神经元MOS及其应用电路的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着集成电路的发展及其集成度的提高,传统的基于单一晶体管功能的硅集成电路,出现了很多困难的、急待解决的问题,而神经元MOS晶体管(Neuron MOSFET,简写为neuMOS或vMOS)作为一种具有强大功能的单元晶体管,为解决集成电路中晶体管数目及互连线增多带来的问题提供了一种有效的途径。本文在对器件的特性进行分析的基础上,建立了较精确的器件HSPICE模型,并对器件的应用电路进行了深入研究。
     对神经元MOS的特性进行了较系统的分析,提出了浮栅增益因子存在饱和值的观点,分析出浮栅增益因子受场寄生电容的影响从而解释了浮栅增益因子出现饱和值的现象;从电路速度和功耗上对神经元MOS电路和普通CMOS电路进行了比较,讨论了器件输入端子数主要受电路的计算精度、电路速度和电源电压等因素的限制,为神经元MOS电路的设计提供了理论指导。
     建立了神经元MOS的HSPICE模型,在对浮栅电势建模时考虑了场寄生电容对浮栅电势的影响,并对模型进行了验证,为神经元MOS电路的设计提供了更精确的模拟手段。
     用神经元MOS实现了奇偶校验码系统。设计了8个数据位的奇校验码编码和校验电路;并对所设计的电路进行了HSPICE仿真,结果表明所设计的电路功能正确,跟传统的CMOS电路相比晶体管数目从近五百个减少到
    
    西安理工大学博士学位论文
    三十几个。
     开拓了神经元MOS在数字PwM发生器中的应用,大幅度减少了电路
    中器件的数目,并深入分析了神经元MOS源极跟随器的输出特性,对MOS
    管的阂值从电压偏差和静态功耗两方面进行了优化设计,得出C一MOS源
    极跟随器中PMOS和NMOS应取微耗尽型的结论,为C一vMOS源极跟随器
    在模拟电路中的应用提供了理论指导。
     提出了基于神经元MOS的CDMA数模混合型匹配滤波器结构,使得
    匹配滤波器的结构得到简化,并制作了它的测试电路芯片,在匹配单元电路
    设计过程中,提出了提高电路运算精度的闺值取消单元电路,实现了电路的
    高精度运算。
    关键词:神经元MOS,集成电路,SPICE模型,PWM发生器,匹配滤波器
With the development of the integrated circuit (IC) and the improvement of its integration density, many problems have occurred for the conventional silicon IC based on single transistor function. As a functional transistor, neuron-MOS provides us an effective way to settle the problems resulted from the increase of transistor number and the interactive wires. In this paper, based on analysis of the device's characteristics, the accurate SPICE model for this device is presented and the application circuits are thoroughly researched.The characteristics of neuron-MOS are analyzed systemically which provide the theoretic guide for the design of neuron-MOS circuit. The viewpoint that because of the field parasitical capacitance between the floating gate and the bulk the floating gate gain factor v exists a maximum value is presented. The compare of the speed and power loss performances between the neuron-MOS and ordinary CMOS is carried out. The factors that limit the number of neuron-MOS input gates are discussed from the calculation precision, circuit speed and the power voltage.The SPICE model for neuron-MOS is presented which provides a more accurate method to simulate neuron-MOS circuit. When modeling the floating gate potential, the effect of the parasitical field capacitance to the floating gate potential is considered, and the model is verified by the simulation results and the measured results.Parity check system based on neuron-MOS is designed. A 8-bit odd coding circuit and verification circuit are designed and simulated. The results show that neuron-MOS circuits decrease the number of transistors from 500 transistors to 38 transistors.The application of neuron-MOS in digital PWM generator is developed.
    
    The number of transistors is decreased dramatically. The output characteristics of the C-neuMOS source follower are analyzed thoroughly, and the threshold of neuron-MOS is optimized between the output voltage offset and the power loss, which provide theoretic guide for the design of neuron-MOS analog circuit.A novel CDMA matched filter structure is presented. Compared to the conventional structure, the number of circuit elements is decreased greatly for the same function. The test chip was fabricated and the measurement result shows that the system structure is feasible and effective. In the design of the matched cell, a novel neuMOS source follower circuit with high precision is presented to eliminate the threshold loss of source follower.
引文
[1] 荒井英辅编著,邵春林 蔡凤鸣译,集成电路,科学出版社,2001年
    [2] 何尧,王太宏.碳纳米管晶体管.微纳电子技术.2002年12期:专家论坛
    [3] Jan M.Rabaey, Anantha Chandrakasan, Borivoje Nikolic, DIGITAL INTEFRATED CIRCUITS—A DESIGN PERSPECTIVE (数字集成电路—设计透视)清华大学出版社 Prentice-Hall International, Inc. 2004年3月
    [4] 刘洪图,吴自勤.超大规模集成电路中的一些材料物理问题—Cu互连和金属化.物理.30卷12期 2001:757~761
    [5] SHIBATA Tadashi, and OHMI Tadahiro. A Functional MOS Transistor Featuring Gate-Level Weighted Sum and Threshold Operations. IEEE Trans. on Electron Devices, 1992, vol.39, no.6:1444~1455
    [6] Sawada Hiroshi, Aoyama Kazuo, Nagoya Akira, Nakajima Kazuo. Consideration for a Reconfigurable Logic Device using Neuron MOS Transistors. IPSJ SIGNotes System Lsi Design Methodology, 1999,No.93-011
    [7] E. Rodriguez-Villegas, G. Huertas, M.J. Avedillo, J.M. Quintana, and A. Rueda. A PRACTICAL FLOATING-GATE MULLER-C ELEMENT USING v MOS THRESHOLD GATES. IEEE Trans. on Circuits and Sysytems-Ⅱ, Special Issue on "Floating gate Circuits and Systems", Vol. 48, Issue 1, January 2001, pp. 102-106
    [8] Shibata, T. and Ohmi T. "Neuron MOS binary-logic integrated circuits: Part Ⅱ, Simplifying techniques of circuit configuration and their practical applications," IEEE Trans. Electron Devices. Vol.40 No.5, May 1993:974~979
    [9] Ike,K., Hirose,K. and Yasuura,H.,A Design Method of Fundamental Logic Elecments Using Neuron MOS Transistors (in Japanese). Technical Report of IEICE, VLD95-146,ICD95-246, Mar. 1996.
    [10] Aoyama Kazuo, Sawada Hiroshi, Nagoya Akira, Nakajima Kazuo. A Design Method for a Circuit with Neuron MOS Transistors Realizing Any Symmetric Function. IPSJ SIGNotes System Lsi Design Methodology, 1999,No. 93-012
    [1
    
    [11] 杨铮,施毅,顾书林等,基于碳纳米管的电子器件.固体电子学研究与进展.22卷第2期,2002年5月:131~136
    [12] Collins P G, Arnold M S, Avouris P, et al, Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science, 2001, 292;706~709
    [13] 绍丙铣,郑国祥,MOS集成电路的分析与设计 复旦大学出版社2002年9月
    [14] 管慧,汤玉生,神经MOS晶体管,半导体技术,25卷第1期,2000年2月:2~7
    [15] Shibata, T. and Ohmi T. "Neuron MOS binary-logic integrated circuits: Part Ⅰ: Design Fundamentals and Soft-Hardware-Logic Circuit Implementation. IEEE Trans. Electron Devices. Vol.40 No.3, March 1993:570~576
    [16] SHIBATA Tadashi, and OHMI Tadahiro. Neuron MOS Voltage-Mode Circuit Technology for Multiple-Valued Logic. IEICE TRANS. ELECTRON., Vol.E76-C,No.3, March 1993:347~356
    [17] Ning Mei Yu, Tadashi Shibata and Tadahiro Ohmi "A Real-Time Center-of-Mass Tracker Circuit Implemented by Neuron MOS Technology" IEEE Trans. on Circuits and Systems—Ⅱ: Analog and Digital Signal Processing. Vol.45, no.4, April 1998, pp495-503
    [18] S. Nakamura, "Design and analysis of low-voltage and wide input-rage multiple-input analog adding and subtracting circuit using FG-MOSFET's", Bachelor Thesis, Miyazaki University,March 2002.
    [19] Yang Yuan, Yu Ningmei and Gao Yong. A Novel Matched Filter Structure with Neuron MOS Devices. 半导体学报.25卷,第1期,2004年1月:1-5
    [20] 杨媛,高勇,余宁梅,神经元MOS的特性分析,西安理工大学学报,20卷第1期,2004年3月:49—53
    
    [21] K. Ogawa. "Multiple-Input Neuron MOS operation Amplifier for Voltage-Mode Multi-Valued Full Adders" IEEE Trans Cir Sys ptII, vol 45, no.9, 1998, pp1307-1311
    [22] Tadashi Shibata, Tsutomu Nakai, Ning Mei Yu, et. al. Advances in Neuron-MOS Applications. International Solid-State Circuits Conference 1996:304
    [23] S. Kondo, T. Shibata, and T. Ohmi. "Superior Generalzation Capability of Hardware-Learning Algorithm Developed for Self-Learning Neuron-MOS Neural Networks" Jpn.J.Appl.Phys, 1995, vol.34,partl, no.2B, pp1066-1069
    [24] T.Shibata, H.Kosaka, H.Ishii, et. al. "A neuron-MOS Neural Network Using Self-Learning-Compatible Synapse Circuits" IEEE JSSC, 1995, vol.20, no.8, pp913-922
    [25] T.shibata, and T.Ohmi, "A self-learning neural-network LSI using neuron MOSFET's,: in Dig. Tech. Papers, 1992 Sympsium on VLSI Technology, Seattle, June, 1992:84-85
    [26] H. Kosaka, T. Shibata, H. Ishii and T. Ohmi. "An excellent weighted-updating-linearity synapse memory cell for self-learning neuron MOS neural networks". IEEE Trans. Electron Devices, vol. 42, Jan. 1995:135-143
    [27] H. Ishii, T.shibata, H. kosaka, et. al. "Hardware-Backpropagation learning of neuron MOS neural networks," in IEDM Tech. Dig. 1992:435-438
    [28] M. Akazawa, T. Fujiwara and Y. Amemiya. A Three-Dimensional Cellular Neural Network Circuit System Using a Neuron-MOS Circuit. ISPACS 2000:d8-3-4
    [29] Rantala, A., Franssila, S., Kaski, K., Lampinen, J., Aberg, M. and Kuivalainen, P.; Improved neuron MOS-transistor structures for integrated neural network circuits. IEE Proceedings: Circuits Devices Systems, 2001. Vol. 148, no 1:25-34.
    
    [30] Tadashi Shibata "Intelligent Signal Processing Based on a Psychologically-Inspired VLSI Brain Model" IEICE Trans. Fundamentals, 2002, vol. E85-A, no.3, pp600-609
    [31] Tadahiro Ohmi, Tadashi Shibata, Koji Kotani, et. al. Association hardware for intelligent electronic systems. Systems and Computers in Japan. Volume 30, Issue 12, Nov. 1999:52-62
    [32] A. Nakada M. Konda, T. Morimoto, T. Yonezawa, T. Shibata, and T. Ohmi Fully-Parallel VLSI Implementation of Vector Quantization Processor Using Neuron-MOS Technology. IEICE Transactions on Electronics, Vol. E82-C, No. 9, pp. 1730-1737(1999)
    [33] M. Konda, T. Shibata, and T. Ohmi. A Compact Memory-Merged Vector-Matching Circuitry for Neuron-MOS Associative Processor . IEICE Transactions on Electronics, Vol. E82-C, No. 9, pp. 1715-1721 (1999)
    [34] T. Nakai, T. Shibata, T. Yamashita, and T. Ohmi. Neuron-MOS Parallel Search Hardware for Real-Time Signal Processing. Analog Integrated Circuits and Signal Processing, Vol.21, No. 2, pp. 173-191, November (1999)
    [35] Qian-Rong Gu and Tadashi Shibata. A Low-Cost Vector Quantization System for Voice Compression Based on Analog-Flash and Neuron-MOS Technologies. ISP ACS 2000:c6-2-4
    [36] KOTANI Koji, SHIBATA Tadashi, and OHMI Tadahiro. Impact of high Precision Processing on the Functional Enhancement of Neuron-MOS Integrated Circuits. IEICE Trans. Electron, vol E97-C, no.3, 1996:407
    [37] Kotani K., Shibata T., Imai M., Ohmi T. "Clocked-neuron-MOS logic circuits employing auto-threshold-adjustment." Proc. ISSCC'95, San Francisco, 1995, pp. 320-321, 388.
    [38] Kotani K., Shibata T., Imai M, Ohmi T. "Clocked-controlled neuron-MOS logic gates." IEEE Trans. Circuits Syst. II, 45(4): 518-522, April 1998
    
    [39] T. Shibata, K. Kotani, and T. Ohmi, "Real-time reconfigurable logic circuits using neuron MOS transistors," ISSCC Dig. Technical papers. Feb. 1993, FA 15.3:238-239
    [40] T. Yamashita, T.shibata, and T.Ohmi, "Neuron MOS winner-take-all circuit and its application to associative memory," ISSCC Dig. Technical papers, Feb. 1993, FA 15.2:236-237
    [41] Ria Au, Takeo Yamashita, Tadashi Shibata, Tadahiro Ohmi. "Neuron-MOS Multiple-Valued Memory Technology for Intelligent Data Processing". ISSCC94 FA 16.3:270
    [42] Tadahiro OCHIAI, Hiroshi HATANO. "A low temperature DC characteristic analysis utilizing a floating gate neuron MOS macrmodel",IEICE Trans.Electron.,no.6,2003:1114-1116
    [43] Tadahiro OCHIAI, Hiroshi Hatano. "77K DC characteristics for floating gate neuron MOS circuits", ibid., 2000: 271-275
    [44] Hatano, H., Ochiai, T. "Neuron MOS circuit performance improvements by low temperature operation",Proceedings of 4th European Workshop on Low Temperature Electronics, 2000: pp.49-53
    [45] Tadahiro OCHIAI, Hiroshi Hatano"DC characteristic simulation for floating gate neuron MOS circuits",Electronics Letters,vol.35,1999:1505-1507
    [46] Tadahiro OCHIAI, Hiroshi HATANO. "A proposition on floating gate neuron MOS macromodeling for device fabrications",IEICE Trans.Fundamentals, no. 11, 1999:2485-91
    [47] M. Inaba, "Design and verification of neuron CMOS circuits for multi-valued fundamental logic functions", Doctoral Thesis, Miyazaki University, March 2002.
    [48] K. Tanno, J. Shen, O. Ishizuka and Z. Tang. Neuron-MOS VT cancellation circuit and its application to a low-power and high-swing cascode current mirror," IEICE Trans, on Fundamentals, vol.E81-A, no.1 June 1998:110-116,
    
    [49] J.Shen, K.Tanno, O.Ishizuka and Z.Tang, Neuron-MOS current mirror circuit and its application to multi-valued logic, IEICE Trans.on Electron., Vol.E82-D, No.5, 1999:940-948
    [50]K.Tanno, O.Ishizuka and Z.Tang A 1-V,1-Vp-p input range, four-quadrant analog multiplier using neuron-MOS transistors,, IEICE Trans, on Electron., Vol.E82-C, No.51999:750-757
    [51] Koichi TANNO, Jing SHEN,Okihiko ISHIZUKA,Zheng TANG. Neuron-MOSVT Cancellation Circuit and Its Application to a Low-Power and High-Swing Cascode Current Mirror. Vol.E81-A No.1,1998:110-116
    [52] Motoi Inaba, Koichi Tanno, Okihiko Ishizuka: Multi-Valued Flip-Flop with Neuron-CMOS NMIN Circuits. ISMVL, Boston, Massachusetts, USA, 2002: 282
    [53] Jing Shen, Motoi Inaba, Koichi Tanno, Okihiko Ishizuka: Multi-Valued Logic Pass Gate Network Using Neuron-MOS Transistors. ISMVL 2000: 15-20
    [54] Makoto Syuto, Jing Shen, Koichi Tanno, Okihiko Ishizuka: Multi-Input Variable-Threshold Circuits for Multi-Valued Logic Functions. ISMVL 2000: 27-32
    [55] Jing Shen, Koichi Tanno, Okihiko Ishizuka: Down Literal Circuit with Neuron-MOS Transistors and Its Applications. ISMVL 1999: 180-185
    [56] Jing Shen, Koichi Tanno, Okihiko Ishizuka, Zheng Tang: Application of Neuron-MOS to Current-Mode Multi-Valued Logic Circuits. ISMVL 1998: 128-133
    [57] T. Hanyu, K. Teranihi, and M. Kameyama, "Multiple-valued floating-gate-MOS pass logic and its application to logic-inmemory VLSI", in Proc. of IEEE Int. Symp. on Multiple-Valued Logic (ISMVL 1998), Fukuoka, May 1998:270-275
    
    [58] M. Inaba, K. Tanno, and O. Ishizuka, "Realization of NMAX and NMIN function with multi-valued voltage comparators", in Proc. of IEEE Int. Symp. on Multiple-Valued Logic (ISMVL 2001), Warsaw, May 2001:27-32
    [59] J. Shen, "Design and implementation of multiple-valued integrated circuits with neuron-MOS transistors", Doctoral Thesis, Miyazaki University, March 2000.
    [60] Weber W., Prange S., Thewes R., Wohlrab E. "A neuron MOS transistor-based multiplier cell." IEDM Technical Digest, 1995:21.5.1-21.5.4.
    [61] W. Weber, S.J. Prange, R. Thewes, E. Wohlrab, A. Luck, "On the application of neuron MOS transistor principle for modern VLSI design." IEEE Trans. Electron Devices, 43, Oct. 1996:1700-1708
    [62]Hirose,K. and Yasuura,H.,"An Evaluation of Parallel Multipliers using Neuron MOS Transistors (in Japanese),"IEICE Technical Report, Mar. 1996 ,VLD95-147,ICD95-247
    [63] Hirose, K., and Yasuura, H.,"A Design of Parallel Multipliers with Neuron MOS Multiple Input Adders,",Trans. on IEICE, Vol. J81-D-I, Feb. 1998:143-150
    [64] Motoi Inaba , Jing Shen , Koichi Tanno and Okihiko Ishizuka. Characteristics of Neuron MOS LSI for Multi-Valued Logic. NOLTA2000
    [65] Atsushi Sakai, Masahiro Sakamoto, Shuusaku Mizukami, Daisuke Hamano,6-Operand Redundant Binary Adder using Neuron-MOS. The 5th HISS, Dec. 2003
    [66] Takashi Morie, Tomohiro Matsuura, Makoto Nagata, and Atsushi Iwata. A multi-nanodot floating-gate MOSFET circuit for spiking neuron models. http://www.brain.kyutech.ac.jp/~morie/index-e.html
    
    [67] N. M. Yu, T. Shibata, and T. Ohmi. "An Analog fuzzy processor using neuron-MOS center-of-mass detector". 6 Int. Conf. On Microelectronics for Neural Networks Evolutionary & Fuzzy Systems (MicroNeruro'97), Dresden, Germany, Sept. 1997:121-128
    [68] A. Rantala, S.Franssila, K.Kaski, J.Lampinen, M.Aberg, and P.Kuivalainen, High-Precision Neuron MOSFET Structures, Electronics Letters 35 (1999):155-157
    [69] Yang K. W., Andreou A. Multiple input floating-gate MOS differential amplifiers and application for analog computation. Proc 36th Midwest Symposium on Circuits and Systems, (Detroit,Michigan), 1993:1212 ~ 1216
    [70] Rantala, A., Kuivalainen, P. and Aberg, M.; Low Power High-Speed Neuron MOS Digital-to-Analog Converters with Minimal Silicon Area. Analog Integrated Circuits and Signal Processing, 2001. Nro 26:53-61.
    [71] A.Rantala, P.Kuivalainen, and M.Aberg, An 8-bit Low Power High-Speed Neuron MOS Digital-to-Analog Converter in 0.04 mm2, Proceedings of the 25th European Solid-State Circuits Conference, Oslo, Norway, 8-9 November 1999:310-313.
    [72] A.Rantala, P.Kuivalainen, and M.Aberg, Low Power high Speed Neuron MOS Digital-to-Analog Converters with Minimal Silicon Area, IEEE Proceedings of the 17th Norchip Conference (1999):146-151
    [73]Jose M. Quintana, Maria J. Avedillo, Esther Rodriguez-Villegas, and Adoration Rueda. v MOS-BASED COMPRESSOR DESIGNS. 12th Int. Conf. on Microelectronics (ICM2000), Teheran, October,2000:33-36
    [74] E. Rodriguez-Villegas, J.M. Quintana, M.J. Avedillo and A. Rueda.SORTING NETWORKS IMPLEMENTED AS v MOS CIRCUITS. Electronics Letters, 1998, Vol. 34, No. 23:2237-2238
    [75] Rodriguez-Villegas, M.J. Avedillo, J.M. Quintana, G. Huertas and A. Rueda. v MOS-BASED SORTERS FOR ARITHMETIC APPLICATIONS. VLSI Design, 2000, Vol. 11, No. 2:129-136
    
    [76] Soo Jin Park, Byoung Hee Yoon, Kwang Sub Yoon, Heung Soo Kim. Design of Quaternary Logic Gate Using Double Pass-Transistor Logic with Neuron MOS Down Literal Circuit. 34th International Symposium on Multiple-Valued Logic (ISMVL'04) May 19 - 22, 2004: 198-203
    [77] Yoon, Han, Choi, Hwang. A Systolic Parallel Multiplier over GF(3m) Using Neuron-MOS DLC. 34th International Symposium on Multiple-Valued Logic (ISMVL'04): 135-138
    [78] Celinski P., Al-Sarawi S., Abbott D. "Delay analysis of neuron-MOS and capacitive threshold-logic." Proc. ICECS'2000, Beirut, 2000, vol. 2:932-935
    [79] N. Y. Shen, Z. Liu, B. A. Minch, and E. C. Kan. THE CHEMORECEPTIVE NEURON MOS TRANSISTORS (CvMOS): A NOVEL FLOATING-GATE DEVICE FOR MOLECULAR AND CHEMICAL SENSING. The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, June 8-12, 2003:69-72
    [80] Mehrvarz, H.R. Chee Yee Kwok. "A novel multi-input floating-gate MOS four-quadrant analog multiplier"., IEEE Journal Solid-State Circuits 31(8):1123-1131
    [81] Mehrvarz H. R., Kwok C. Y. A pseudologarithmic rectifier using unbalanced bias MFMOS differential pairs. IEEE J Solid-State Circuits,1998;33(1):28~35
    [82] Victor Varshavsky and Vyacheslav Marakhovsky. A Neuron-MOS Threshold Element with Switching Capacitors Computational Intelligence. Theory and Applications : International Conference, 7th Fuzzy Days Dortmund, Germany, October 1 -3, 2001, Proceedings: 430
    [83] D. Dobrescu, R. Comanescu, Lidia Dobrescu. NEURON MOS TECHNIQUE DESIGNED 8 CHANNELS WINNER TAKES IT ALL INTEGRATED CIRCUIT. INTERNATIONAL SEMICONDUCTOR CONFERENCE (CAS'99)
    [8
    
    [84] 王明宇,汤玉生,管慧,“电阻耦合型神经MOS晶体管及其差分四象限模拟乘法器”,固体电子学研究与进展,第22卷第2期,2002年5月:158—163
    [85] 曹亚明,汤玉生.一种新型的开关共点耦合神经MOS晶体管.固体电子学研究与进展.Vol.23,No.1,2003年2月:23
    [86] 管慧,汤玉生,“采用神经MOS晶体管的低压四象限模拟乘法器的设计”,固体电子学研究与进展,第20卷第2期,2000年5月:144—151
    [87] 曹亚明,汤玉生.钟控神经MOS晶体管的建模及其电路仿真.固体电子学研究与进展.Vol.23,No.1,2003年2月:89
    [88] HUI GUAN and YU-SHENG TANG Accurate and efficient models for the simulation of neuron MOS integrated circuits. INT. J. ELECTRONICS, 2000, VOL. 87, NO. 5, 557-568
    [89] Xu Jun, et. al. "Possibility of Combined Use of Neuron-MOS and RTD in Multi-Valued Logic Circuits," IEEE ASICON'2003, Beijing, 2003
    [90] 刘恩科,朱秉升,罗晋生等,半导体物理学,国防工业出版社,1989年
    [91] Liu Xiaoyan, Kang Jinfeng and Han Ruqi. "Gate Current for MOSFETs with High k Dielectric Materials". 半导体学报.第23卷10期,2002年10月:1009-1013
    [92] 康晋锋,刘晓彦,王玮等,“CeO_2高K栅介质薄膜的制备工艺及其电学性质”,半导体学报。第22卷7期,2001年7月:865—870
    [93] 陈刚,王迅,“呼之欲出的新一代MOS栅极电介质材料”,物理,29卷7期,2000年7月:388—392
    [94] 相文峰,颜雷,谈国太等,“硅基集成电路的发展和新一代栅极氧化物 材料的研究现状”,物理,32卷4期,2003年4月:228—234
    [9
    
    [95] 朱正涌编著,半导体集成电路,清华大学出版社,2002年
    [96] 姚立真主编,通用电路模拟技术及软件应用SPICE和PSpice,电子工业出版社,1994
    [97] Avantl Corp. Star-Hspice Manual, Release 1999.2, June 1999
    [98] Koji KOTANI, Tadashi SHIBATA, and Tadahiro OHMI. "Neuron-MOS Binary-Logic Circuits Featuring Dramatic Reduction in Transistor Count and Interconnections". IEDM 92:431-434
    [99] 王明臣.脉冲与数字电路.北京:科学技术文献出版社,1991年.
    [100] 邓恒,殷波,查晓明,陈允平。一种改进的PWM方法在APF中的应用.电力系统自动化.26(14).2002:52—54
    [101] 阮新波,许大宇,严仰光.加钳位二极管的零电压开关PWM三电平直流变换器.电工技术学报.16(6).2001:18—24
    [102] 曹保国,么正才.移相PWM控制全桥开关电源.电测与仪表.38卷427期.2001年7月:19—20
    [103] 黄俊,王兆安.电力电子变流技术.北京:机械工业出版社.1999:207—213
    [104] 梁毅,余宁梅,高勇,张如亮.“DDS技术在SPWM信号产生系统IP核设计中的应用”.固体电子学研究与进展,24卷第1期,2004年2月:77—80
    [105] 郭南,洪福明,“直接序列扩频数字匹配滤波器”,电子科技大学学报,25卷5期,1996年10月:455—459
    [106] 沈泊,黄捷,温涛等,“用于快速扩谱码捕获的数字匹配滤波器”,微电子学,29卷4期,1999年8月:241-249
    [107] 刘芳,高鹏飞,“扩频通信系统中数字匹配滤波器的实现及其捕获性能分析”,山东工业大学学报,2001年8月:356-360
    [108] 黄知涛,周一宇,姜文利,“循环相关匹配滤波器设计”,电子学报,31卷1期,2003年1月:98-102
    
    [109] 朱近康,“CDMA技术及其在通信中的应用”,世界电信,1994年第5期:31—34
    [110] 窦中兆,雷湘编著,CDMA无线通信原理,清华大学出版社,2004年2月
    [111] 胡捍英,邬江兴,蔡斌等.“CDMA通信中匹配滤波器的应用”,电路与系统学报,Vol.4,no.4,1999年12月:68-73T
    [112] Tadashi SHIBATA, Masahiro KONDA, Yuichiro YAMASHITA, et. al. "Neuron-MOS-Based Association Hardware for Real-Time Event Recognition". MicroNeuro '96:94-101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700