考虑起始比降的软土地基一维固结理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于达西渗流定律的获得基于砂土的渗透性试验,其在粘性土中适用性受到了一些学者的质疑,已有渗透试验研究表明:对某些低渗透性饱和粘土而言,存在起始比降,只有当土中某点的水力坡降大于起始比降(又称起始水力坡降、起始水力梯度),该点才会发生渗流。然而,传统的固结理论大都假设土中渗流符合达西定律,对于考虑起始比降的固结问题的研究并不多见。本文在已有研究的基础上,采用解析法和半解析法较深入系统地研究了考虑起始比降的软土地基一维固结问题。主要内容及创新成果包括:
     1.分析了初始孔压三种不同分布形式下,即:初始孔压降不小于起始比降、初始孔压降不大于起始比降的负值、初始孔压降绝对值小于起始比降,土中渗流边界的运动规律,建立了相应的固结控制方程,推导了三种不同形式下考虑起始比降的一维固结孔压解及地基平均固结度计算公式,并与已有差分解等进行对比,在此基础上计算分析了起始比降和初始孔压分布形式对渗流边界运动速度、孔压分布、地基平均固结度的影响,讨论了按沉降定义和按孔压定义的地基平均固结度的不同,并编制了初始孔压均布条件下渗流移动边界与时间的关系表。
     2.针对工程中加载并非瞬时完成的实际情况,给出了变荷载条件下考虑起始比降一维固结普遍解,以及单级加荷条件下,当加载时间分别大于和小于渗流发展到土层底部所需时间的情况时,渗流移动边界、孔压和地基平均固结度的具体表达式,分析了加载时间等对考虑起始比降后土体一维固结性状的影响。
     3.在初始孔压降不小于起始比降的特殊条件下,渗流瞬间在整个土层发生,获得了能考虑起始比降的任意层地基的一维固结解析解及其不同形式下的退化解(包括考虑起始比降的双层地基一维固结解及不考虑起始比降初始孔压非均布条件下的任意层地基一维固结解析解),并编制了相应的计算程序,分析了该特殊条件下考虑起始比降后成层地基的一维固结性状。
     4.提出了求解考虑起始比降的任意层地基的一维固结问题的半解析法,编制了相应的计算程序,并通过与已有解的结果对比,对程序的合理性和正确性进行了验证,然后以双层地基为例,分析不同土层起始比降组合对双层地基的一维固结性状的影响。
     5.利用半解析法,通过引入土体孔隙比和渗透系数、土体孔隙比和有效应力的对数关系,给出了能同时考虑起始比降、土体自重应力实际分布、渗透系数和压缩系数非线性变化的一维非线性固结半解析解,编制了计算程序,并与已有不考虑起始比降的一维固结非线性解析解进行了结果对比,验证了解和程序的正确性。在此基础上进行了大量的计算,分析了压缩指数和渗透指数的比值、外荷载、起始比降、自重应力分布形式对渗流边界运动速度和地基固结性状的影响。
Up until now. Darcy's law has been incorporated in most conventional theories of consolidation to depict the flow of water through soft soil such as clays. However, Darcy"s law was established from permeability test on sands. It has been widely agreed that deviations from Darcy's law do exist in some clays. Some investigators have revealed evidence indicating deviations of water flow from Darcy's law and demonstrated the existence of a threshold gradient in some fine-grained soils with low permeability. There is no flow in the soil where the hydraulic gradient is less than the threshold gradient, and little research has been reported on consolidation with threshold gradient at present. In order to further improve the theory of consolidation for soft soils with threshold gradient, systematically, studies are made on the basis of previous research. The main original works and innovative achievements include:
     (1) The motions of seepage are discussed and the governing equations of consolidation are derived by considering three cases, such as 1). the initial pore pressure gradient is larger than or equal to the threshold gradient;2). the initial pore pressure gradient is less than or equal to the negative value of threshold gradient; 3) the absolute value of initial pore pressure gradient is less than threshold gradient. Analytical solutions for excess pore pressure and average degree of consolidation are obtained with different distribution of initial pore pressure. A comparison is made between the present solution and previous solution for a particular case in which the distribution of the initial excess pore pressure is uniform. Base on the present solution, influences of the threshold gradient and the distribution of initial excess pore pressure on the motion of the moving boundary of seepage, the distribution of excess pore pressure and the average degree of consolidation are analyzed, and the difference between the average degree of consolidation defined by settlement and defined by pore pressure is discussed. At last, computation table describing the motion of moving boundary of seepage with time is provided for the distribution of initial excess pore pressure being uniform.
     (2) In light of the application of the external load during construction always takeing some time. A general analytical solution is developed for one-dimensional consolidation with a threshold gradient under time-dependent loading. Moreover, detailed solutions are obtained for the moving boundary of seepage, the excess pore pressure and average degree of consolidation in terms of stress and strain under the single-stage loading, and two different cases are discussed, such as 1). The loading time is larger and equal to the time which the moving boundary takes to the bottom of the layer; 2). The loading time is smaller than the time which the moving boundary takes to the bottom of the layer. Finally, the effect of loading time on the consolidation behaviour is investigated.
     (3) By assuming threshold gradients less than the initial pore pressure gradient the flow would occur throughout the whole layer instantaneously, and a analytical solution and its simplified forms are firstly obtained for one-dimensional consolidation of layered systems with threshold gradient. A relevant computation program is developed. Based on the solutions and the corresponding computation program, an example is investigated and the consolidation behavior of layered systems with threshold gradient is analyzed.
     (4) Performing discretizations in the time and spatialdomain, a new semi-analytical method is proposed for solving the problem of one-dimensional consolidation of layered systems considering threshold gradient. The corresponding computation program is developed. Then a comparison is made between the result attained from the semi-analytical solution and that obtained from the previous solutions for homogeneous soil. Finally, the effect of different combination of threshold gradients of double-layered ground on consolidation behaviour is discussed.
     (5) By incorporating the logarithm relationship between void ratio and permeability coefficient as well as that between void ratio and effective stress, a semi-analytical solution is attained for one-dimensional nonlinear consolidation considering the threshold gradient, the distribution type of self-weight stress, the nonlinear variation of soil's permeability and compressibility. A comparison is made between the present solution and the previous solution without considering threshold gradient with the ratio of compression index permeability index being equal to 1, and the effects of the ratio of compression index permeability index, the external load, the threshold gradient and the distribution type of self-weight stress on the motion of moving boundary and average degree of consolidation are discussed.
引文
[1]Abbott M B. One dimensional consolidation of multi-layered soils[J]. Geotechnique,1960,10:151-165.
    [2]Barden L. Consolidation of clay with non-linear viscosity[J]. Geotechnique,1965,15(4):345-362.
    [3]Barden L, Berry P L. Consolidation of normally consolidated clay[J]. Journal of Soil Mechanics and Foundations, ASCE,1965,91(5):15-35.
    [4]Berry P L, Wilkison W B. The radial consolidation of clay soils[J]. Geotechnique,1969,19(2):253-284.
    [5]Cater J P. Small J C, Booker J R.A theory of finite elastic consolidation[J]. Int.J,Solids Structures,1977, 13:467-478.
    [6]Cherubini C, Vacca G, Giast C I. Modelling non-darcian flow in one-dimensional consolidation[J]. Computers and Geotechnics,1986:247-264.
    [7]Cheung Y K. Tham L G. Some application of semi-analytical methods in geotechnical engineering[C]. Proc.9th Int. Conf. On Computer Methods and Advances in Geomechanics. Wuhan,1997.3-14.
    [8]Davis E H. Raymond G P. A non-linear theory of consolidation[J]. Geotechnique,1965.15(2):161-173.
    [9]Deng Y E. Liu C Q. Numerical simulation of unsteady flow through porous media with moving boundary[C].In:Zhang Fenggan. Proceedings of the third international conference on fluid mechanics.Beijing:Beijing institute of technology-press,1998,759-765.
    [10]Deng Y E, Liu C Q. Mathematical simulation of soil consolidation with circular moving boundary[C]. In:Roegiers J.Liu T,Bai M. proceedings of the international symposium on coupled phenomena in civil, mining,petroleum engineering.Norman:Oklahoma University press,1999.281-286.
    [11]Dubin B, Moulin G. Influence of a critical gradient on the consolidation of clays[J]. In consolidation of soils:testing and evaluationfeds Young and Townsend), ASTM STP 892,1986,354-377. West Conshohocken, PA:American Society for Testing and Materials.
    [12]Duncan J M. Limitation of conventional analysis of consolidation settlement[J].Journal of Geotechnical Engineering.ASCE,1993,119(9):1333-1359.
    [13]Elnaggar H A.et al, Effect of non-darcian Flow on time rate of consolidation[J]. J.Franklin Inst 1973, 296:323-337.
    [14]Fredlund D G, Rahardjo H. Soil Mechanics for unsaturated soil[M]. New York:John Wiley & Sons.Inc.1993.
    [15]Gibson R E, England G L, Hussey M J L. The theory of one-dimensional consolidation of saturated clays I, finite nonlinear consolidation of thin homogeneous layers[J]. Geotechnique,1967. 17(2):261-273.
    [16]Hansbo S. Consolidation of clay with special reference to influence of vertical sand drains[J]. In Proceedings, Swedish Geotechnical Institute, No.18,1960.
    [17]Hansbo S. Aspects of vertical drain design:Darcian or non-Darcian flow [J].Geotechnique.1997, 47(5):983-992.
    [18]Hansbo S. Consolidation equation valid for both Darcian and non-Darcian flow[J].Geotechnique. 2001.51(1):51-54.
    [19]Hansbo S. Deviation from Darcy's law observed in one-dimensional consolidation[J].Geotechniqgue, 2003,53(6):601-605
    [20]Harold W, Olsen. Osmosis:a cause of apparent deviations from Darcy'law[J]. Can..Geotech.J,1985, 22:238-241.
    [21]Kemper W D. Rollins J.B. Osmotic efficiency coefficient across compacted clays[J].Soil Science Society of America, Proceedings,1966,30(5):529-540.
    [22]Klausner Y, Kraft R. A capillary model for non-darcy flow through porous media[J].Transactions of the Society:Rheology,1966,10(2):603-619.
    [23]Kraft R, Yaakobi D. Some remarks on non-darcy flow[J]Journal of hydrology,1966.4:171-181.
    [24]Law K T, Lee C F. Initial gradient in a dense glacial till[J]. Stockholm,1981,1:441-446.
    [25]Lee P K K. Xie K H, Cheung Y K, A study on one-dimensional consolidation of layered systems [J], International Journal for Numerical and Analytical Methods in Geomenchanics,1992,16:815-931.
    [26]Lekha K R, Krishnaswamy N R, Basak P. Consolidation of clays for variable permeability and compressibility[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003.129(11):1001-1009.
    [27]Li B J, Garga V K, Davies H. Relationships for non-darcy flow in rockfill[J].Journal of Hydraulic Engineering,1998,206-212.
    [28]Li B J, Garga V K. Theoretical solution for seepage flow in overtopped rockfill[J]Journal of Hydraulic Engineering,1998.213-217.
    [29]Li C X, Xie K H, Wang K. Analysis of one-dimensional consolidation with non-Darcian flow described by exponent and threshold gradient[J], Journal of Zhejiang University-SC IENC E A (Applied Physics & Engineering),2010, 11(1):43-49.
    [30]Mersi G, Rokhsar A. Theory of consolidation of clays[J. Journal of Geotechnical Engineering, ASCE,1974,100(8):889-903.
    [31]Mesri G, Choi Y K. Settlement analysis of embankments on soft clays[J].Journal of Geotechnical Engineering.ASCE,1985,111(4):441-464.
    [32]Mikasa M. The consolidation of soft clay[J]. Civil Engineering in Japan, JSCE,1965,21-26.
    [33]Mikasa M, Takada N. Oshima A., Kiyama M. Nonlinear consolidation theory for nonhomogeneous clay layers and its application[J]. Soils and Foundations.1998.38(4):205-212.
    [34]Miller R J, Low P F. Threshold Gradient for Water Flow in Clay Systems[J].Soil Science Society of America Proceedings.1963.27(6):605-609.
    [35]Mitchell J K., Younger J S. Abnormalities in hydraulic flow through fine-grained soils[J]. ASTM Special Publication 417, American Society for Testing and Materials.Philadelphia,1967,106-141.
    [36]Mitchell J K. Fundamentals of soil behaviour[M]. "New York:John Wiley & Sons.lnc.1976.
    [37]Olsen H W. Deviation from Darcy's law in saturated clays[J]. Soil Science Society of America Proceedings.1965,29(2):135-140.
    [38]Olson R E. Consolidation under time dependent loading[J]. Journal of Geotechnical Engineering, ASCE.1977.103(1):55-60.
    [39]Olson R E, Ladd C C.One dimensional consolidation probleins[J]. Journal of Geotechnical Engineering, ASCE,1979.105(1):11-30.
    [14]Pascal F, Pascal H, Murray D W, Consolidation with Threshold Gradients[J], International Journal for Numerical and Analytical Methods in Geomechanics.1981.5:247-261.
    [40]Pyrah I C. One dimensional consolidation of layered soils[J]. Geotechnique,1996,46(3):555-560.
    [42]Richard E.E, Liu Y P. A mathematical analysis for numerical well models for non-Darcy ftows[J].Applied Numerical Mathematics,2001,39:17-30.
    [43]Swartzendruber D. Non-Darcy Flow Behavior in Liquid-Saturated Porous Media[J]Journal of Geophysical Research.1962,67(13):5202-5213.
    [44]Swartzendruber D. Modification of Darcy's law for the flow of water in soils[J]. Soil Science Society of America Proceedings.1962,93:22-29.
    [45]Swartzendruber D. Non-Darcy behavior and the flow of water in unsaturated soils[J]. Soil Science Society-of America Proceedings.1963.27:491-495.
    [46]Schiffman R L. Consolidation of soil undertime-dependent loading and varying permeability[J]. Proc. Highw. Res. Bd,1958.37:584-617.
    [47]Schiffman R L, Gibson R E. Consolidation of nonhomogeneous clay layers[J]. Journal of the Soil Mechanics and Foundations Division. ASCE,1964,90(SM5):1-30.
    [48]Schiffman R L, Chen A, Jordan J C. An analysis of consolidation theories[J]. Journal of Soil Mechanics and Foundatons, ASCE,1969,285-311.
    [49]Schiffman R L. Stein J R. One-dimensional consolidation of layered systems[J]. Journal of Soil Mechanics and Foundations, ASCE,1970,96(4):1499-1504.
    [50]Schiffman R L. Finite in infinitesimal strain consolidation [J]. Journal of Geotechnical Engineering. ASCE.1980,106(2):203-207.
    [51]Schreyer B L, Murad M A, Cushman J H. Modified Darcy's Law, Terzaghi's effective stress principle and Fick's Law for Swelling Clay Soils[J].Computers and Geotechnics.1997,20(3):245-266.
    [52]Scott R F. New method of consolidation coefficient evaluation[J]. Journal of the Soil Mechanics and Foundations Division. ASCE.1976,102(SM1):29-30.
    [53]Tao L N. On free boundary problems with arbitrary initial and flux conditions[J], Journal of Applied Mathematics and Physics,1979,30:416-426.
    [54]Teh C I. N X Y. Coupled consolidation theory with non-Darcian flow[J]. Computers and Geotechnics. 2002,29:169-209.
    [55]Xie K H, Li B H, Li Q L. A nonlinear theory of consolidation under time-dependent loading[C]. Proc. 2th ICSSE,1996,1:193-198, Hohai University Press. Nanjing.
    [56]Xie K H, Qi T, Dong Y Q. Nonlinear analytical solution for one-dimensional consolidation of soft soil under cyclic loading[J]. Journal of Zhejiang University SCIENCE.2006.7(8):1358-1364.
    [57]Xie K H, Xie X Y, Jiang W. A study on one dimensional nonlinear consolidation of double-layered soil[J]. Computers and Geotechnics,2002,29:151-168.
    [58]Xie K H, Wang K, Wang Y L. Li C X. Analytical solution for one-dimensional consolidation of clayey soils with a threshold gradient[J]. Computers and Geotechnics,2010,37(4):487-493.
    [59]Zhu G, Yin J H. Consolidation of double soil layers under depth-dependent ramp]oad[J].Geotechnique, 1999,49(3):213-217.
    [60]Zhuang Y C, Xie K H, Li X B. Nonlinear analysis of consolidation with with variable compressibility and permeability[J]. Journal of Zhejiang University SCIENCE,2005,6A(3):181-187.
    [61]柴军瑞.岩土体水力学非线性问题[J].岩土力学,2003,24:159-162.
    [62]陈永敏,周娟,刘文香等.低速非达西渗流现象的试验论证[J].重庆大学学报(自然科学版),2000,20:59-61.
    [63]陈正汉,谢定义.非饱和土固结的混合理论(Ⅰ)[J].应用数学和力学,1993,14(2):127-137.
    [64]陈正汉.非饱和土固结的混合理论(Ⅱ)[J].应用数学和力学,1993,14(8):687-698.
    [65]邓英尔,刘慈群,王允诚.一类非线性渗流数学模拟[J].云南石油学院学报.2001.23(1):22-24.
    [66]邓英尔,谢和平,黄润秋,刘慈群.饱和粘土非线性渗流规律和径向固结[J].应用数学与力学.2007,28(11):1272-1279.
    [67]邓英尔,刘慈群,黄润秋等.高等渗流理论与方法[M],科学出版社,2004
    [68]鄂建,陈刚,孙爱荣等.考虑低速非Darcy渗流的饱和黏性土一维固结分析[J].岩土工程学报,2009.31(7):1115-1119.
    [69]龚晓南等.土力学[M],中国建筑工业出版社,2002.
    [70]郭永存,卢德唐,曾清红等.有启动压力梯度渗流的数学模型[J].中国科学技术大学学报,2005,35(4):492-498.
    [71]胡其华,周昌斌.低渗透非达西渗流动边界模型解存在唯一性[J].西南石油大学学报,2007.29(5):172-176.
    [72]黄文熙.土的工程性质[M].北京:水利电力出版社,1983.
    [73]贾振歧,王延峰,付俊林等.低渗低速下非达西渗流特征及影响因素[J].大庆石油学院学报.2001725(3):73-76.
    [74]孔祥言,陈峰磊,陈国权.非牛顿流体渗流的特性参数及数学模型[J].中国科学技术大学学报,1999,29(2):141-147.
    [75]李冰河,谢康和,应宏伟,曾国熙.变荷载下软粘土非线性一维固结半解析解[J].岩土工程学报,1999,21(3):288-293.
    [76]李冰河,谢康和,应宏伟,曾国熙.初始有效应力沿深度变化的非线性一维固结半解析解[J].土木工程学报,1999.32(6):47-52.
    [77]李冰河,谢永利,谢康和等(1999).软粘土非线性一维固结半解析解[J].西安公路交通大学学报,1999,19(1):24-29.
    [78]李冰河,王奎华.谢康和,等(2002).软粘土非线性一维固结有限差分法分析[J].浙江大学学报 (工学版),34(4):376-381.
    [79]李广信.高等土力学[M].北京:清华大学出版社,2004.
    [80]粱昆森.数学物理方法[M].北京:人民教育出版社,1979.
    [81]刘慈群.有起始比降固结问题的近似解[J].岩土工程学报,1982,4[3]:107-109.
    [82]刘忠玉,刘忠广,马崇武.考虑起始水力梯度饱和黏土的一维固结[J].郑州大学学报,2006,27(3):21-24.
    [83]刘忠玉,孙丽云,乐金朝等.基于非Darcy渗流的饱和黏土的一维固结理论[J].岩石力学与工程学报,2009,28(5):973-979.
    [84]刘忠玉,纠永志,乐金朝等.基于非Darcy渗流的饱和黏土的一维非线性固结分析[J].岩石力学与工程学报,2010,29(11):2348-2355.
    [85]刘忠玉,张天航,马崇武.起始水力梯度对饱和黏土一维固结的影响[J].岩土力学,2008,29(3):467-470.
    [86]秦峰,王媛.非达西渗流研究进展[J].三峡大学学报(自然科学版),2009,31(3):25-29.
    [87]齐添,谢康和,胡安峰等.萧山粘土非达西渗流性状的试验研究[J].浙江大学学报,2007,41(6):1023-1028.
    [88]阮敏,李相方,冯宇.一种判别低渗非达西渗流的新方法[J].西安石油大学学报(自然科学版),2009,24(4):39-41.
    [89]宋付权,刘慈群,李凡华.低渗透介质含启动压力梯度一维瞬时压力分析[J].应用数学与力学,1999,20(1):25-32.
    [90]施建勇,问延煦,雷国辉等.固结试验及相关问题的讨论[J].河海大学学报(自然科学版),2004.32(2):213-215.
    [91]王秀艳,刘长礼.对粘性土孔隙水渗流规律本质的新认识[J].地球学报,2003,24(1):91-95.
    [92]谢海澜,武强,赵增敏等.考虑非达西流的弱透水层固结计算[J].岩土力学,2007,28(5):1061-1065.
    [93]谢康和.双层地基一维固结理论与应用[J].岩土工程学报,1994,16(5):24-35.
    [94]谢康和,潘秋元.变荷载下任意层地基一维固结理论[J].岩土工程学报,1995,17(5):80-85.
    [95]谢康和,李冰河.半解析法在软粘土一维大应变固结问题中的应用[J].中国学术期刊文摘,1999.5(2):254-255.
    [96]谢康和,郑辉,Leo C J软粘土一维非线性大应变固结解析理论[J].岩土工程学报,2002,24(6):680-684.
    [97]谢康和,郑辉,李冰河,刘兴旺.变荷载下成层地基一维非线性固结分析[J].浙江大学学报(工学版),2003,37(4):426-431.
    [98]谢康和,周谨,董亚钦.循环荷载作用下地基一维非线性固结解析解[J].岩石力学与工程学报,2006,25(1):21-26.
    [99]谢康和,周健.岩土工程有限元分析理论与应用[M].北京:科学出版社,2002.
    [100]谢新宇,朱向荣.饱和土体一维大变形固结理论新进展[J].岩土工程学报,1997,19(4):30-38.
    [101]谢新宇.考虑变形耦合的一维大变形固结分析[J].浙江大学学报(工学版),2002,36(5):544-548.
    [102]谢新宇,朱向荣,谢康和,潘秋元.饱和土体一维大变形固结理论新进展[J].岩土工程学报,1997,19(4):30-38.
    [103]杨琼,聂孟喜,宋付权.低渗透砂岩渗流启动压力梯度[J].清华大学学报(自然科学版),2004,44(12):1650-1652.
    [104]袁坚敏.软土地基一维非线性固结性状研究[M].浙江大学硕士学位论文.2004.
    [105]曾清红,卢德唐.含有启动压力梯度的渗流问题及其无网格解法[J].计算力学学报,2005,22(4):443-446.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700