二氧化碳平行流气体冷却器建模与特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化碳汽车空调系统(The Carbon Dioxide Automotive Air Conditioning System,CO_2-AACS)是一种以CO_2为制冷工质的节能、环保空调系统。本文基于规模化生产具有工程应用价值的高效微通道平行流气体冷却器(The Gas Cooler of Micro-channel with Parallel Flow, GCMCPF)为目标,研究强化CO_2工质在GCMCPF中的换热。在广东省教育部产学研结合产业化示范基地建设项目(No. 2008B090200051)的资助下,本文对CO_2在GCMCPF的流动和传热特性进行了深入的实验研究。论文的主要内容包括如下几方面:
     首先,基于GCMCPF结构和工质的均质流动与平均温差,建立了“GCMCPF参数化模型”算法。在分析GCMCPF技术目标参数的基础上,求解了矩形微通道、圆形微通道的单元式数值模型。针对GCMCPF在CO_2-AACS中需要高压运行,提出了“刺破翻边”的实物构造技术,构造了能承受高压的实物模型,为研究CO_2的流动和传热奠定了基础。
     其次,分析了CO_2跨临界制冷循环工作原理,针对CO_2在GCMCPF的超临界状态,利用二氧化碳压缩机(CO_2 Compressor,CO_2-C)和GCMCPF为主要单元,构建了跨临界二氧化碳空调系统(Air Conditioner of Carbon Dioxide in Trans-Critical, CO_2-ACTC)试验平台。完成了基于车辆行驶实际工况的试验平台测试,结果表明:该试验平台满足设计要求,同时适用于研究以二氧化碳为工质的相关系统元器件的结构及性能特性研究。
     再次,针对影响CO_2流动与换热的主要因素,结合试验平台的功能特性,拟定了研究CO_2流动与传热的实验方案。进行了矩形、圆形单元GCMCPF的流动和传热特性实验。基于实验结果,分析了CO_2在GCMCPF的流动与传热。为深入研究GCMCPF强化传热指明了方向。
     最后,针对单元式GCMCPF存在流动与传热不均衡的问题,以改善CO_2的流动和强化高效传热为目标,从优化结构出发,构建了圆形微通道的多元式GCMCPF对比研究实物,并进行了对比实验和研究分析。结果表明,该模型达到了高效换热并具有工程应用推广价值。
     本文建立了适用于本实验条件下的“GCMCPF参数化模型”算法;提出并采用“刺破翻边”技术对GCMCPF进行实物构造;设计并构建了以CO_2-C和GCMCPF为主要单元的CO_2-ACTC试验平台;通过对GCMCPF进行实验研究,分析了主要工况条件对CO_2在GCMCPF中的流动与换热性能的影响。这些研究工作可为GCMCPF的应用提供理论和实验依据,本试验平台同时也适用于以CO_2为工质的相关系统元器件结构及性能特性的研究。
The carbon dioxide automotive air conditioning system (CO_2-AACS) is an energy-saving and environment-friendly air conditioning system. It uses CO_2 as work medium in refrigeration. This dissertation focuses on researching the flow and heat transfer characteristics of CO_2, aiming to determine methods for increasing heat transfer efficiency in the gas cooler of micro-channel with parallel flow (GCMCPF). We expect the findings of this research to contribute to the industrial production of this equipment. Toward these ends, the following measures were taken:
     First, an algorithm was developed based on the analysis of the GCMCPF structure in homogeneous flow of work medium and mean temperature difference. Using GCMCPF technical data, numerical analysis of both the circle and rectangle micro-channels of the GCMCPF was performed. The CO_2-AACS has to work under high pressure; thus, we developed a structure formation method called pierce and flanging, which can help improve strength in the welding region for construction of collecting tubes that can withstand high pressure in work conductions. This structure lays the foundation for studying CO_2 flow and heat transfer.
     Second, we studied the principle of refrigeration of CO_2 circulation in trans-critical flow. Considering the characteristics in trans-critical flow, we designed and constructed an experimental platform for a carbon dioxide air conditioner in trans-critical (CO_2-ACTC) flow. This platform uses a CO_2 compressor (CO_2-C) and the GCMCPF as the main components. Experiments were conducted simulating the work conditions of a car. Results show that the platform can work well, and satisfies the requirements of research on the characteristics of a parallel flow cooler that uses CO_2 as work medium.
     We designed the experimental scheme taking into consideration the main factors influencing flow and heat exchange of CO_2 and the performance of the experimental platform. Performance analysis of flow and heat transfer in the circle and rectangle micro-channels of the GCMCPF was conducted. The results serve as guidelines for further research on intensified heat transfer of the GCMCPF.
     To solve the problems of fluency and unbalanced heat transfer generated by the single-channel model of the GCMCPF, two multi-channel models of the rectangle and circle micro-channels were designed and constructed in the experiment. Experimental results show that multi-channel GCMCPF can considerably increase the heat transfer efficiency of the GCMCPF and enhance its applicability in engineering.
     In this dissertation, the GCMCPF was constructed using the pierce and flanging method, and an algorithm was established and applied to the experimental conditions of the GCMCPF. The experimental platform of the CO_2-ACTC using CO_2-C and GCMCPF as the main components was designed and constructed. The influence of different working conditions on flow and heat exchange of CO_2 in the GCMCPF was analyzed based on experiments on the GCMCPF. The work in this dissertation can provide theoretical and experimental support in GCMCPF applications, as well as facilitate research on the characteristics of relevant systems that use CO_2 as work medium.
引文
[1]戴利著(英).汽车空调与气候控制系统[M].杨占鹏等译.北京:机械工业出版社,2009.
    [2] Bingqiang He, Rongguang Liang, Jianghong Wu, Xihui Wang. A Temperature Controlled System for Car Air Condition Based on Neuro-fuzzy[J]. The International Conference on Multimedia InformationNetworking and Security, 2009, Vol 2:564-567.
    [3] S.B.Riffat, C.F.Afonso, A.C.Oliveira and D.A.Reay. Natural Refrigerants for Refrigeration and Air-Conditioning Systems[J]. Applied Thermal Engineering, 1997,Vol.17,No.l:33-42.
    [4] G.Lorentzen. The use of natural refrigerants:a complete solution to the CFC/HCFC predicament. Int. J. Refrig.,1995, Vol.18, No.3:190-197.
    [5] R.E.Banks, Scepticism about R134a justified, Refrig. Air Condit, Vol.96, 1993.
    [6]梁荣光.现代汽车空调技术[M].广州:华南理工大学出版社,2003.7.
    [7]季建刚,黎立新,蒋维钢.跨临界循环二氧化碳制冷系统研究进展[J].机电设备,2002(4):23-27.
    [8]马一太,魏东,王景刚.国内外自然工质研究现状与发展趋势[J].暖通空调,2003(1):41-46.
    [9] Lorentzen G Revival of carbon dioxide as a refrigerant[J]. Part 1.H & V Engineer, 1993, 66(721):9-14.
    [10] Lorentzen G, Pettersen J. A new efficient and environmentally benign system for car air-conditioning[J]. Int. J. Refrig, Vol. 16, No. 1, 1993:4-12.
    [11] Gustave Lorentzen. Revival of carbon dioxide as a refrigerant[J]. Int Journal of Refrigeration, 1994, 17(5):290-310.
    [12] Marc Barreau, Jerome Blanc. Present European environmentally-friendly CFC &HCFC substitutes for refrigeration and air conditioning applications[J]. Twentieth Int Congress of Refrigeration, Sydney, Australia, Sept, 1999:19-24.
    [13] J. Steven Brown et al. Comparitive analysis of an automotive air conditioning systems operating with CO_2 and R134a [J]. Int. J. Refrig, Vo1.25 (2002):19-32.
    [14]张丽娜,刘敏珊,董其伍. D型管内超临界CO_2对流换热[J].南京工业大学学报. 2009年9月第31卷第5期:42-46.
    [15]陈江平,穆景阳等.二氧化碳超临界汽车空调系统开发[J].制冷学报. 2002.3:14-17.
    [16]丁国良,黄冬平,张春路.跨临界二氧化汽车空调稳态仿真[J].工程热物理学报.2001, 22 (3):272-274.
    [17]“二氧化碳超临界循环汽车空调装置研究”项目通过鉴定,制冷空调与电力机械,2002.4:32.
    [18]陈宏芳,杜建华.高等工程热力学[M].北京:清华大学出版社,2003年1月.
    [19]杨强生,浦保荣.高等传热学(第二版)[M].上海:上海交通大学出版社,2001.
    [20] Klein SA. Engineering equation solver. Academic Professional Version 7. 27023D, 2004.
    [21] Masaufmi Katsuta, Hiromiut Kinpara etc. The Eeffct of oil Contamination on Evaporative Heat Transefr Characteristics of CO_2 Rerfigeration Cycle, ACRA 2004:332-340.
    [22] M. E. Shitsman. Natural convection effect on heat transfer to a turbulent water flow in intensively heated tubes at supercritical pressure[J]. Proceedings, Institution of Mechanical Engineers, Vol. 182, Part 3I:67-68.
    [23] P. J. Bourke, D. J. Pulling, L. E. Gill, Denton. Forced connective heat transfer to turbulent carbon dioxide in the supercritical region[J]. Report Number AERE 85952, Atomic Energy Research Establishment, Harwell, England, 1969.
    [24] H. Haffner. Heat transfer to refrigerants in nucleate and film boiling and in the supercritical state of the fluid. Peport BMBW-FB K70-24[J], Institute A Fur Thermodynamic der Technischen Universitat Munchen, 1970(11).
    [25] K. Yamagata, K. Nishikawa, T. Fugii, S. Hasegawa. Forced connective heat transfer in the critical region. Japenese Society of Mechanical Engineers, 1967 Semi-International Symposium, Tokyo, 1967(9).
    [26] L. Miropolskiy, V J. Picus, M. E. Shitsman. Regimes of deteriorated heat transfer at forced flow of fluids in curvilinear channels [J]. Proceedings, 3rd International Heat Transfer Conference, Chicago, U.S.A. 1966.
    [27]林高平,顾兆林.跨临界CO_2制冷循环性能的研究[J].西安交通大学学报,1998, 32(8):35-38
    [28]沈裕浩.二氧化碳跨临界制冷循环[J].流体机械,1995,5:58-62。
    [29]廖胜明.跨临界二氧化碳循环的热力学分析及其应用前景[C].高校工程热物理研究会,高校工程热物理研究会第七届全国学术会议论文集.上海,1998:448-453.
    [30] S. M. Liao, T. S. Zhao. A numerical solution to laminar forced convection of supercritical carbon dioxide in small diameter tubes. Proc. Fifth International Symposium on Heat Transfer [J]. Beijing, August 12-16, 2000:592-597.
    [31] S. M. Liao, T. S. Zhao. Measurements of Heat Transfer Coefficients From Supercritical Carbon Diocide Flowing in Horizontal Mini/Micro Channels [J]. Journal of Heat Transfer, Vol.124, 2002:1-8.
    [32]饶政华,廖胜明.超临界CO_2水平细微管内层流流动与换热的数值模拟[J].热科学与技术, 2006年6月:113-117.
    [33]热科学与技术界逆循环的热力学分析[J].工程热物理学报.1998, 19 g6):663-668.
    [34]马一太,杨昭,吕灿仁. CO_2跨临界逆循环的热力学分析[J].工程热物理学报,1998年11月,V0l19,No6:665-668.
    [35]马一太,王侃宏等.超临界流体跨临界循环最优压力研究[J].大连理工大学学报, 2001, Vol.41, S1(增刊1):15-18.
    [36] Yi Tai Ma, Jun Lan Yank etc. Application of Microchannel Heat Exchanger in Transcritical CO_2 Refrigeration System [J]. ACRA 2004:341-348.
    [37]马一太,马利蓉. CO_2制冷系统的最优高压压力研究[J].制冷与空调, 2006年2月:17-20.
    [38]吕静.二氧化碳跨临界循环及换热特性的研究[D].天津:天津大学,2005.
    [39]黄冬平,梁贞潜,丁国良等.基于模型的二氧化碳微通道气体冷却器性能分析[J].化工学报, 2002,53(8):832-836.
    [40]杨亮,丁国良,黄冬平等.超临界二氧化碳流动和换热研究进展[J].制冷学报, 2003,2:51-56.
    [41]陈江平,穆景阳,简晓文等.二氧化碳汽车空调系统应用研究进展(一)-系统结构、性能及其优化[J].流体机械, 2000, Vol.28, No.4:50-54.
    [42]徐轶君,姜培学等.竖直细圆管中超临界CO_2对流换热实验研究[J].工程热物理学报, 2004, 25(增刊):87-90.
    [43]张宇,姜培学,石润富,邓建强.竖直圆管中超临界压力CO_2对流换热实验研究[J].工程热物理学报, 2006年3月, Vol.27, No2, 25:280-282.
    [44]淮秀兰,Shigeru Koyama.微通道内超临界二氧化碳的压降与传热特性[J].工程热物理学报,2004, 25(5):843-845.
    [45] N. E. Petrov, V N. Popov. Heat Transfer and Resistance of carbon dioxide cooled in the supercritical region [J]. Thermal Engineering, Vol. 32, No. 3, 1985:131-134
    [46] D. P. Mikielewicz. Comparative studies of turbulence models under conditions of mixed convection with variable properties in heated vertical tubes, A thesis submitted to theUniversity of Manchester for the degree of Doctor of Philosophy in the Faculty of Science, 1994.
    [47] S.M.Liao, T.S.Zhao. A numerical solution to laminar forced convection of supercritical carbon dioxide in small diameter tubes. Proc. Fifth International Symposium on Heat Transfer, Beijing, August 12-16, 2000:592-597.
    [48] Gnielinski. New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow. Int. Chem. End, 1976, 16:359-368.
    [49] V G Razumovskiy, A. P. Ornatskiy, Ye. M. Mayevskiy. Local heat transfer and hydraulic behavior in turbulent channel flow of water at supercritical pressure. Heat Transfer-Soviet Research, Vol. 22, No.1, 1990:91-102.
    [50] N. E. Petrov, V N. Popov. Heat Transfer and Resistance of carbon dioxide cooled in the supercritical region. Thermal Engineering, Vol. 32, No. 3, 1985:131-134.
    [51]马一太,魏东,王景刚等. C02跨临界制冷循环中应用两相螺杆膨胀机的理论分析[J].工程热物理学报, 2001g 22(2) :137-140.
    [52]马一太,魏东,王景刚.制冷和热泵循环中混合工质和自然工质的研究进展[A].
    [53] Pettersen J, Jakobsen A. A dry ice slurry system for low temperature refrigeration. International Symposium on Refrigeration in Sea Transport Today and in the Future. Gdansk, Poland, Sep/Oct 1994.
    [54] Pitla S. Numerical heat transfer analysis in heat exchangers for transciritical carbon dioxide system. Lorentzen. 4th IIR Gustav Lorentzen Conference on Natureal Working Fluids. Purdue. Purdue University Press,2000:307-314.
    [55] Liao S M, Zhao T S. Measurements of Heat Transfer Coefficients From Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels [J]. Journal of Heat Transfer, ASME Trans., 2002, 124 (6):4132-4200.
    [56] D. P. Mikielewicz, Comparative studies of turbulence models under conditions of mixed convection with variable properties in heated vertical tubes, A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science, 1994.
    [57] S.Koshizuka, N.Takano, Y Oka, Numerical analysis of deterioration phenomena in heat transfer to supercritical water, Int. J. Heat Mass Transfer, Vol. 38, No.16,1995:1077-3084.
    [58]姜培学.亚临界与超临界压力水的对流传热与传质研究[D].博士后出站报告,1993.
    [59]魏东.二氧化碳跨临界循环换热与膨胀机理的研究[D].博士学位论文,天津大学,2002年.
    [60] Yoon, S. H., Kim, J. H., and Kim, M. S. 2002, Heat transfer and pressure drop characteristics during in-tube has cooling process of carbon dioxide in the supercritical region, Int. J. Refrigeration,26(2003):857-864.
    [61] Chaobin Dangg Eijin Hiharag In-tube cooling heat transfer of supercritical carbon dioxide. Part1. Experimental measurement. Int.J. Refrig.27(2004):736-747.
    [62] Yi Cheol Choi. Heat Transfer Correlation During Supercritical Cooling Process of Carbon Dioxide in a horizontal Tube, ACRA 2004:313-320.
    [63] Chant-Hyo Son, Dons-Geon Lee, Si-Young Jeong, etal. An Experimental Study on Heat Transfer Characteristics of Carbon Dioxide During Gas Cooling Process in a Horizontal Tube. ACRA2004:321-329.
    [64] Jensen K F1 Microchemical systems: status, challenges, and opport unities1 AIChE J1, 1999, 45(10):2051-2054.
    [65] Chen Guangwen, Yuan Quan. Micro-chemical Technology Journal of Chemical Industry and Engineering [J].化工学报, 2003, 54(4):427-439.
    [66]苏尚美,张亚男,成方园等.微通道换热器的特性分析及其应用前景[J].区域供热. 2007.5:34-38.
    [67] Choi S B, Barron R F, et al. Fluid Flow and Heat Transfer in Micro-tubes, Micro mechanical Sensors, Actuators and Systems. ASME DSC-1991,32:123-124.
    [68] C P Tso, S P Mahulikar. Experimental verification of the role Brinkman number in micro channels using local parameters. International Journal of Heat and Mass Transfer.2000,43:1838-1849.
    [69] Yu D, Warrington R O, Barron R F, et al. An experimental and theoretical investigation of fluid flow and heat transfer in microtubes. Proc. ASME/JSME Thermal Engineering Conference.Hawaii, 1994, 1:523-530.
    [70]张培杰,辛明道.微尺寸管内流体流动与换热.中国工程热物理学会第八届年会.北京:1992。
    [71] Weisberg A, Bau H H,et al. Analysis of Micro channels for Integrated Cooling. International Journal of Heat Mass Transfer.1992,35:2465-2474.
    [72] Yu D, Warrington R, el at. An Experimental Investigation of Fluid and Heat Transfer in Microtube. Proceedings of the ASME/JSME Thermal Engineering Conference. American Society of Mechanical Engineers.1995,1:523-530.
    [73] Tuckerman D.B, Pease R.F.W. High performance heat sinking for VLSI, IEEE ElectronDevice Letter.1981, Vol. EDL-2:126-129.
    [74] Liao X S, Liu Y, Ning YQ, et al. The optimal design of structure parameter for micro channel heat sink [C]. Proceedings of SPIE The International Society for Optical Engineering, 2002, 4914:181-186.
    [75]饶政华,廖胜明.二氧化碳微通道气体冷却器的数值仿真与性能优化[J].化工学报.第56卷,第9期,2005年9月,Vol.156, No.9:1721-1726.
    [76]张平,丁国良,刘焘等.换热器管路布置的直接数学描述方法[J].上海交通大学学报, 2009年2月Vol.43 No.2:304-307.
    [77]陆平,陈江平.微通道平行流气冷器流量分配的数值模拟[J].应用科学学报.第25卷,第3期,2007年5月.
    [78] Stief T, Langer O U, Schubert K. Numerical investigations of optimal heat conductivity in micro heat exchangers [J]. Chemical Engineering and Technology, 1999, 22(4):297-303.
    [79] A.C.Kirkwood, C.W.Bullard. Modeling Design and Testing of a Microchannel Split-System Air Conditioner, ACRC TR-149(March 1999).
    [80] Y.P.Peles and S.Haber. A steady state one dimensional model for boiling two phase flow in triangular micro-channel International Journal of Multiphase Flow. Volume 26, Issue 7,1 July 2000:1095-1115.
    [81] J.M.Saiz Jabardo, W.Gonzales Mamani, M.R.Ianella. Modeling and experimental evaluation of an automotive air conditioning system with a variable capacity compressor, International Journal of Refrigeration 25(2002):1157-1172.
    [82] Jian Min Yin, Clark Y.Bullard, Predrag S.Hrnjak. R-744 Gas cooler model development and validation, international journal of refrigeration 24(2001):692-701.
    [83]王艳红.微型气-液换热器的研制与实验研究[D].北京:北京工业大学, 2005.
    [84]漆波.百叶窗翅片式散热器对流—导热耦合传热的数值模拟[D].重庆:重庆大学, 2005.
    [85] Lee G H, Yoo J Y. Performance analysis and simulation of automobile air conditioning system [J]. International Journal of Refrigeration, 2000, 23(3): 243-254.
    [86]张兴群,袁秀玲,黄东.平行流式冷凝器的热力性能研究[J].流体机械, 2005, 33(12): 65-68.
    [87]舒朝晖,李丛来,陈焕新等.扁管结构对平行流冷凝器制冷剂侧性能的影响[J].化工学报, 2008年12月Vol.58, No.s2.
    [88]张娅妮,陈蕴光,阚杰等.多元平行流冷凝器传热与流动性能模拟研究[J].哈尔滨工业大学学报, 2008年3月Vol.40, No.3:483-487.
    [89]王铁军,江斌,刘向农等.平行流冷凝器在12m客车空调中的应用研究[J].制冷学报, 2008年10月Vol.29, No.5:24-27.
    [90]龚堰珏,张兴群,郑维智等.汽车空调平行流式冷凝器热力性能计算机辅助分析[J].北京工商大学学报. 2006年11月.Vol.24, No.6 22-25.
    [91]包涛,陈蕴光,董玉军等.多元平行流冷凝器传热流动性能研究[J].制冷学报, 2005, 26(3);1-5.
    [92] Can Ahmet, Buyruk Ertam, Eryener Dogan. Exergoeconomic analysis of condenser type heat exchangers[J]. Energy, 2002.
    [93] J. Pettersen, A. Hafner, G. Skaugen. Development of compact heat exchangers for CO_2 air-conditioning systems, Int. J. Refrigeration, 1998(21):180-193.
    [94] Vist, S., 2003,“Two-phase flow distribution in heat exchanger manifolds”Ph.D Thesis, Norwegian University of Science and Technology, Norway.
    [95] Man-Hoe Kim, Clark W. Bullard. Air-side thermal hydraulic performance of multilouvered fin aluminum heat exchangers. International Journal of Refrigeration, 2002,25:390-400.
    [96] Rin Yun, Yongchan Kim, Chasik Park. Numerical analysis on a microchannel evaporator designed for CO_2 air-conditioning systems. Applied Thermal Engineering, 2007(27): 1320-1326.
    [97] Hrnjak, P., 2004,“Flow Distribution Issues in Parallel Flow Heat Exchangers”ASHRAE Transactions, Vol. 110, No. 1.
    [98]陈荣耀.工程热力学及传热学[M].北京:农业出版社,1990.
    [99] C.C.Wang,W.H.Tao,C.J.Chang. An Investigation of the Airside Performance of the Slit Fin-and-Tube Heat Exchangers. International Journal of Refrigeration. 1999,22(18):595-603.
    [100]阙雄才,陈江平,姚国琦等编著.汽车空调实用技术[M].北京:机械工业出版社, 2003:165-182.
    [101] Churchill, S.W. Friction factor equation spans all fluid flow regimes. Chemical Engineer-ing, 1977, 7:91-92.
    [102] Gnielinski V.New equations for heat and mass transfer in turbulent pipe and channel flow.Int Chem Eng. 1976,16:359-368.
    [103] Rohsenow, Warren M.传热学基础手册[M].齐欣译.北京:科学出版社,1992.71-78
    [104] Incopera, F.D.and D.P.Dewitt. Fundamental of heat and mass transfer, 3Ed. New York: John Wiley and Sons.1990.
    [105] H Wang, S Touber. Distributed and non-steady-state modeling of an aircooler. International Journal of Refrigeration, 1991, 14(3):98-11.
    [106]何冰强,梁荣光,王惜慧等.金属电器底盒成型分析及模具设计[J].机械设计与制造, 2009年4月第4期:241-243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700