分散剂对超细有机颜料水性分散体系稳定性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
使用不同类型分散剂对有机颜料进行表面改性,并应用一种新型粉碎设备(美国产M-110EHI型高压高剪切微射流粉碎机)制备出平均粒径在数百纳米的超细颜料水性分散体系,着重对影响体系分散稳定性的各种因素进行了研究。
     实验中采用分光光度法测得比吸光度,以比吸光度的大小表征体系的沉降稳定性能。采用激光粒径仪测定分散后体系中颜料粒子的平均粒径及其分布,并使用扫描电镜观察颗粒形态。采用Zeta电位仪测定一定浓度梯度下颜料粒子表面的ζ电位。体系的粘度则使用NDJ-1型旋转粘度计,在25℃恒温下测定。
     研究发现,在恒定压力(22,000psi)下,体系经25次分散后有最佳的沉降稳定性,且分散次数超过25次后,对于减小颜料粒径的作用已不明显。欲使颜料分散体系有最好的稳定性,对分散剂的HLB值有一定的要求。实验发现,对于颜料红22(C.I.pigment 22),当分散剂的HLB值在13~15时,体系表现出最佳的稳定性及流动性能。分散剂的浓度对稳定性也有明显影响,不同种类分散剂的最佳用量各不相同。对于阴离子分散剂,最佳用量为颜料量的八分之一到十二分之一。对于非离子分散剂,当分散剂用量与颜料用量相同时,方能达到最佳稳定效果。对于高分子分散剂,最佳用量一般为颜料质量的四分之一。另外,体系的pH值对非离子分散剂的影响不明显,对离子型分散剂则有显著影响,一般在pH值为7~9时,离子型分散剂能发挥最大的分散稳定作用。共溶剂二甘醇的存在严重影响体系的分散稳定性,随着二甘醇用量的增加,体系的粘度逐渐增加,粉碎后体系中颜料粒子的平均粒径变大。体系的沉降稳定性在二甘醇达到某一比例时有最大值。当二甘醇在醇/水体系中所占比例为0.3时,对于各种分散剂,体系有最佳的耐温度变化稳定性能。
In this study, a series of dispersants were used to treat the organic pigment. With a M-110EHI microfluidizer, the organic pigment was shattered into super-fine particles less than 200 nanometer and dispersed in water. The factors that affect the stabilization of the aqueous dispersion systems were also discussed.
    In the experiments, the spectrophotometer was used to measure the ratio of absorbency, which was used to indicate centrifugal sedimentation rate of the systems. The mean size and distribution of the particles were measured with a Malvern laser sizer. A Jsm-5600LV scanning electron microscope was used to observe the configuration of the broken pigment particles. The Zeta voltage of the pigment surface was measured with a Malvern Zeta meter. The viscosity of the system was measured with a NDJ-1 rotary viscosity meter at 25℃ .
    It is shown that the centrifugal sedimentation rate of the system is lowest after 25 dispersions at 22,000psi pressure. The HLB values of the dispersants have great influence on the stabilization of the systems. When the HLB value is 13-15, the system has best stabilization and rheology. The optimal ratio of pigment to dispersant was studied. For the anionic dispersants, the optimal ratio is 8:1-12:1. For the nonionic dispersants, the optimal ratio is 1:1. For the polymeric dispersants, the best ratio is 4:1. The pH value of the system has little influence on the nonionic dispersants. When the pH value is 7-9, the anionic and polymeric dispersant have best dispersion abilities. With the increasing of the co-solvent diglycol, the viscosity and the particle size of the systems both increase after treatment. The centrifugal sedimentation rate of the system dropped to a lowest point at some ratio of diglycol to deionized water. When the ratio of diglycol to deionized water is 3:7, the systems have the best abilities to endure the change of the temperature for all kinds of dispersants.
引文
[1].陈红,刘凌云.颜料分散及超分散剂的应用.印染,1998(8):50-53.
    [2].B G Hays. Amer. Ink Maker, 1984,62(6):28.
    [3].R D Athey. Modern Paint and Coating, 1984,74(1):31.
    [4].赵容.微颗粒化有机颜料.上海染料,2000(3):32-35.
    [5].周春隆.有机颜料物理化学特性及其未来发展趋势.染料工业,2000(5):1-6.
    [6].周春隆.高档有机颜料结构特性与发展趋势.上海染料,2001(4):21-32.
    [7].张天永,周春隆等.水介质中颜料用聚合物分散剂合成的研究.涂料工业,2001.
    [8].周春隆.有机颜料商品化及表面改性(修饰)技术.染料工业,2002(3):1-7.
    [9].陈荣圻.有机颜料表面改性处理(一).印染,2000(2):38-40.
    [10].陈荣圻.有机颜料表面改性处理(二).印染,2000(3):43-44.
    [11].徐峰.水性涂料中颜(填)料的分散稳定及其助剂.化学建材,1992(5):223-227.
    [12].关晓凤,孟朝晖.浅析超细有机颜料的制法.涂料工业,2002(6):25-27.
    [13].盖国胜.超细粉碎分级技术.北京:中国轻工业出版社,2000:18-19.
    [14].李芳宇,刘维平.纳米粉体制备方法及其应用前景.中国粉体技术,2000(5):29-32.
    [15].刘文光.染料粉碎工艺.上海染料,2000(1):39-47.
    [16].王利军,梁兴国等.水性涂料中有机颜料的分散.染料工业,1997(5):1-8.
    [17].Wicks JR. Pigment Dispersion. Journal of Coatings Technology, 2001(911):145-153.
    [18].C.Daescu. Dispersability of Organic Pigments. Dyes and Pigments, 1998(38): 173-180.
    
    
    [19].吴昱,吴自强.水体系中颜料分散过程的研究.涂料工业,1998(9):35-37.
    [20].Winkler J, Klinke E et al. Theory for the Deagglomeration of Pigments Clusters in Dispersion Machinery by Mechanical Force Ⅰ. Journal of Coating Technology, 1987,59(754): 35.
    [21].Winkler J, Klinke E et al. Theory for the Deagglomeration of Pigments Clusters in Dispersion Machinery by Mechanical Force Ⅱ. Journal of Coating Technology, 1987,59(754): 45.
    [22].Winkler J, Klinke E et al. Theory for the Deagglomeration of Pigments Clusters in Dispersion Machinery by Mechanical Force Ⅲ. Journal of Coating Technology, 1987,59(754): 55.
    [23].奥.哈夫纳.不同参数对有机颜料在涂料中分散性的影响.涂料工业,1994(4):42-47.
    [24].魏彤,范壮军.水性体系中有机颜料分散的影响因素.化学推进剂与高分子材料,1999(3):17-20.
    [25].Cartridge D J, et al. Polym Paint Color J, 1994,184:10.
    [26].洪啸吟,冯汉保.涂料化学.科学出版社,1997.
    [27].佐藤 T,鲁赫 R T.聚合物吸附对胶态分散体稳定性的影响.北京:科学出版社,1988,32-54.
    [28].王相田,胡英.固液界面多分散高分子吸附.化工学报,1999(5):678-685.
    [29].赵国玺.表面活性剂物理化学.北京大学出版社,1991.
    [30].张清岑,黄苏萍.水性体系分散剂应用新进展.中国粉体技术,2000(4):32-35.
    [31].姜英涛.颜料分散剂应用概念的进展.上海涂料,1990(3):36-40.
    [32].齐亦民,徐平永,谭镜清.水性颜料分散剂.上海涂料,1990(3):12-17.
    [33].谢慕华,周丽华等.分散剂对有色体系中颜料分散稳定性的影响.淮南工业学院学报,2002(2):60-62.
    [34].钱逢麟,兰玉书.涂料助剂.化学工业出版社,1999.
    [35].罗巨涛.染整助剂及其应用.中国纺织出版社,2000.
    [36].徐燕莉.表面活性剂的功能.北京:化学工业出版社,2000.
    
    
    [37].武照强,冯开才,刘振兴.超分散剂.现代塑料加工应用,2001(10):45-48.
    [38].徐燕莉,朱苑林.苯乙烯-马来酸酐共聚物的部分酯化物在颜料分散中的应用.染料工业,2002(1):28-31.
    [39].周煜,陈水林等.苯乙烯-马来酸酐(SMA)共聚物对颜料的分散及其在喷墨印花中的应用.印染助剂,2002(5):21-23.
    [40].俞鸿安.高分子颜料分散剂的制备和应用.上海涂料,1992(2):33-36.
    [41].汪剑炜,王正东等.超分散剂的应用.涂料工业,1995(1):29-33.
    [42].尹月燕,王利军等.水性体系用颜料分散剂的分子量及分子量分布的控制.涂料工业,1999(10):17-21.
    [43].Duivenvoorde, Cornelus. Improving Pigment Dispersions in Powder Coatings with Block Copolymer Dispersants. Journal of Coatings Technology, 2000(909):145-151.
    [44].黄苏萍,肖奇等.嵌段型超分散剂在固/液界面的吸附机理.中南工业大学学报,2002(1):41-44.
    [45].J.A.Simms. A New Graft Polymer Pigment Dispersant Synthesis. Progress in Organic Coatings, 1999(35): 205-214.
    [46].Francis L., Duivenvoorde, Jozua Laven, Rob van der linde. Diblock Copolymer Dispersants in Polyester Powder Coatings, Progress in Organic Coatings, 2002(45): 127-137.
    [47].Janes S., MacMillan. High Solids Coatings, 1984(9): 9-18.
    [48].李宗石.染料分散剂进展.印染助剂,1990(4):21-23.
    [49]. Jorg Schroder. Progress in Organic Coating, 1988(16):8-9.
    [50].张清岑,黄苏萍.水性体系分散剂应用新进展.中国粉体技术,2000(4):32-35.
    [51].张卫红,龙复.水性涂料用聚合物分散剂新进展.涂料工业,1997(2):37-39.
    [52]. John D.Schofield. Extending the Boundaries of Dispersant Technology
    
    Progress in Organic Coatings, 2002(45):249-257.
    [53].吴壁耀,刘安华,蒋子铎.AB嵌段型WH—1颜料分散剂研制.涂料工业,1990(6):4-9.
    [54].WO 99/61534. Dye Based Aqueous Pigment Dispersions.
    [55].EP 0 922 737 A1. Ink-jet inks comprising pigment precursors.
    [56].EP 0 869 160 A2. Ink compositions.
    [57].EP 0 849 338 A1. Ink composition for ink-jet printer.
    [58].刘风山.喷墨用超微粒颜料墨.影像技术,2000(3):1-8.
    [59].USP 5,684,063. Ink Process.
    [60].USP 5,869,564. Ink Composition.
    [61].USP 5,679,138. Ink Jet Inks Containing Nanoparticles of Organic Pigments.
    [62].USP 6,166,105. Process for Making an Ink Jet Ink.
    [63].E.F. Jaffe. Journal of Coating Technology, 1995(66):21.
    [64].金咸穰.染整工艺试验.北京:中国纺织出版社,1987:69-72.
    [65]. EP 0889102. Pigment Dispersion for Aqueous Inks and its Preparation.
    [66]. Alexandra, D.Bermel and D.E.Bugner. Particle Size Effects in Pigmented Ink Jet Inks. Journal of Imaging Science and Technology, 1999(4):320-324.
    [67].周峰,邹志深等.超分散剂对钛白颜料分散体系粘度的影响.油墨专刊,1999.
    [68].朱海涛,王海亭等.聚电解质分散剂对ZnO悬浮体流变性的影响.山东陶瓷。2000(2):3-6.
    [69].汪昆华,罗传秋,周啸.聚合物近代仪器分析.北京:清华大学出版社,1991.
    [70].刘梅堂,韦园红等.高分子PVP吸附对胶体Zeta电位的影响.中国粉体技术,2001(2):1-3.
    [71]. Krishna, N.prasad. J.Colloid Interface Sci, 1979,69(2):225-232.
    
    
    [72].王正东,胡黎明.超分散剂的使用方法.涂料工业,1996(3):36-38.
    [73].吴立,王利军,刘志华等.水性涂料/油墨用聚合物型分散剂.涂料工业,1999(1):34.
    [74].张清岑,刘小鹤等.超分散剂的合成及其对SiO_2微粉分散稳定性的影响.中南工业大学学报,2002(3):234-237.
    [75].荷兰EFKA化工有限公司.制造颜料浓缩体用的聚合物分散剂.涂料工业,1993(1):41-43.
    [76].Nippon Shokubai Kagaku Kogyo Co. Water Soluble Polymers for Pigments in Water. Jp82-28864 (1982).
    [77].张清岑,黄苏萍.非离子型超分散剂对SiO_2分散稳定的影响.矿产综合利用,2001(8):15-18.
    [78].张清岑,刘小鹤等.超分散剂的合成及其对SiO_2微粉分散稳定性的影响.中南工业大学学报,2002(3):234-237.
    [79].方启学,黄国智等.分散剂的分散效果与作用方式研究.有色金属,2000(3):37-41.
    [80].周春隆,穆振义.有机颜料化学及工艺学.中国石油化工出版社,1997.
    [81].USP 6,152,999. Color Pigmented Ink Jet Set.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700