2a)., The rate of prevention and curation of the inhibition rates were respectively 51.60% and 44.41% when the concentration of optimal agent is 300μg/mL, which are higher by 8.30% and 1.11% compared with commercially available antiviral agents benzothiadiazole (BTH). Secondly, the disease index on tobacco NC89 experiment showed: (2e)> (2b)> (2d)> (2c)> (2a). In the disease index and the inhibition effect of prevention trials, 2e is the best agent. The rest are the same basically on the pharmaceutical results besides 2b and 2d.
     3. The biochemical mechanism analysis of preventive enzymes:
     After the treatment by optimal agent (2e) (300μg/mL) (T2), the peroxidase (POD) activity peak of tobacco leaves reached earlier by two days compared with the benzothiadiazole (BTH 100μg/mL, T3) control, and the activity peak is higher more 0.82U/mg.min than BTH. This may be due to the cause of oxidation of phenolic compounds and the production of lignin faster after application of the best agents to the inoculated tabacco and then rise to peak ahead of POD activity. Tobacco leaves phenylalanine ammonia-lyase (PAL) activity reach to the peak on the 9th day after application of the best agents to the inoculated tabacco, which is the same as BTH and higher than the highest peak of BTH by 22.56 activity units. The reason may be that gene expression increase controlling the PAL and that promoted a large number of PAL-catalyzed synthesis of metabolites after being stimulated on the body with the agent, which can resist the invasion and the proliferation of TMV. The polyphenol oxidase (PPO) activity of tobacco leaves is very low in the first day after being applied the best agent to the inoculaed tobacco. The activity was significantly increased and higher than any other treatment from the 2th. Compared with BTH, the activity peak appeared at the same day on the 5th, and the maximum activity peak is higher by 97.88 units than BTH. The catalase (CAT) activity got to peak value (87.27) on the first day after the tobacco leaves was treated by optimal agent then being inoculated (T2). The CAT activity of other treatments reaches to peak on the 5th day. The superoxide dismutase (SOD) activity peak of tobacco treated with optimal agent after inoculating occurs later by two days than BTH, and the activity peak is higher by 3.64 units.
引文
[1] Zaitlin M H I W. Tobacco mosaic virus(type strain). CMV/AAB description of plant virus[M]. London:CRC Press, 1975: 1913-1922.
    [2] Scheuermann H, Fisch A. Process for controlling undesired vegetation[J]. Fr 1579902. 1969, 13(1-4): 241-249.
    [3] Baranwal V K, Verma H N. Localized resistance against virus infection by leaf extract of Celosia cristata[J]. Plant Pathology. 1992, 41(1): 633-638.
    [4]刘开全,马学萍,陆伟东,等.心叶烟和三生烟对TMV的过敏性差异[J].中国烟草科学. 2010, 31(4): 25-27.
    [5]张天园,吴元华,赵秀香,等.烟草“灼斑病”病原及发病条件初探[J].湖北农业科学. 2009, 48(6): 1377-1379.
    [6]宋婷婷,陈荣溢,杨雷亮.应用多重RT—PCR检测烟草上的TMV和CMV[J].辽宁农业科学. 2007(1): 53-54.
    [7]赵明敏,杨向东,鲁红学,等. siRNA对烟草原生质体中TMV RNA积累的干扰作用研究[J].植物病理学报. 2007, 37(3): 284-288.
    [8]马欣荣,谈心,刘华玲,等.烟草花叶病毒siRNA设计及其植物表达载体构建[J].应用与环境生物学报. 2006, 12(2): 151-154.
    [9]白涛,梁元存,王荣,等.烟草赤星菌毒素诱导烟草微细胞死亡及对TMV的抗性[J].中国烟草科学. 2006, 27(2): 26-28.
    [10]张长华,关国经,冯光群,等.以农业预防措施为主的烟草病毒病综合防治技术[J].贵州农业科学. 2006, 34(2): 49-51.
    [11]王敏,李明福,黄璐琦,等.栽培地黄(Rehmannia glutinosa Libosch.)普遍感染TMV和CMV[J].植物病理学报. 2006, 36(2): 189-192.
    [12]李丽杰,张海霞,颜培强,等.转TMV-cp基因烟草对环境影响的安全性研究[J].中国烟草学报. 2007, 13(6): 41-43.
    [13]国嵘,孙拯研.曲靖市烟草主要病毒病综合防治技术研究及示范推广初报[J].烟草科技. 2000(4): 43-45.
    [14]欧阳本友,刘富春,周玉英.硫酸锌减轻小白菜病毒病试验[J].长江蔬菜. 1990(5): 22.
    [15] Xi Z, Zhang R Y, Yu Z H, et al. The interaction between tylophorine B and TMV RNA[J]. Bioorganic & Medicinal Chemistry. 2006, 16(20): 4300-4304.
    [16] Parent J G, Asselin A. Detection of pathogenesis-related proteins (PR or b) and of other proteins in the intercellular fluid of hypersensitive plants infected with tobacco mosaic virus[J]. Canadian Journal of Botany. 1984, 62(4): 564-569.
    [17]刘勇,杨树军.应用点免疫结合法和组织印迹法检测烟草组织中的TMV和CMV[J].烟草科技. 2000(12): 42-44.
    [18] Huppatz J L, Phillips J N, Rattigan N. Cyanoacrylates. Herbicidal and photosynthetic inhibitory activity[J]. Journal of Agricultural and Food Chemistry. 1981, 45(12): 2769-2773.
    [19] Li Y M, Jia Y T, Zhang Z K, et al. Purification and Characterization of a New Ribosome Inactivating Protein from Cinchonaglycoside C-treated Tobacco Leaves[J]. Journal of Integrative Plant Biology. 2007, 49(9): 1327-1333.
    [20] Martin H, Ian T, Baldwin. Fitness costs of induced resistance: emerging experimental support for a slippery concept[J]. Trends in Plant Science. 2002, 7(2): 31-38.
    [21]程英豪,王继伟.由TMV54*10^3蛋白基因构建的转基因番茄及其对TMV的…[J].北京师范大学学报:自然科学版. 1999, 35(1): 93-96.
    [22]杜良成,王钧.稻瘟菌诱导的水稻几丁酶,β—1.3—葡聚糖酶活性及分布[J].植物生理学报. 1992, 18(1): 29-36.
    [23]朱睦元,刘玉方.大麦黄花叶病毒的生物学研究IV:植物基因工程及其在大麦抗黄花叶病中的应用[J].大麦科学. 1994(1): 20-22.
    [24]李为民,王志兴,贾士荣.海岛棉GbRac1基因过量表达提高转基因烟草离体叶片对赤星病的抗性[J].农业生物技术学报. 2004, 12(4): 353-356.
    [25] Hedrick U P. The vegetables of New York[M]. Albany : J.B. Lyon company, , 1928: 31.
    [26]肖月华,侯磊,等.植物V类几丁酶苦瓜同源基因(McChi5)的克隆及特征分析[J].遗传学报. 2002, 29(11): 1028-1033.
    [27]吴全聪,杨秀芬,邱德文. 3%植物激活蛋白诱导蚕豆抗病性应用技术[J].植物保护. 2006, 32(6): 149-152.
    [28] Amir, Mohammad, Naji, et al. Validation of EST-derived STS markers localized on Qfhs.ndsu-3BS for Fusarium head blight resistance in wheat using a 'Wangshuibai' derived population[J].遗传学报. 2008, 35(10): 625-629.
    [29]鄢洪海,赵志强,王琰,等.水杨酸处理对花生主要防御酶活性的影响[J].花生学报. 2006, 35(4): 20-22.
    [30]田鹏玮,刘同祥,杨芳,等.草酸促进人参愈伤组织细胞生长和人参多糖与皂苷积累的研究[J].时珍国医国药. 2009, 20(9): 2197-2198.
    [31]周国梁,尚琳琳,林泓,等.油菜茎基溃疡病菌的实时荧光PCR检测[J].植物病理学报. 2011, 41(1): 10-17.
    [32] Zimmermann, Petra, Zentgnf. Regulation of antioxidative enzymes during leaf senescence of Arabidopsis thaliana[J]. Am.Society Plant Biologist. 2002, 64(146): 786-791.
    [33] Schuster G, Huber S. Evidence for the inhibition of potato virus X replication at two stages dependent on the concent ration of ribavine, 5-azadehyt rouracel as 1, 5-diacety-5-azadehyt rouracil[J]. Biochemistry physiol pflanzen. 1991, 187(11): 429-438.
    [34]周鑫,蔡新忠.番茄叶霉菌CfHNNH基因5’端序列的功能分析[J].浙江大学学报:农业与生命科学版. 2007, 33(1): 29-33.
    [35] Gau?mann E A. The fungi:a description of their morphological features and evolutionary development [M]. New York: Hafner Pub. Co., 1952: 420.
    [36] Orlin Z, Dekker H. Check-list of Red Sea Mollusca =Soortenlijst van Rode Zee Mollusca[M]. The Hague Stichting Biologia Maritima, 2000: 46.
    [37] Kozlowska M, Fryder K, Wolko S. Peorxidase involvement in the defense response of red raspberry to Didymella applanata (Niessl/Sacc)[J]. Acta Physio.Plant. 2001, 23(3): 303-310.
    [38]牛淑妍,张成良.联本胺—H2O2—HRP伏安酶联免疫分析体系测定植物病毒TMV和TRSV[J].分析科学学报. 1999, 15(3): 195-198.
    [39]许向阳,李景富,等.番茄TMV、叶霉病和根结线虫病苗期多抗性鉴定方法的研究[J].东北农业大学学报. 2002, 33(1): 34-38.
    [40] Padgett H, Watannabe Y, Beachy R. Identification of the TMV replicase sequence that activates the N gene-mediated hypersensitive response[J]. MPMI. 1997, 10(4): 709-715.
    [41] Basset Y. Arthropods of tropical forests:spatio-temporal dynamics and resource use in the canopy[M]. Cambridge, U.K.: Cambridge University Press, 2003: 474.
    [42] Ganesan V, Thomas G. Salicylic acid response in rice: Influence of salicylic acid on H202 accumulation and oxidative stress [J]. Plant Science. 2001, 160(2): 1095-1106.
    [43]崔洪宇,孙玉河.植物抗病的Ca^2+信号转导研究进展[J].天津农业科学. 2007, 13(1): 48-51.
    [44]王彩玉,孙宾宾,周广和. HarpinXoo诱发植物过敏反应和抗病性信号传导解析[J].作物育种信息. 2005(4): 5-6.
    [45] Hh F. Current status of gene-for-gene concept[J]. Annu Rrv Phytopathol. 1971, 9(4A): 275-296.
    [46] Legrande W H, Hardy L M. Checklist of the fishes of Caddo and Bossier Parishes, Louisiana[M]. Shreveport: Louisiana State University in Shreveport,1979: 12.
    [47]许向阳,李景富,等.番茄TMV、叶霉病、枯萎病苗期多抗性鉴定方法研究[J].北方园艺. 2002(3): 38-40.
    [48]郭金芳,潘俊松,王琛,等.病程相关蛋白与植物抗病性关系的研究及其在草坪草抗病育种中的应用[J].草业学报. 2008, 17(6): 156-163.
    [49]徐幼平,徐秋芳,蔡新忠.适于双向电泳分析的番茄叶片总蛋白提取方法的优化[J].浙江农业学报. 2007, 19(2): 71-74.
    [50]朱友林,吴健胜,等.水稻对白叶枯病菌抗性相关蛋白的又向电泳分析[J].中国农业科学. 2000, 33(4): 91-93.
    [51]李红玉,吴健胜.水稻IR26悬浮细胞与白叶枯病菌互作的过敏反应现象[J].植物病理学报. 1999, 29(4): 299-303.
    [52]吴健胜,王金生.水稻与白叶枯病菌互作中叶片可溶性蛋白质的变化[J].西南农业大学学报. 1998, 20(4): 321-327.
    [53]朱友林,吴健胜.水稻白叶枯病菌诱导水稻悬浮细胞防卫基因表达的初步研究[J].植物病理学报. 1997, 27(3): 250.
    [54] Whitham S, Dinesh-Kumar S, Choi D. The product of the tobacco mosaic virus resistance gene N:similarity to toll and the interleukin-1 receptor[J]. Cell. 1994, 78(4): 1101-1115.
    [55] Padgett H, Beachy R. Analysis of a tobacco mosaic virus strain capable of overcoming N gene-mediated resistance [J]. Plant Cell. 1993, 5: 557-586.
    [56] Erickson F, Holzberg S, Calderon-Urrea A. The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco[J]. Plant J. 1999, 18(5): 67-75.
    [57] Whitham S, Mccormick S, Baker B. The N gene of tobacco confer resistance to tobacco mosaic virus in transgenic tomato[J]. Proc Natl Acad Sci USA. 1996, 96(6): 8776-8781.
    [58] Dinesh-Kumar S, Whitham S, Choi D E. Transposon tagging of tobacco mosaic virus resistance gene N:its possible role in the TMV-N-mediated signal transduction pathway[J]. Proc Natl Acad USA. 1995, 92(3): 4175-4180.
    [59] Otsuki Y, Shimomura T, Tabkebe I. Tobacco mosaic virus multiplication and expression of the N gene in necrotic responding tobacco varieties[J]. Virology. 1972, 50(21): 45-50.
    [60] Polidoros A N, Mylona P V, Scnadalios. Transgenic tobacco plants expressing the maize Cat2 gene have altered catalase levels that affect plnat-pathogen interactions and resistance to oxidatives[J]. Transgenic Reasearch. 2001, 10(6): 555-569.
    [61]解芬,肖炳光,高玉龙,等.烟草品种Coker176和Ti245抗TMV的遗传分析[J].云南农业大学学报:自然科学版. 2010, 25(2): 170-172.
    [62]张薇,杨秀芬,邱德文,等.激活蛋白PeaT1诱导烟草对TMV的系统抗性[J].植物病理学报. 2010(3): 290-299.
    [63]申莉莉,王凤龙,钱玉梅,等.拮抗TMV菌株By33产抗病毒蛋白分离纯化及发酵特性研究[J].中国烟草学报. 2009, 15(1): 65-68.
    [64]张成省,孔凡玉,刘朝科,等.枯草芽孢杆菌Tpb55抗烟草普通花叶病毒(TMV)活性研究[J].中国烟草学报. 2009, 15(4): 48-51.
    [65] Higa A, Hidaka T, Minai Y. Active oxygen radicals induce peroxidase activity in rice blade tissues[J]. Biosci.Biotech.Biochem. 2001, 65(8): 1852-1855.
    [66]李潇.单基因座DNA图谱在法医学中的应用[J].生命的化学. 1994, 14(4): 34-35.
    [67]赵明贤,王艳玲.单基因完全显性遗传一对双亲的n个F1代中显(隐)性性状发生k次的概率[J].生物学通报. 2008, 43(7): 22-23.
    [68]毛健民,郑爱珍,等.烟草叶片感染花叶病毒时的某些生理生化变化[J].吉林农业大学学报. 2002, 24(4): 19-21.
    [69]曾富华,吴岳轩,郑小林.化学因子对膜脂组分的影响与诱导抗病作用的关系[J].核农学报. 2004, 18(5): 397-401.
    [70]李冠,黄雄,钱小英.儿科抗菌药物使用现状分析[J].甘肃医药. 2011, 30(1): 48-49.
    [71] Freudenberg W. Geologie von Mexiko[M]. Berlin, Borntraeger, 1921: 232.
    [72]芦光新.活性氧与植物抗病性的关系[J].青海大学学报:自然科学版. 2002, 20(2): 11-15.
    [73]张祥民,孔凡明,等.烟草植株间传递的抗病化学信号物质研究[J].复旦学报:自然科学版. 2001, 40(4): 376-380.
    [74]吴志华,曾富华,马生健,等.水分胁迫下植物活性氧代谢研究进展(综述Ⅱ)[J].亚热带植物科学. 2004, 33(3): 77-80.
    [75] Morton R, Hersey B, Round G, etal. Dinosaurs[M]. Rev. ed. ed. [Tulsa, OK: EDC Pub.], 1993: 32.
    [76]程新胜,杨建卿.熏蒸处理对土壤微生物及硝化作用的影响[J].中国生态农业学报. 2007, 15(6): 51-53.
    [77]杨建卿,许大凤,孔俊,等.不同烟草品种罹黑胫病后几种酶活性的变化[J].合肥工业大学学报:自然科学版. 2005, 28(7): 816-819.
    [78]郑法新,程璐,李侠,等.红豆杉内生菌的分离及抗植物病害活性物质的初步筛选[J].现代农业科技. 2009: 108-109.
    [79]杨建国,皮向红,陈惠明,等.茄子ER300抗青枯病遗传及在育种中的应用[J].湖南农业大学学报:自然科学版. 2006, 32(3): 277-279.
    [80]汪华,黄荣茂.茂丰6%抗坏血酸水剂对烟草花叶病毒活性及生化机制的影响[J].贵州农业科学. 2007, 35(1): 53-55.
    [81]赵立红,黄学跃.采收时期、调制方法对两个晒黄烟品种品质的影响[J].云南农业大学学报. 2005, 20(4): 522-526.
    [82] Allard R W, Brussard P F. Ecological genetics :the interface[M]. New York: Springer-Verlag, 1979: 247.
    [83] Duggar B M. Proceedings of the International congress of plant sciences, Ithaca, New York, August 16-23, 1926[M]. Menasha, Wis.: George Banta publishing company, , 1929: 2.
    [84] Johnson A I, Morris D A. Summary of hydrologic and physical properties of rock and soil materials, as analyzed by the hydrologic laboratory of the U.S. Geological Survey l948-60[M]. Washington, D.C.: U.S. Govt. Print. Off., 1967: 42.
    [85]王祈楷,张金岐.苹果锈果病的病原[J].植物病理学报. 1991, 21(2): 107-111.
    [86]向固西,吴林森.一种新的农用抗生素—宁南霉素[J].微生物学报. 1995, 35(5): 368-374.
    [87]刘学瑞,严明春.蚜传烟草花叶病流行规律的探讨:Ⅱ.田间病情指数动态模型[J].湖南农业大学学报:自然科学版. 1998, 24(3): 206-211.
    [88] Kuntze O, von Post T E. Lexicon generum phanerogamarum inde ab anno MDCCXXXVIIcum nomenclatura legitima internationali et systemate inter recentia medio[M]. Stuttgart: Deutsche verlags-anstalt, 1904: 714.
    [89]林存銮,寻振山.济宁地区豆田蚜虫消长规律与防治适期的研究[J].山东农业科学. 1994:44.
    [90]郭兴启,朱汉城.不同抗性番茄品种感染番茄花叶病毒(TMV)后若干生化反应[J].山东农业大学学报:自然科学版. 1997, 28(3): 275-280.
    [91]刘道贵,叶北朝.苗期覆盖对棉田生态的影响[J].现代农业科技. 2005:36.
    [92]侯玉霞,李重九.中草药中抗植物病毒TMV活性物质PZ1作用机理研究[J].中国农业大学学报. 2000, 5(1): 21-24.
    [93]陈启建,欧阳明安,吴祖建,等.金鸡菊(Coreopsis drummondii)的抗TMV活性物质[J].应用与环境生物学报. 2009, 15(5): 621-625.
    [94] Huber J H. Review of Rivulus ecobiogeography-relationships:the most widespread Neotropical cyprinodont genus[M].[Paris]:Cybium, Socie? te? franca?ise d'ichtyologie, 1992: 572.
    [95] Brown J M M, Schulze L. A review of silk production and spinning activities in Arthropoda with special reference to spinning in tenebrionid larvae, Coleoptera[M]. Pretoria:The Transvaal Museum, 1975: 51.
    [96]李在国,黄润秋.吗啉(哌嗪或六氢吡啶)取代的α—乙酰氨基膦酸二苯酯的研究[J].合成化学. 2000, 8(2): 130-133.
    [97] Nguyen? N T. Shells of Vietnam[M]. Hackenheim, Germany: ConchBooks, , 2005: 338.
    [98]杨录明,程桂林,普耀芳,等.农用不育剂防治烟青虫的研究[J].中国烟草学报. 2000, 6(3): 32-36.
    [99]马志华,李德豪,周如金.活性污泥微型动物观察的应用[J].广东石油化工学院学报. 2010, 20(6): 21-23.
    [100]殷培军,马志卿,冯俊涛,等. VFB诱导烟草叶片生理生化变化与TMV抗性的关系[J].西北农业学报. 2005, 14(2): 91-95.
    [101]陈启建,刘国坤,吴祖建,等.大蒜精油对烟草花叶病毒的抑制作用[J].福建农林大学学报:自然科学版. 2005, 34(1): 30-33.
    [102]陈梅莉,唐志华,肖幸丰. 2009年肺炎克雷伯菌的分布及耐药性分析[J].中华医院感染学杂志. 2011, 21(1): 152-153.
    [103]朱春玉,吴元华,赵秀香,等.嘧肽霉素对烟草花叶病毒在不同寄主上的防效研究[J].辽宁大学学报:自然科学版. 2007, 34(1): 50-53.
    [104] Wilson D S. Darwin's cathedral:evolution, religion, and the nature of society[M]. Chicago: University of Chicago Press, 2002: 268.
    [105]吴尔福,周玲玲. TS制剂对桑树萎缩病的防治机理[J].山东大学学报:自然科学版. 1998, 33(3): 340-344.
    [106]赵波,张玉玲,赵春颖,等. RP-HPLC测定赤雹果中齐墩果酸含量[J].承德医学院学报. 2010, 27(3): 241-243.
    [107]樊秀彩,关军锋,刘崇怀,等.外源乙烯对草莓果实微粒体Ca^2+-ATPase活性和膜脂过氧化的调节[J].园艺学报. 2004, 31(2): 227-229.
    [108]张穗,唐文华,等.井冈霉素A处理珊西烟后对TMV枯斑数目和抗性相关酶的影响[J].中国烟草学报. 2002, 8(4): 38-41.
    [109]车海彦,吴云锋,杨英,等.植物源病毒抑制剂WCT-Ⅱ控制烟草花叶病毒(TMV)的作用机理初探[J].西北农业学报. 2004, 13(4): 45-49.
    [110]张建新,吴云锋,王秀敏.西瓜花叶病毒HC-Pro基因在毕赤酵母中的分泌表达与功能研究[J].生物工程学报. 2007, 23(6): 1102-1106.
    [111]高兴文,蔡学建,严凯,等. 4(3H)-喹唑啉酮类Schiff碱的合成与抗烟草花叶病毒活性[J].有机化学. 2008, 28(10): 1785-1791.
    [112]刘勇,余清,曾嵘,等.水窖水与大田烟草病毒病的关系[J].烟草科技. 2005(5): 45-46.
    [113]马镝,赵秀香,吴元华.壳寡糖对烟草花叶病毒的抑制作用及其对烟草酶活性的影响[J].中国生物防治. 2008, 24(2): 154-158.
    [114]严凯.氨基寡糖素(壳寡糖)[J].中国饲料添加剂. 2008(8): 49.
    [115]张晓燕,商振清,等.抗病毒剂VA诱导烟草对TMV的抗性与水杨酸含量的关系[J].河北林果研究. 2001, 16(4): 307-310.
    [116]李兴红,贾月梅,商振清,等. VA系统诱导烟草对TMV抗性与细胞内防御酶系统的关系[J].河北农业大学学报. 2003, 26(4): 21-24.
    [117]殷培军,马志卿,冯俊涛,等. VFB诱导烟草叶片生理生化变化与TMV抗性的关系[J].西北农业学报. 2005, 14(2): 91-95.
    [118]马志卿,殷培军,郭志波,等.植物源病毒抑制剂VFB诱导烟草抗烟草花叶病毒机理的初步研究[J].植物病理学报. 2007, 37(3): 296-300.
    [119]陈刚,汤颖,周立刚,等.靛红席夫碱及其Cu(Ⅱ)/Zn(Ⅱ)配合物的合成与抗稻瘟菌活性研究[J].化学通报. 2009(5): 432.
    [120]宫长荣,李艳梅,等.水分胁迫下离体烟叶中脂氧合酶活性、水杨酸与茉莉酸积累的关系[J].中国农业科学. 2003, 36(3): 269-272.
    [121]孙慧,吴祖建,等.小分子植物病毒抑制物质研究进展[J].福建农林大学学报:自然科学版. 2002, 31(3): 311-316.
    [122]王捷频,尚福军,熊晓云,等. 2,3-二氢-7-甲氧基-4H-1-苯并吡喃-4-异烟腙抗骨质疏松作用的体外活性研究[J].中国临床药理学与治疗学. 2007, 12(6): 686-689.
    [123]翁玲玲,黄文才,林钢,等.苯并吡喃酮酯衍生物的合成及其趋骨性初探[J].华西药学杂志. 2003, 18(6): 415-417.
    [124]王捷频,尚福军,熊晓云,等. 2,3-二氢-7-甲氧基-4H-1-苯并吡喃-4-异烟腙抗骨质疏松作用的体外活性研究[J].中国临床药理学与治疗学. 2007, 12(6): 686-689.
    [125]李春荣,许忠良,王辉,等.天然多功能抗氧化剂紫檀芪的合成[J].中国食品添加剂. 2007(3): 54-56.
    [126]赵圣印,黄文龙,等.苯骈吡喃类钾通道启开剂的研究[J].药学进展. 2001, 25(4): 193-197.
    [127]聂爱华,顾为,王勇俊,等. 2H-1-苯并吡喃衍生物的合成及其体外抗癌活性的初步评价[J].中国药物化学杂志. 2008, 18(2): 81-89.
    [128]韩光喜,张蕊,余成,等.支持向量机法用于4-芳基-4氢-苯并比喃化合物的凋亡诱导活性研究[J].分子科学学报:中英文版. 2009, 25(4): 241-246.
    [129]李占潮,周漩,戴宗,等. 4-芳基-4H-苯并吡喃类衍生物细胞凋亡诱导活性的定量构效关系研究[J].分析化学. 2009, 37(A03): 222.
    [130]秦杰,王婷瑾,柳爱平,等. 4-羟基-3-取代苯基-2H-苯并吡喃-2-酮衍生物的合成及杀菌活性[J].农药. 2009, 48(5): 329-332.
    [131]周中振,陈琼,杨光富. 2,3a-二氢-苯并吡喃[4,3-c]吡唑-3-酮类衍生物的合成及其活性[J].有机化学. 2009(11): 1774-1783.
    [132]马贵华,刘文珍,戴银根,等.α-苯基苯并吡喃对草鱼生长、肝脂及免疫功能的影响[J].湖北农业科学. 2010, 49(7): 1674-1676.
    [133]汤磊,杨玉社,嵇汝运.苯并吡喃类化合物的合成及生物活性研究[J].药物学报. 2008, 43(2): 162-168.
    [134]张涤生,于季良.苯吡喃酮类药物治疗肢体慢性淋巴水肿的疗效观察[J].中华医学杂志. 1990, 70(11): 655-656.
    [135]王红学,李芳,许丽萍,等.新(4′-三氟甲基嘧啶基)-2-苯磺酰脲衍生物的合成及生物活性[J].高等学校化学学报. 2010(1): 64-67.
    [136]蒙柳,石德清.新型N-[cis-3(-2-氯-3,3,3-三氟丙烯基)-2,2-二甲基环丙烷基羰基]-N'-芳氧乙酰肼的合成与生物活性[J].有机化学. 2009, 29(7): 1100-1104.
    [137]张湘宁,李翔,田建刚,等.超高效三氟氯氰菊酯的合成及生物活性研究[J].现代农药. 2008, 7(4): 14-16.
    [138]程敬丽,魏方林,朱烈,等. N-[3-氰基-1-(2,6-二氯-4-三氟甲基苯基)-1H-吡唑-5-基]菊酰胺类化合物的合成及生物活性[J].有机化学. 2008, 28(4): 622-627.
    [139]董敏,曹瑾,陈亮,等. 4-取代的2-(2-氟-3-三氟甲基苯基)-1,3,4-嗯二嗪-5-酮衍生物的合成及其生物活性[J].农药. 2009(10): 726-727.
    [140]杜海堂,杜海军,欧阳贵平. N-(取代对三氟甲基苯基)-N'-(1,3,5-三取代吡唑-4-羰基)硫脲的合成与生物活性[J].有机化学. 2008, 28(2): 356-360.
    [141]李春芳,孟凡磊,杨志,等.新型含氟三唑类化合物的合成及生物活性研究[J].青岛科技大学学报:自然科学版. 2009, 30(1): 1-5.
    [142]李克建. 5-三氟甲基-1,3,4-噻二唑脲的微波合成及生物活性研究[J].中国科技论文在线. 2007(12): 925-929.
    [143]陈传兵,杜敏,汪焱钢. N-(5-三氟甲基-1,3,4-噻二唑-2-基)-N'-芳氧乙酰基硫脲的合成及其生物活性[J].华中师范大学学报:自然科学版. 2007, 41(2): 223-225.
    [144]龚银香,王子云,张燕,等. N-[5-(对三氟甲基苯基)-1,3,4-噻二唑-2-基]-N′-芳氧乙酰基硫脲的合成与生物活性[J].合成化学. 2006, 14(4): 371-374.
    [145]邵海舟,周蕴,夏敏. 6,7-二甲氧基4-(3′-三氟甲基)苯胺基喹唑啉的快速合成与体外活性测定[J].合成化学. 2006, 14(1): 66-68.
    [146]杜海堂,欧阳贵平,杜海军,等. N-(取代)对三氟甲基苯基-1,3,5-三取代吡唑-4-酰胺衍生物的合成与生物活性[J].有机化学. 2006, 26(3): 383-386.
    [147]姜洪甲,邢世东,马维广.抗TMV烤烟种质资源材料筛选与利用研究初报[J].中国烟草科学. 2009, 30(B12): 53-55.
    [148]王琳,梅红.云大—120对烤烟花叶病的抗性试验报告[J].烟草科技. 1998(6): 44-45.
    [149]徐爱东.张志良等编《植物生理学实验指导》中不足之处和改进意见[J].植物生理学通讯. 2007, 43(6): 1173-1174.
    [150]李明云,谭兴杰.简化亚甲蓝分光光度法测定水中阴离子洗涤剂[J].山东环境. 1999: 28-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700