Notch1-RBP-Jκ信号通路在动脉中膜钙化中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分Notch1-RBP-Jκ信号通路与动脉中膜钙化的关系
     目的:明确Notch1-RBP-Jκ信号通路和血管平滑肌细胞钙化的相关性。
     方法:建立钙化模型,按钙化干预时间分为钙化0天、7天和14天三组。应用von kossa染色、钙离子含量测定、碱性磷酸酶(ALP)活性并检测Msx2表达以明确VSMCs成骨样转化;RT-PCR和western blot检测Notch1、RBP-Jκ mRNA和蛋白表达、免疫组化检测N1-ICD蛋白以明确Notch1—RBP-Jκ信号通路表达和激活。
     结果:von kossa染色显示VSMCs钙化模型中钙沉积随钙化干预时间延长而增加:钙化7天组可见少量散在钙沉积,钙化14天组有明显黑色钙沉积。随钙化干预时间增加钙离子含量表达上升:钙化14天组表达最高(P<0.05)。Notch1、RBP-Jκ mRNA和蛋白均随钙化程度增加表达上升,钙化14天组表达最高(P<0.05),Msx2表达在钙化14天组表达最高(P<0.05)。免疫组化结果显示N1-ICD蛋白表达也随钙化程度增加而增加。
     结论:动脉中膜钙化过程中,Notchl-RBP-Jκ信号通路表达增加并被激活,其表达同VSMCs钙化程度呈正相关。
     第二部分Notch1-RBP-Jκ信号通路对动脉中膜钙化的影响
     目的:探讨抑制Notch1信号通路对VSMCs钙化的影响。
     方法:建立VSMCs钙化模型和Notch1信号抑制模型(DAPT:Notch1信号抑制剂)。按干预时间分为六组,分别为钙化0天组、7天组和14天组,与DAPT0天组、7天组和14天组。检测Notchl、RBP-Jk mRNA和蛋白表达及Nl-ICD蛋白表达,明确Notchl—RBP-Jk信号通路激活情况。检测VSMCs钙盐沉积程度(von kossa染色、钙离子含量测定)和检测钙调节相关标志物(ALP活性、Msx2含量),明确VSMCs成骨样转化程度。
     结果:加入DAPT后,DAPT组与干预相同时间的钙化组相比,Notch1、RBP-Jκ mRNA和蛋白表达明显下降(P<0.05),免疫组化显示N1-ICD下调,Notchl信号通路受抑制。von kossa染色可见,同干预相同时间钙化组相比,DAPT14天组钙盐沉积程度明显减轻,钙离子含量和ALP活力下降(P<0.05),成骨样转化转录因子Msx2表达下降(P<0.05)
     结论:抑制Notchl信号表达和激活,动脉中膜钙化受抑制。
     第三部分骨保护素在动脉中膜钙化过程中对Notch1-RBP-Jκ信号通路的作用目的:骨保护素(OPG)在动脉中膜钙化过程中对Notch1-RBP-Jκ信号通路的作用。
     方法:本实验中VSMCs被分为四组:钙化组、OPG组1(0.1ng/ml)、OPG组2(1ng/ml)和OPG组3(10ng/ml)。干预14天后,应用von kossa染色、钙离子含量测定、碱性磷酸酶(ALP)活性并检测Msx2表达以明确VSMCs成骨样转化;QT-PCR和、vesterr blot检测Notch1、RBP-Jκ mRNA和蛋白表达、免疫组化检测Nl-ICD以明确Notch1-RBP-Jκ信号通路表达和激活。
     结果:同钙化组相比,OPG干预组von kossa染色黑色钙盐沉积明显减轻,钙离子含量、ALP活性和Msx2表达,均随OPG干预浓度的增加明显下降(P<0.05)。Notch1、 RBP-Jκ蛋白和mRNA水平表达也随OPG浓度增加而减少(P<0.05)。
     结论:OPG可抑制血管平滑肌细胞钙化发生,同时抑制Notch1-RBP-Jκ信号表达和激活,其效应呈现浓度依赖性。
     第四部分阿仑膦酸钠在动脉中膜钙化过程中对Notch1信号的作用
     目的:探讨阿仑膦酸钠(alendronate, ALN)在动脉中膜钙化过程中对Notch1-RBP-Jκ信号通路的作用。
     方法:VSMCs按照不同干预被分为七组:对照组、钙化组、DAPT组、ALN组1(10-8mmol/1)、ALN组2(10-6mmol/1)、ALN组3(10-4mmol/1)和ALN组4(10-3mmol/1)。干预14天后应用von kossa染色、钙离子含量测定、碱性磷酸酶(ALP)活性、Msx2表达以明确VSMCs成骨样转化;QT-PCR和western blot检测Notch1、 RBP-Jκ mRNA和蛋白表达、免疫组化检测N1-ICD以明确Notch1信号通路表达和激活。
     结果:同钙化组相比,von kossa染色证实钙盐沉积随ALN干预浓度增加明显减轻,钙离子含量、ALP活性和Msx2表达也随ALN浓度增加下降(P<0.05),并于10-4mmol/1时达到最大抑制程度。同时,细胞中Notch1、RBP-Jκ转录和翻译水平也随ALN浓度增加而下调(P<0.05)。
     结论:ALN具有抑制血管平滑肌细胞钙化,并抑制Notch1信号表达和激活,其效应呈现浓度依赖性。
Part Ⅰ The relationship between Notchl signaling pathway and medial artery calcification
     Objective:To investigate the role of Notchl-RBP-Jκ signaling pathway in the medial calcification.
     Methods:A vascular smooth muscle cell calcification model was set up. Modles were seperated into three groups according to their calcification intervention time:0day group,7days group and14days group. The degree of local calcium deposition and calcium-regulating markers, that includes von kossa staining, calcium content, alkaline phosphatase (ALP) activity, Msx2content, were tested to reflect the osteogenic transformation. Then the expression of moleculars in Notchl-RBP-Jκ signaling pathway were analysed by RT-PCR, western blot detection, and immunohistochemical detection.
     Results:VSMCs calcification model was successfully established.von kossa staining showed that positive correlation existed betweencalcium deposition and calcification intervention time:few scattered calcium deposits were displayed in the7days group, while obvious black calcium deposition wereobserved in14days group samples. Results of calcium content test proved that expression of calciumcontent were also increased along with the increase of intervention time, and reached its peak in14days group (P<0.05). The mRNA and protein level of Notchl and RBP-Jic,as well as the expression of Msx2, were found increased with the degree of calcification and reached its peak after14days intervention (P<0.05). Immunohistochemical results showed that activation levels of N1-ICD were also increased with theseverityof calcification.
     Conclusion:Notchl-RBP-Jκ signaling pathway is activated during the arterial medial calcification process. Its expression was positively correlated with the degree of VSMCs calcification.
     Part Ⅱ The effect of Notchl signaling pathway on medial artery calcification
     Objective:To investigate the effect of Notchl signaling pathway on VSMCs calcification by inhibiting the signaling pathway.
     Methods:A blocker for Notchl signaling pathway--DAPT--was employed to inhibit the VSMCs calcification. It was also divided into6groups based onintervention time:0day group,7day group,14day group,0day group with DAPT,7day group with DAPT, and14day group with DAPT. The protein and mRNA expression of Notchl, RBP-Jκ and N1-ICD activation were tested to clearifythe effect of the Notchl signaling pathway.After inhibition of Notchl signaling pathway,von kossa staining, calcium content, ALP activity, MSX2content were adopted to clearifytheextent of osteogenic transformation.
     Results:After treated with DAPT, the transcription and translation level of Notchl, RBP-Jκ were down-regulated significantly when compared with calcification group at same intervention time point (P<0.05), Nl-ICD content was also decreased. All these proved that the Notchl signal pathway was inhibited, von kossa staining also revealed that the calcium deposition, the degree of calcium content and ALP activity of14-day with DAPT group was significantly decreased compared with14-day group(P<0.05).The expression of Msx2, an transcriptional factorof osteogenic transformation, was decreased at the same time (P<0.05).
     Conclusion:Inhibition of the expression and activation of Notchl signaling pathway can suppress the medial calcification.
     Part Ⅲ The effect of osteoprotegerinon the Notch1-RBP-Jκ signaling pathway in the medial artery calcification
     Objective:To investigate the osteoprotegerin in the development of calcification of rat aortic vascular smooth muscle cells.
     Methods:The cells were divided into6groups based on intervention time:control group, calcified group, DAPT group, OPG group1with O.lng/ml OPG, OPG group2with lng/ml OPQand OPG group3with10ng/ml OPQ. The protein and mRNA expression of Notchl, RBP-Jk and N1-ICD activation were detected to clearify the effect of the Notchl signaling pathway. After inhibition of Notchl signaling pathway, von Kossa staining, calcium content, ALP activity, Msx2content were determined to clearify the extent of osteoblast transformation.
     Results:Based on the results of real-time qPCE and western blotting, we indentified that expression of Notchl and RBP-Jκ were significantly up-regulated in VSMCs cultured in osteogenic medium at both mRNA and protein levels, these effects were abolished by the treatment of OPG dose-dependently. Furthermore, we found that Msx2, a downstream target of Notchl/RBP-JK, was markedly down-regulated by the treatment of OPG
     Conclusion:OPG could inhibit vascular calcification through the down regulation of Notchl-RBP-Jκ signaling pathway.
     Part Ⅳ The effect of alendronate on the Notchl-RBP-JK signaling pathway in the medial artery calcification
     Objective:To investigate the effect of alendronate (ALN) on the Notch1-RBP-Jκ signaling pathway in the artery medial calcification.
     Methods:The cells were also divided into7groups based on intervention time:control group, calcified group, DAPT group, ALN group1with1×10-8mmol/1ALN, ALN group1with1×10-6mmol/1ALN, ALN group1with1×10-4mmol/l ALN, and ALN group1with1×10-3mmol/1ALN. The protein and mRNA expression of Notchl, RBP-Jk and N1-ICD activation were tested expression of the Notch1-RBP-Jκ signaling pathway. Von kossa staining, calcium content, ALP activity, Msx2content were determined to clearify the extent of osteoblast transformation.
     Result:Compared with calcification group, von kossa staining showed that calcium deposit was inhibited in the ALN groups in a does-dependent way. And calcium content, ALP activity and MSX2were inhibited in the ALN groups in a does-dependent way. The expressions of Notch1, RBP-Jκand N1-ICD were inhibited by alendronate does-dependently.
     Conclusion:alendronate could inhibit vascular calcification through the down regulation of Notchl-RBP-Jκ signal pathway.
引文
1. Organization WH. World health report 2002.
    2. Nations U. World population ageing 2009.
    3. 全国老龄工作委员会办公室.中国人口老龄化发展趋势预测研究报告.2006
    4. 张萍,张奕奕.社区老年人疾病谱分析与慢性病防治.中国医药指南.2010;8:2
    5. 邓英梅,汤哲,刘春玲.老年住院患者10年疾病谱变化的研究.中国病案.2008;9:3
    6. Stepien E. Osteoprotegerin as a possible novel predictor of cardiovascular dysfunction. Kardiochirurgia Torakochirurg.2012;9:82-85
    7. Pai AS, Giachelli CM. Matrix remodeling in vascular calcification associated with chronic kidney disease. Journal of the American Society of Nephrology. 2010;21:1637-1640
    8. Iyemere VP, Proudfoot D, Weissberg PL, Shanahan CM. Vascular smooth muscle cell phenotypic plasticity and the regulation of vascular calcification. J Intern Med. 2006;260:192-210
    9. Chen NX, Moe SM. Vascular calcification:Pathophysiology and risk factors. Curr. Hypertens. Rep.2012;14:228-237
    10. Metz RP, Patterson JL, Wilson E. Vascular smooth muscle cells:Isolation, culture, and characterization. Methods Mol Biol.2012;843:169-176
    11. Bostrom KI. Cell differentiation in vascular calcification. Z. Kardiol.2000;89:69-74
    12. Hruska KA. Vascular smooth muscle cells in the pathogenesis of vascular calcification. Circ Res.2009;104:710-711
    13. Kalra SS, Shanahan CM. Vascular calcification and hypertension:Cause and effect. Annals of medicine.2012;44 Suppl 1:S85-92
    14. Adams RH. Molecular control of arterial-venous blood vessel identity. J.Anat. 2003;202:7
    15. Niessen K, Karsan A. Notch signaling in cardiac development. Circulation Research.2008; 102:1169-1181
    16. Gridley T. Notch signaling in vascular development and physiology. Development. 2007; 134:2709-2718
    17. Morrow D, Scheller A, Birney YA, Sweeney C, Guha S, Cummins PM, Murphy R, Walls D, Redmond EM, Cahill PA. Notch-mediated cbf-1/rbp-j kappa-dependent regulation of human vascular smooth muscle cell phenotype in vitro. Am. J. Physiol-Cell Physiol.2005;289:C1188-C1196
    18. Doi H, Iso T, Yamazaki M, Akiyama H, Kanai H, Sato H, Kawai-Kowase K, Tanaka T, Maeno T, Okamoto E, Arai M, Kedes L, Kurabayashi M. Herpl inhibits myocardin-induced vascular smooth muscle cell differentiation by interfering with srf binding to carg box. Arterioscler Thromb Vasc Biol.2005;25:2328-2334
    19. Zanotti S, Canalis E. Notch signaling and bone. IBMS BoneKEy.2011;8:318-327
    20. Zuo C, Huang Y, Bajis R, Sahih M, Li YP, Dai K, Zhang X. Osteoblastogenesis regulation signals in bone remodeling. Osteoporosis Int.2012;23:1653-1663
    21. Yamada T, Yamazaki H, Yamane T, Yoshino M, Okuyama H, Tsuneto M, Kurino T, Hayashi SI, Sakano S. Regulation of osteoclast development by notch signaling directed to osteoclast precursors and through stromal cells. Blood. 2003;101:2227-2234
    22. Dong Y, Jesse AM, Kohn A, Gunnell LM, Honjo T, Zuscik MJ, O'Keefe RJ, Hilton MJ. Rbpjkappa-dependent notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development. 2010;137:1461-1471
    23. Engin FZ, Yao ZQ, Yang T, Zhou G, Bertin T, Jiang MM, Chen YQ, Wang L, Zheng H, Sutton RE, Boyce BF, Lee B. Dimorphic effects of notch signaling in bone homeostasis. Nature medicine.2008;14:299-305
    24. Shimizu T, Tanaka T, Iso T, Doi H, Sato H, Kawai-Kowase K, Arai M, Kurabayashi M. Notch signaling induces osteogenic differentiation and mineralization of vascular smooth muscle cells role of msx2 gene induction via notch-rbp-jk signaling. Arterioscler. Thromb. Vasc. Biol.2009;29:1104-U1186
    25. Shimizu T, Tanaka T, Iso T, Matsui H, Ooyama Y, Kawai-Kowase K, Arai M, Kurabayashi M. Notch signaling pathway enhances bone morphogenetic protein 2 (bmp2) responsiveness of msx2 gene to induce osteogenic differentiation and mineralization of vascular smooth muscle cells. Journal of Biological Chemistry. 2011;286:19138-19148
    26. Nathan Bucay IS. Opg-deficient mice develop early onset osteoporosis and arterialcalcification. Genes Dev.1998; 12:9
    27. Bakhireva LN, Laughlin GA, Bettencourt R, Barrett-Connor E. Role of osteoprotegerin and rankl in bone and vascular calcification. Value Health. 2008;11:A187-A187
    28. Chasseraud M, Liabeuf S, Mozar A, Mentaveri R, Brazier M, Massy ZA, Kamel S. Tumor necrosis factor-related apoptosis-inducing ligand and vascular calcification. Ther. Apher. Dial.2011;15:140-146
    29. Breuil V, Cosman F, Stein L, Horbert W, Nieves J, Shen V, Lindsay R, Dempster DW. Human osteoclast formation and activity in vitro:Effects of alendronate. JOURNAL OF BONE AND MINERAL RESEARCH.1998;13:1721-1729
    30. Iwamoto J, Takeda T, Sato Y, Uzawa M. Effects of alendronate on metacarpal and lumbar bone mineral density, bone resorption, and chronic back pain in postmenopausal women with osteoporosis. Clin. Rheumatol.2004;23:383-389
    31. Price PA, Faus SA, Williamson MK. Bisphosphonates alendronate and ibandronate inhibit artery calcification at doses comparable to those that inhibit bone resorption. Arteriosclerosis, Thrombosis, and Vascular Biology.2001;21:817-824
    32. Gabriel Rusanescu RWaEA. Notch signaling in cardiovascular disease and calcification. Current Cardiology 2008
    33. Luna-Zurita L, Prados B, Grego-Bessa J, Luxan G, del Monte G, Benguria A, Adams RH, Perez-Pomares JM, de la Pompa JL. Integration of a notch-dependent mesenchymal gene program and bmp2-driven cell invasiveness regulates murine cardiac valve formation. J. Clin. Invest.2010;120:3493-3507
    34. Bai S, Kopan R, Zou W, Hilton MJ, Ong CT, Long FX, Ross FP, Teitelbaum SL. Notchl regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. Journal of Biological Chemistry.2008;283:6509-6518
    35. Nigam V, Srivastava D. Notchl represses osteogenic pathways in aortic valve cells. Journal of molecular and cellular cardiology.2009;47:828-834
    36. 任立群,张秀云,孙波,王金凤.大鼠胸主动脉平滑肌细胞的组织贴块法培养及鉴定.吉林大学学报.2002;28:2
    37. Tetta C, Gallieni M, Panichi V, Brancaccio D. Vascular calcifications as a footprint of increased calcium load and chronic inflammation in uremic patients:A need for a neutral calcium balance during hemodialysis? Int. J. Artif Organs.2002;25:18-26
    38. Abedin M, Tintut Y, Demer LL. Vascular calcification:Mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol.2004;24:1161-1170
    39. Cozzolino M, Galassi A, Biondi ML, Turri O, Papagni S, Mongelli N, Civita L, Gallieni M, Brancaccio D. Serum fetuin-a levels link inflammation and cardiovascular calcification in hemodialysis patients. Am J Nephrol. 2006;26:423-429
    40. Checherita IA, David C, Stoica L, Popescu P, Ciocalteu A, Lascar I. New mediators of vascular damage in dialysed patients. Rom. J. Morphol. Embryol. 2011;52:533-536
    41. Teitelbaum SL. Bone resorption by osteoclasts. Science.2000;289:1504-1508
    42. Cheng SL, Shao JS, Charlton-Kachigian N, Loewy AP, Towler DA. Msx2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. The Journal of biological chemistry.2003;278:45969-45977
    43. Al-Aly Z, Shao JS, Lai CF, Huang E, Cai J, Behrmann A, Cheng SL, Towler DA. Aortic msx2-wnt calcification cascade is regulated by tnf-alpha-dependent signals in diabetic ldlr(-/-) mice. Arterioscler. Thromb. Vasc. Biol.2007;27:2589-2596
    44. Iso T, Hamamori Y, Kedes L. Notch signaling in vascular development. Arterioscler. Thromb. Vasc. Biol.2003;23:543-553
    45. Villa N, Walker L, Lindsell CE, Gasson J, Iruela-Arispe ML, Weinmaster G Vascular expression of notch pathway receptors and ligands is restricted to arterial vessels. Mech. Dev.2001;108:161-164
    46. Wang M, Wu L, Wang L, Xin X. Down-regulation of notchl by gamma-secretase inhibition contributes to cell growth inhibition and apoptosis in ovarian cancer cells a2780. Biochemical and biophysical research communications.2010;393:144-149
    47. Kavurma MM, Tan NY, Bennett MR. Death receptors and their ligands in atherosclerosis. Arterioscler Thromb Vasc Biol.2008;28:1694-1702
    48. Yasuda H. Identity of osteoclastogenesis inhibitory factor (ocif) and osteoprotegerin (opg):A mechanism by which opg/ocif inhibits osteoclastogenesis in vitro. Endocrinology.1998;139:1329-1337
    49. Boyce BF, Xing L. Biology of rank, rankl, and osteoprotegerin. Arthritis research & therapy.2007;9 Suppl 1:S1
    50. Olesen P, Nguyen K, Wogensen L, Ledet T, Rasmussen LM. Calcification of human vascular smooth muscle cells:Associations with osteoprotegerin expression and acceleration by high-dose insulin. Am. J. Physiol.-Heart Circul. Physiol. 2007;292:H1058-H1064
    51. Soufi M, Schoppet M, Sattler AM, Herzum M, Maisch B, Hofbauer LC, Schaefer JR. Osteoprotegerin gene polymorphisms in men with coronary artery disease. The Journal of clinical endocrinology and metabolism.2004;89:3764-3768
    52. Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S-i, Gomibuchi T, Yano K, Shima N, Washida N, Tsuda E, Morinaga T, Higashio K, Ozawa H. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochemical and biophysical research communications.1998;247:610-615
    53. Price PA, June HH, Buckley JR, Williamson MK. Osteoprotegerin inhibits artery calcification induced by warfarin and by vitamin d. Arteriosclerosis, Thrombosis, and Vascular Biology.2001;21:1610-1616
    54. Panizo S, Cardus A, Encinas M, Parisi E, Valcheva P, Lopez-Ongil S, Coll B, Fernandez E, Valdivielso JM. Rankl increases vascular smooth muscle cell calcification through a rank-bmp4-dependent pathway. Circ Res. 2009;104:1041-1048
    55. Yuan LQ, Zhu JH, Wang HW, Liang QH, Xie H, Wu XP, Zhou H, Cui RR, Sheng ZF, Zhou HD, Zhu X, Liu GY, Liu YS, Liao EY. Rankl is a downstream mediator for insulin-induced osteoblastic differentiation of vascular smooth muscle cells. PloS one.2011;6:e29037
    56. Paola Secchiero FC, Maria Grazia di Iasio, Arianna Gonelli, Elisa Barbarotto. Trail counteracts the proadhesive activity of inflammatory cytokines in endothelial cells by down-modulating cc18 and cxc110 chemokine expression and release, blood. 2005
    57. Vishvanath A, Itinteang T, Tan ST, Day DJ. Infantile haemangioma expresses tumour necrosis factor-related apoptosis-inducing ligand (trail), trail receptors, osteoprotegerin and receptor activator for nuclear factor small ka, cyrillicb ligand (rankl). Histopathology.2011;59:397-406
    58. Perrini S, Natalicchio A, Laviola L, Cignarelli A, Melchiorre M, De Stefano F, Caccioppoli C, Leonardini A, Martemucci S, Belsanti G, Miccoli S, Ciampolillo A, Corrado A, Cantatore FP, Giorgino R, Giorgino F. Abnormalities of insulin-like growth factor-i signaling and impaired cell proliferation in osteoblasts from subjects with osteoporosis. Endocrinology.2008;149:1302-1313
    59. Acharya A, Hans CP, Koenig SN, Nichols HA, Galindo CL, Garner HR, Merrill WH, Hinton RB, Garg V. Inhibitory role of notch1 in calcific aortic valve disease. PloS one.2011;6
    60. Garcia-Moreno C, Serrano S, Nacher M, Farre M, Diez A, Marinoso ML, Carbonell J, Mellibovsky L, Nogues X, Ballester J, Aubia J. Effect of alendronate on cultured normal human osteoblasts. Bone.1998;22:233-239
    61. Enjuanes A, Ruiz-Gaspa S, Peris P, Ozalla D, Alvarez L, Combalia A, de Osaba MJM, Monegal A, Pares A, Guanabens N. The effect of the alendronate on opg/rankl system in differentiated primary human osteoblasts. Endocrine. 2010;37:322-328
    62. Santos LL, Cavalcanti TB, Bandeira FA. Vascular effects of bisphosphonates-a systematic review. Clinical medicine insights. Endocrinology and diabetes. 2012;5:47-54
    63. Price PA, Caputo JM, Williamson MK. Bone origin of the serum complex of calcium, phosphate, fetuin, and matrix gla protein:Biochemical evidence for the cancellous bone-remodeling compartment. JOURNAL OF BONE AND MINERAL RESEARCH.2002;17:1171-1179
    64. Boanini E, Torricelli P, Gazzano M, Fini M, Bigi A. The effect of alendronate doped calcium phosphates on bone cells activity. Bone.2012;51:944-952
    65. Keam SJ, Plosker GL. Prevention and treatment of osteoporosis in resorption women-defining the role of alendronate. Dis. Manag. Health Outcomes. 2004;12:19-37
    66. Alain P GM, London GM, Marchais SJ, Metivier F. Arterial stiff-ening and vascular calcifications in end-stage renal disease. Nephrology, dialysis, transplantation official publication of the European Dialysis and Transplant Association-European Renal Association.2000;15:7
    67. Yesil Y, Ulger Z, Halil M, Halacli B, Yavuz BB, Yesil NK, Kuyumcu ME, Cankurtaran M, Ariogul S. Coexistence of osteoporosis (op) and coronary artery disease (cad) in the elderly:It is not just a by chance event. Arch. Gerontol. Geriatr. 2012;54:473-476
    68. London GM, Marchais SJ, Guerin AP, Boutouyrie P, Metivier F, de Vernejoul MC. Association of bone activity, calcium load, aortic stiffness, and calcifications in esrd. Journal of the American Society of Nephrology:JASN.2008;19:1827-1835
    69. Hak AE, Pols HAP, van Hemert AM, Hofman A, Witteman JCM. Progression of aortic calcification is associated with metacarpal bone loss during menopause:A population-based longitudinal study. Arteriosclerosis, Thrombosis, and Vascular Biology.2000;20:1926-1931
    70. Carr JJ, Register TC, Hsu FC, Lohman K, Lenchik L, Bowden DW, Langefeld CD, Xu J, Rich SS, Wagenknecht LE, Freedman BI. Calcified atherosclerotic plaque and bone mineral density in type 2 diabetes:The diabetes heart study. Bone. 2008;42:43-52
    71. Kiel DP KL, Cupples LA, Hannan MT, O'Donnell CJ,Wilson PW.. Bone loss and the progression of abdominal aortic calcification over a 25 year period. Calcif Tissue Int.2001;68:5
    72. London GM. Arterial calcifications and bone histomorphometry in end-stage renal disease. Journal of the American Society of Nephrology.2004;15:1943-1951
    73. Adragao T, Herberth J, Monier-Faugere MC, Branscum AJ, Ferreira A, Frazao JM, Dias Curto J, Malluche HH. Low bone volume--a risk factor for coronary calcifications in hemodialysis patients. Clinical journal of the American Society of Nephrology:CJASN.2009;4:450-455
    74. Mody N PF, Sarafian TA, Demer LL. Oxidative stress modulates osteoblastic ifferentiation of vascular and bone cells. Free Radic Biol Med. 2001;31(4):509-519..2001;31
    75. Osako MK, Nakagami H, Koibuchi N, Shimizu H, Nakagami F, Koriyama H, Shimamura M, Miyake T, Rakugi H, Morishita R. Estrogen inhibits vascular calcification via vascular rankl system:Common mechanism of osteoporosis and vascular calcification. Circ Res.2010; 107:466-475
    76. Modder UI, Roforth MM, Hoey K, McCready LK, Peterson JM, Monroe DG, Oursler MJ, Khosla S. Effects of estrogen on osteoprogenitor cells and cytokines/bone-regulatory factors in postmenopausal women. Bone. 2011;49:202-207
    77. Tanko LB, Christiansen C, Cox DA, Geiger MJ, McNabb MA, Cummings SR. Relationship between osteoporosis and cardiovascular disease in postmenopausal women. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research.2005;20:1912-1920
    78. Wang M, Monticone RE, Lakatta EG. Arterial aging:A journey into subclinical arterial disease. Current opinion in nephrology and hypertension.2010; 19:201-207
    79. Burton DG, Matsubara H, Ikeda K. Pathophysiology of vascular calcification: Pivotal role of cellular senescence in vascular smooth muscle cells. Experimental gerontology.2010;45:819-824
    80. Nakano-Kurimoto R, Ikeda K, Uraoka M, Nakagawa Y, Yutaka K, Koide M, Takahashi T, Matoba S, Yamada H, Okigaki M, Matsubara H. Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition. American journal of physiology. Heart and circulatory physiology.2009;297:H1673-1684
    81. Davies MR, Lund RJ, Mathew S, Hruska KA. Low turnover osteodystrophy and vascular calcification are amenable to skeletal anabolism in an animal model of chronic kidney disease and the metabolic syndrome. Journal of the American Society of Nephrology:JASN.2005; 16:917-928
    82. Dellegrottaglie S, Sanz J, Rajagopalan S. Molecular determinants of vascular calcification:A bench to bedside view. Curr. Mol. Med.2006;6:515-524
    83. Towler RVaDA. Osteogenic regulation of vascular calcification:An early perspective.2003
    84. Shao JS, Cheng SL, Sadhu J, Towler DA. Inflammation and the osteogenic regulation of vascular calcification:A review and perspective. Hypertension. 2010;55:579-592
    85. Collin-Osdoby P. Regulation of vascular calcification by osteoclast regulatory factors rankl and osteoprotegerin. Circulation Research.2004;95:1046-1057
    86. Fili S, Karalaki M, Schaller B. Mechanism of bone metastasis:The role of osteoprotegerin and of the host-tissue microenvironment-related survival factors. Cancer Lett.2009;283:10-19
    87. Naves M, Rodriguez-Garcia M, Diaz-Lopez JB, Gomez-Alonso C, Cannata-Andia JB. Progression of vascular calcifications is associated with greater bone loss and increased bone fractures. Osteoporosis international:a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA.2008;19:1161-1166
    88. SL T. Osteoclasts; culprits in inflammatory osteolysis. Arthritis research & therapy. 2006;8
    89. Byon CH, Sun Y, Chen J, Yuan K, Mao X, Heath JM, Anderson PG, Tintut Y, Demer LL, Wang D, Chen Y. Runx2-upregulated receptor activator of nuclear factor kappab ligand in calcifying smooth muscle cells promotes migration and osteoclastic differentiation of macrophages. Arterioscler Thromb Vasc Biol. 2011;31:1387-1396
    90. AV S. Diabetes mellitus:Does it affect bone? Calcif Tissue Int.2003;73
    91. Hofmann Bowman MA GJ, Bukhari U. S100al2 in vascular smooth muscle accelerates vascular calcification in apolipoprotein e-null mice by activating an osteogenic gene regulatory program. Arterioscler Thromb Vasc Biol.2011;31:337
    92. Tanikawa T OY, Tanikawa R, Tanaka Y. Advanced glycation endproducts induce calcification of vascular smooth muscle cells through rage/p38 apk and upregulation of runx2. J Vasc Res.2009;46
    93. Griffith JF YD, Tsang PH. Compromised bone marrow perfusion in steoporosis. Journal of bone and mineral research:the official journal of the American Society for Bone and Mineral Research.2008;23
    94. Moe S DT, Cunningham J. Definition, evaluation, and classification of renal osteodystrophy:A position state-ment from kidney disease:Improving global outcomes (kdigo). Kidney Int.2006;69
    95. Hu MC, Shi M, Zhang J, Quinones H, Griffith C, Kuro-o M, Moe OW. Klotho deficiency causes vascular calcification in chronic kidney disease. Journal of the American Society of Nephrology:JASN.2011;22:124-136
    96. Reynolds JL, Joannides AJ, Skepper JN, McNair R, Schurgers LJ, Proudfoot D, Jahnen-Dechent W, Weissberg PL, Shanahan CM. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations:A potential mechanism for accelerated vascular calcification in esrd. Journal of the American Society of Nephrology JASN.2004;15:2857-2867
    97. Lomashvili KA. Phosphate-induced vascular calcification:Role of pyrophosphate and osteopontin. Journal of the American Society of Nephrology. 2004;15:1392-1401
    98. Scatena M, Liaw L, Giachelli CM. Osteopontin:A multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vasc Biol.2007;27:2302-2309
    99. Bridgeman G BM. Blood supply to the human fem-oral diaphysis in youth and senescence. JAnat..1996; 188
    100. Sage AP, Tintut Y, Demer LL. Regulatory mechanisms in atherosclerotic calcification. Nature reviews. Cardiology.2010;7:528-536
    101. Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochemical Pharmacology.2009;78:539-552
    102. Pardali E, ten Dijke P. Tgf beta signaling and cardiovascular diseases. Int. J. Biol. Sci. 2012;8:195-213

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700