负载型改性纳米TiO_2光催化降解染料废水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO_2具有高比表面积、高密度、表面晶格缺陷以及高比表面能等特点,具有化学性质稳定、无毒、催化活性高、反应速度快、对有机物的降解选择性低且能使之彻底矿化、无二次污染等优点,在废水处理、空气净化中掺杂一定量的金属离子或对其进行表面改性,能有效地阻止电荷在转移过程中的复合,使其光催化活性提高。为了充分利用太阳光,必须对半导体光催化剂进行改性,希望在提高光催化活性的同时能扩展光谱响应范围,提高太阳能的利用率。利用太阳能进行污染物的处理研究,对于保护环境,维持生态平衡,实现可持续发展具有重要的意义。
     本文着眼于我国染料废水的污染现状,研究了用负载型纳米TiO_2光催化剂和改性负载型纳米TiO_2光催化剂处理常见染料废水的实验条件和作用机理。
     本实验采用焦炭为载体,Na_2SiO_3为粘结剂,研究了负载型纳米TiO_2光催化剂和分别掺Fe、Cu的改性负载型纳米TiO_2光催化剂的降解能力。在相同的试验条件下,分别考察了以紫外灯为光源和以太阳光为光源时光催化剂对染料废水的降解率。通过实验考察了影响降解效果的主要因素及其影响规律,并对不同光催化剂的降解机理进行了探讨。
     本文研究了粘结剂浓度、改性金属掺杂量、煅烧温度、煅烧时间等因素对降解效率的影响,分别设计进行了L_9(3~3)、L_9(3~4)的正交实验,考察这几个因素的影响程度;同时考察了涂覆量、涂覆次数、太阳光强度等因素对染料废水的降解效果的影响。
     本文得到的实验结果是:
     (1)负载型TiO_2光催化剂:浸涂液最佳的TiO_2质量百分含量为18%;正交实验优化出来的实验条件是:400℃的煅烧温度,粘结剂取质量百分比为20%的Na_2SiO_3溶液,煅烧时间为3h,对亚甲基蓝染料废水的最高降解率为80.88%,各因素对降解效果影响由大到小的排列顺序是:煅烧温度>Na_2SiO_3浓度>煅烧时间。但负载的TiO_2粉末剥落严重,出水浑浊,重复利用性差。同时发现,染料废水的降解效率与光强度Ⅰ成正比,本实验在最高光强时4.585×100μw/cm~2时的降
    
    广东工业大学工学硕士学位论文
    解率为89名6%。
     (2)改性负载型Ti仇光催化剂:以紫外灯为光源时负载型掺Fe改性光催
    化剂正交实验得出各因素对降解效果的影响由大到小的排列顺序是:锻烧时间>
    锻烧温度>N匆S心浓度>Fe掺杂量:以太阳光为光源时负载型掺Fe改性光催化
    剂正交实验得出各实验因素对降解效果的影响由大到小的排列顺序是:锻烧时间
    >Fe掺杂量>N匆S心百分比习毅烧温度。分别以紫外灯和太阳光为光源时Fe改性
    实验优化出来的实验条件都是:粼刃℃的锻烧温度,粘结剂质量百分比浓度为200/0
    的NaZsi几溶液,锻烧时间为3h。对于负载型掺Fe改性光催化剂,F勿仇改性光
    催化剂的降解率明显高于F《。田3改性光催化剂的降解率。掺Fe量为2%时F之岛
    和Fe(0卿3改性光催化剂的降解率最高,且出水澄清,光催化剂几乎不剥落。掺
    Cu的改性光催化剂中市售C侧0改性光催化剂对染料废水的降解效果高于
    C试OI场改性光催化剂的降解效果,且在掺杂量为2%时降解率最高。Fe改性光
    催化剂的降解效果要明显高于掺Cu改性光催化剂。
Nanosized T1O2 has the properties of high superficial area, high density, superficial crystal lattice lacuna and high superficial area energy, and it has excellent chemical stability, innocuity, high catalyzed activity, high reaction speed, low option to organics degradation and fully mineraling organics to CO2 & H2O. Doped some metallic ion or alter its property on surface when treating wastewater and purifying air can effectively hinder charge recovery in the course of transferring and improve its catalyst activity. In order to make full use of sunlight, it is necessary to dope some semiconductor photocatalyst to improve catalyst activity and expand its responding spectrum area. The study on using sunlight to deal with pollutants is very important for protecting environment, maintaining zoology balance and achieving sustained development.
    Basing on the present situation of dye water pollution, the paper studies experiments conditions on immobilized nanosized T1Q2 photocatalyst and doped immobilized nanosized TiO2 photocatalyst degrading common dye wastewater and working mechanism.
    The experiments use cokes as the carriers, Na2SiO3 as adhensive. The degradation ability of immobilized nanosized TiO2 photocatalyst, Fe or Cu doped immobilized nanosized TiQ2 photocatalysts are studied. Using ultra-light and sunlight as lamp-house respectively, degradation results of different immobilized nanosized T1Q2 photocatalyst are studied under the same experimental conditions. Meanwhile, kinds of photocatalysts degradation mechanisms are discussed.
    At the same time, in order to studied the factor, such as adhensive concentration, doped metal quality, calcining temperature, calcining time, orthogonal tests of L9(33) L9(34) have been done. The other factors, such as coated quality, coated times and sunlight density are studied as well.
    The experimental results of the study are as follows:
    
    
    
    
    (1) Immobilized nanosized TiO2 photocatalyst: the optimal TiO2 weight percent of coated liquid is 18%; the optimal conditions by orthogonal test are: calcining temperature is 400癈, adhensive aqueous weight percent is 20%, calcining time is 3h, and the highest degradation rate to dye wastewater is 80.88%. The factor importance order is: calcining temperature> Na2SiO3 weight percent > calcining time. However, Immobilized nanosized TiO2 photocatalyst powder flaked away heavily, and its reuse is poor. The degradation rate of Methylene blue wastewater is in proportion to light intensity I, the degradation rate is 89.86% at the highest sunlight intensity 4.585x100uw/cm2.
    (2) Doped immobilized nanosized TiO2 photocatalyst: when using ultra-light as lamp-house, The factor importance order by the doped Fe orthogonal test is: calcining time > calcining temperature> Na2SiO3 weight percent > doped Fe quantity; when using sunlight as lamp-house, The factor importance order by the doped Fe orthogonal test is: calcining time > doped Fe quantity > Na2SiO3 weight percent > calcining temperature; the optimal conditions by doped Fe orthogonal tests are: calcining temperature is 400癈, adhensive aqueous weight percent is 20 %, calcining time is 3h. The degradation rates of Fe2O3 doped immobilized photocatalyst are obviously higher than that of Fe(OH)3 doped immobilized photocatalyst When Fe doped weight percent is 2%, the highest degradation rate is obtained. Moreover, TiO2 flaked away little, and its reuse was good. As for the Cu doped immobilized nanosized TiO2 photocatalyst, the degradation rates of CuO doped immobilized photocatalyst are higher than that of Cu(OH)2 doped immobilized
     photocatalyst. When Cu doped weight percent was 2%, the highest degradation rate is obtained. The degradation rates of Fe doped immobilized photocatalyst are obviously higher than that of Cu doped immobilized photocatalyst.
引文
[1]李家珍主编.染料、染色工业废水处理.北京:化学工业出版社,1998.5,71~76
    [2]刘俊峰.中小型印染厂废水的处理方法.工业水处理,1996,16(5):7~10.
    [3]施冬梅,李再兴,多金环.纳米TiO_2光催化降解水体污染物研究进展.环境科学与技术.2002,25(5):16~48.
    [4]钱振型.半导体材料的化学功能—光催化技术与环境保护.压电与声光,2001,23(2):124~129.
    [5]张素香,屈撑囤,王新强.光催化剂改性及固定化技术的研究进展.工业水处理,2002,22(7):12~15。
    [6]王有乐,张庆芳,马炜.光催化剂TiO_2改性技术的研究进展.环境科学与技术.2002,25(1):40~42.
    [7]王传义,刘春艳,等.半导体光催化剂的表面修饰[J].高等学校化学学报.1998,19:2013-2019.
    [8]Dana dvoranova, Vlasta brezova ,et al.Investigations of metal—doped tanium dioxide photocatalysts[J].Applied Catalysis B: Environmental, 2002, 37:91~105.
    [9]Doi M, Sara S, Miyafuji H, et al. Development of carbonized TiO_2-woody composites for environmental cleating[J]. Material Sci Res Int,2000,6(1):615~621
    [10]黄彪.超临界乙醇流体制取活性炭.TiO_2光催化剂复合材料的研究.环境科学学报,2002,22(5):641~646.
    [11]高峻敏,郑泽根,王琰.吸附.光催化氧化法处理四环素废水.重庆环境科学,2002,24(4):38~41.
    [12]胡春,王怡中,汤鸿霄.表面键联型TiO_2/SiO_2固定化催化剂的结构及催化性能。催化学报,2001,22(2):185~187.
    [13]陈中颖,余刚等.碳黑改性TiO_2薄膜光催化剂的结构性质.环境科学,2002,23(2):55~58.
    
    [14]高洁,徐桂芹等.光化学氧化技术去除水中有机污染物的试验研究.环境污染与防治,2002,24(5):272~281.
    [15]刘建军,于迎春.TiO_2冲击波活化及其光催化活性.高压物理学报,1999 13(2):138~142
    [16]胡春,王怡中,汤鸿霄。多相光催化氧化的理论与实践发展.环境科学进展,1995.3(10):55~64.
    [17]刘崎,陈晓青,杨娟玉,等。双元素掺杂对纳米二氧化钛光催化降解甲基橙的影响。河南化工,2004,(2):8~10.
    [18]程学群,陈琳,杨丽霞,等.微波法改性纳米二氧化钛工艺及机理探讨。材料保护,2003,36(11):35~37.
    [19]张海禄,童仕唐,吴省.载银二氧化钛光催化性能的研究.应用化学,2003,32(2):20~22.
    [20]Sonochemistry. Mason.T..A technology for tomorrow[J].Chemistry Industry,1993,18(1):47~48
    [21]泽田胜也等.有机卤素化合物。光解媒分解超音波照射效果.水处理技术,1998,39(6):9~11
    [22]刘刚.光催化氧化.混凝工艺处理化工废水.环境污染与防治,2000,22(5):13~15.
    [23]姚清照,刘正宝.光电催化降解染料废水.工业水处理,1999,19(6):15~16.
    [24]郑少波,杜鹤桂.冷却水光磁协同处理技术.工业水处理,1998,18(1):9~11.
    [25]Soonhvun Kim, Wonvone Choi[J]. Envixon. SciTeehnol 2002,36,2019~2025
    [26]姜鸿基,李彦锋,叶正芳,等。纳米TiO_2光催化剂的制备及在降解有机物方面的研究进展.功能材料,2002(4):260.
    [27]崔晓莉,江志裕.纳米TiO_2薄膜的制备方法.化学进展,2002(9):325
    [28]徐昌曦,曾凡龙,黄永秋,等.纳米二氧化钛光催化剂的固化技术.化工新型材料,2003,31(7):8~12.
    [29]Sauer M L, Ollis D F. Photocatalyzed Oxidation of Ethanol and Acetaldehyde in Humidified Air. J. Catal. 1996.158:570~582.
    [30]Chen S F,Zhao M Y, Tao Y W. Photocatalytic Degra-dation of Organopho-sphoros Pesticides Using Tiq Supported on Fiberglass Microche m.
    
    ??J,1996,54(1):54~58.
    [31] Rosenbexg I,Bxock J R, Hellex A. Collection Optics of TiO_2 Photocatalyst on Hollow Glass Miexobeads Float ing on Oil Slicks. J. Phys. Chem. ,1992,96:3423~3428.
    [32] Zhang Y, Crittenden J C, H, D Wet al. Fixed-Bed photocatalysts for solar Decontamination of water. Environ.Sci. Technol. ,1994,28:435~442
    [33] Lu M C,Roam G D,Chen J Net al. Factors affecting the photocatalytic degradation of dichlorvos over titanium dioxide supported on glass .Photochem. Photobiol. A:Chem., 1993,76:103~110
    [34] Nimios M R, Wolfrum E J, Brewer M L et al. Gas-Phase Heterogeneous Photocatalytic Oxidation of Ethanol:Pathways and Kinetic Modeling.Environ Sci&Technol.,1996,30:3102~3110
    [35] Anpo M, Chiba K. Photocatalytie reduction of CO, on anchored titanium oxide catalysts. J. Mol. Catal, 1992,74:207~212
    [36] Teruaki H, Keiichi T. Photocatalytic degradation of Organochlorine compounds over titania supported in several matrices.Denki Kagaku Oyobi kogyo Butsuri Kagaku, 1992,60(2) :107~111
    [37] Peill N I, Hoffmann M R.Dvelopment and Optimization of a TiO_2-Coated Fiber Optic Cable Reaction:Photocatalytic Degradation of 4-Chlorophenol. Environ. Sci&Teclmol., 1995,29:2974~2981
    [38] 方佑龄,赵文宽,张国华等.用浸涂法制备漂浮负载型TiO_2薄膜光催化降解辛烷。环境化学,1997,16(5):413~417.
    [39] Deki S, Aoi Y, Hiroi O et al. Titanium(IV) Oxide Thin Films Prepared from Aueous Solution. Chem.Lett.,1996,433~434.
    [40] Fernandz A, Lassaletta G, Jimenez V M et al. Preparation and Characterization of TiO_2, Photocatalysts Sup-ported on various rigid supports(glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Appl.Catal.B:Environ.,1995,7:49~63.
    [41] Kikuchi Y, Sunada K, lyoda T et al. Photocatalytic bactericidal effect of
    
    ??TiO_2 thin films:dynamic view of the active oxygen species responsible for the effect. Photoche m & Photobiol. A: Chem, 1997, 106:51~56
    [42]鄂磊,徐明霞,汪成建.固载粘结剂对二氧化钛光催化性能的影响.硅酸盐学报,2002,30:36~38.
    [43]蔡乃才,王亚平,曹锡良.负载型Pt—TiO_2光催化剂的研究.催化学报,1999,20(2):177~180
    [44]Uchida H, Katoh S, Watanabe M. Photocatalytic Decomposition of Trichlorobenzene Using TiO_2, Supported on Nickel-Poly (tetmfluoroe—thylene) composite Plate.Chem.Lett., 1995,261~262
    [45]冷文华,成少安,刘鸿,等.负载型二氧化钛光催化降解苯胺.环境科学学报,2000,20(4):499~503.
    [46]Tokeda N, Torimoto T, Sampath S et al. Effect of Inert Supports for Titanium Dioxide Loading on Enhancement of Photodecomposition Rate of Gaseous Propionaldehyde .J .Phys .Chem. ,1995, 99:9986-9991
    [47]Uchida H, Itoh S, Yoneyama H. Photoeatalytic Decomposition of Propyzamide Using Tiq Supported on Activated Carbon. Che m Lett.,1993,1995~1998.
    [48]Matthews R W.Adsorption Photocatalytic Oxidation: a new method of water Purification. Chem. and Ind, 1988,4(1):28~30
    [49]赵红花,王九思.负载型TiO_2光催化降解酸性紫红染料的研究.甘肃环境研究与监测,2002,15(4):238~240.
    [50]Liu X S, In K K, Thomas J K. Encapsulation of Tiq in zeolite Y.J.Che m.Phys. Lett, 1992,195:163~168
    [51]Fan F R F, Liu H Y, Bard A J. Integrated Chemical Syste ms:Photocatalysis at Tiq Incorporated into Nation and Clay. J. Phys.Chem.1985,89:4418~4420
    [52]叶映雪.人造沸石负载二氧化钛薄膜光催化降解酸性湖兰A和酸性橙的研究.光谱实验室,2003.20(1):62~66.
    [53]Miyoshi H, Nippa S, Uchida H et al. Photochemical Properties of TiO_2 Mietoerystallites Prepared in Nation. Bull. Chem. Soc. Jpn, 1990, 63:
    
    ??3380~3384.,
    [54]Sauer M L, Ollis D F. Acetone Oxidation in a Photocatalytic Monolith Reactor. Catal,1994,149:81~91
    [55]方佑龄,赵文宽,尹少华等纳米TiO_2在空心陶瓷微球上的固定化及光催化分解辛烷应用化学,1997,14(2):81~83
    [56]黄惠莉,黄妙良,蔡阿娜,等.二氧化钛光催化降解处理染料废水.化工环保,2002,22(2):84~87。
    [57]Uchida H, Hirao S, Torimoto T et al. Preparation and Properties of Size-Quantized Tiq Particles Immobilized in Polyvinylpyrrolidinone Gel Films.langmuir, 1995,11:3725~3729
    [58]Horikoshi S, Serpone N, Hisamatsu Y et al. Photocatalyzed Degradation of Polymers in Aueous Semiconductor Suspensions. Environ.Sci&Technol., 1998,32:4010~401640
    [59]Berry R J, Mueller M R. Photocatalytic Decomposition of Crude Oil Slicks Using TiO_2 on a Floating Subtrate Microchem.J.,1994,50:28~32
    [60]赵文宽,覃榆森,方佑龄等.水面石油污染物的光催化降解漂浮负载型TiO_2光催化剂的制备.催化学报,1999,20(3):368~372
    [61]程沧沧,胡德文,赵俐敏.水泥负载半导体薄膜光催化降解黑色有机染料水溶液的研究.湖北化1,1998,3:22~24.
    [62]Haarstick A, Kut O M, Heinzle E. Tiq-Assisted Degradation of Environ—mentally Relevant Organic Compounds in Wastewater Using a Novel Fluidized Bed Photoreactor. Environ. Sci&Technol., 1996, 30:817~824
    [63]李芳柏,古国榜,陈伟彬,等.絮凝—光催化处理实际染料废水的研究.土壤与环境.1999,8(3):189~192.
    [64]王文保,岳永德.纳米TiO_2光催化降解水溶性染料溶液的研究.农村环境生态,1999,15(3):58~60
    [65]付川.铂修饰C-TiO_2复合催化剂光催化染料废水.重庆三峡学院学报,2003,5(19):119~122.
    [66]张天永,谢银德,赵进才.连续光催化净化染料废水放大实验的研究.感光科学与光化学1999,17(4):303~308.
    
    [67]陈小泉,李芳柏,李新军.二氧化钛/蒙脱土复合光催化剂制备及对亚甲基蓝的催化降解.土壤与环境,2001,10(1):30~32.
    [68]姜方新,兰尧中.印染废水处理技术研究进展.云南师范大学学报.2002 22(2):24~27
    [69]张梅,陆路德.纳米TiO_2—一种性能优良的光催化剂[J].化工新型材料,2000,28(4):11~14.
    [70]吴省,童仕唐,刘亚丽.TiO_2光催化剂载体的选型及负载方法研究.湖南工程学院学报,2002,12(3):80~84.
    [71]尚静,徐自力.TiO_2纳米粒子的结构、表面特性及其光催化活性研究.无机材料学报,2001,16(6):1211~1216.
    [72]贾建丽,李凯,周岳溪,等.新型负载型光催化剂及其4BS降解研究.中国环境科学,2001,21(4):293~296.
    [73]余锡宾,王桂华,罗衍庆,等.TiO_2微粒的掺杂改性与催化活性.上海师范大学学报,2000,29(1):75~82.
    [74]Linsebigler, A.L.; Lu, G.Q. Chem. Rev., 1995,95:735.
    [75]Choi W.,Termin A.,Hoffmann M.R.The role of mental dopants in quantum-sized TiO_2:correlation between photoreactivity and charge carder recombination dynamics.J.Phys.Chem., 1994,98:13669~3679.
    [76]汪军.纳米二氧化钛的光催化机理及其应用研究.污染防治技术,1998,11(3):157~160
    [77]吴天宝.太阳能TiO_2非均相催化氧化染料污水脱色研究.中国环境科学,1997,17(1):93~96.
    [78]Bickley R, Gonzalea Carreno T, Lees J.Mutiphoton semi-conductor Photoeatalysis.J. Solid State Chem., 1991,92:178~190.
    [79]郑红,汤鸿霄,王怡中.有机污染物半导体多相光催化氧化机理及动力学研究.环境科学进展,1996,4(3):1~15.
    [80]Brus L.E. "electron-electron and electron-hole interactions in small semiconductor erystallites: the size dependence of the lowest excited electronic state", J.Chem. Phys., 1984,80:4403~4409.
    [81]彭晓春,陈新庚,黄鹄,等.n-TiO_2光催化机理及其在环境保护中的应
    
    ??用研究进展.环境污染治理技术与设备,2002,3(3):1~6.
    [82]Hoffmann M.R., Martin S.T., Wonyong C. et al. " environmental applications of semiconductor photocatalysis", Chem. Rev, 1995,95:69~96.
    [83]Hasselbarth A,Eychmuller A, Eichberger R. et al."chemistry and photophysics of mixed Cds/Hgs colloids", Phys Chem, 1993,97:5333~5340.
    [84]Palmisano L,Augugliaro V, Sclafani A, et al."activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation". Phys. Chem., 1988,92:6710~6713.
    [85]菅盘铭,夏亚穆,李德洪,等.掺杂TiO_2纳米粉的合成、表征及催化性能研究.催化学报,2001,22:161~164.
    [86]Kundakovic,L.;Stephanopoulos, M.F. Applied Catalysis A: General, 1998,171:13.
    [87]吴树新,马智,秦永宁,等。掺杂纳米TiO_2光催化性能的研究.物理化学学报,2004,20(2):138~143.
    [88]Linsebigler, A.L.; Lu, G.Q. Chem. Rev., 1995,95:735.
    [89]吴树新,马智,秦永宁,等.掺铜二氧化钛光催化剂的XPS研究.物理化学学报,2003,19(10):967~969.
    [90]Yizhong Wang. Solar photocatalytic degradation of eight commercial dyes in TiO_2 Suspension. Wat. Res.,2000,34(3):990~994
    [91]李薇,王怡中.固定化催化剂光反应器降解有机物研究进展.环境污染治理技术与设备,2002,3(7):91~94.
    [92]Gary A. Epling,Chitsan Lin. Photoassisted bleaching of dyes utilizing TiO_2 and visible lightr. Chemosphere, 2002,46:561~570.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700