医药行业C_8H_8KNO_5(克拉维酸钾)混合粉尘在输运管道内爆炸特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从建国初期哈尔滨亚麻厂亚麻特大粉尘爆炸事故开始,粉尘爆炸问题一直受到人们的关注,但中后期研究者大多关注矿井煤尘爆炸,近期由于制药工业、食品工业等粉体加工工业行业蓬勃发展和工厂的大规模生产,造成此类粉尘爆炸事故频发。本课题正是基于此背景,致力于研究工艺输送管道内粉尘爆炸,以常见普通消炎药主要成分的克拉维酸钾和微晶纤维素(1:1)混合粉尘作为研究对象,就混合粉尘爆炸影响因素,爆炸燃烧速度,爆炸基本参数特性及规律的特点和水平管道内形成爆炸的气流组织及流场特征进行研究。
     首先从管道内粉尘爆炸事故发生原因出发,通过理论分析,研究了管道内气候环境、气流状态、气粉耦合作用强度、点火源状态与能量四个一级指标因素;可燃气体浓度,氧气或窒息气浓度,管内气流初始压力,管内温度,气流湿度,气流运动流场,粉尘云区域范围,粉尘云的均匀程度,粉尘云湍流程度,点火火花形状十个二级影响指标因素,理论上推导克拉维酸钾混合粉尘爆炸影响因素模型,从守恒定律推导出克拉维酸钾混合粉尘爆炸燃烧速度模型。
     通过20L球形爆炸测试系统、粉尘层着火温度测试仪、粉尘云着火温度测试仪等设备,对克拉维酸钾混合粉尘的颗粒含湿量,粒径分布、粉尘层最低着火温度,粉尘云最低着火温度、爆炸极限、爆炸指数、放热特性等进行了试验研究,研究得出克拉维酸钾混合粉尘基本爆炸特性参数。通过热爆炸平衡判断方法,研究得出混合粉尘的爆炸极限的预测模型。在研究混合粉尘颗粒物爆炸参数的基础L,结合实际生产工艺状态,研究得到了管道内粉尘含湿量、喷粉气流气压、粉尘云浓度、气流温度、可燃气体浓度、惰性气体浓度等环境状态参数对粉尘爆炸影响关系。
     建立了水平管道粉尘爆炸试验台,根据粉尘爆炸的特点,研究气流组织、粉尘状态及位置,抑爆入口等不同参数对粉尘爆炸的影响。建立高速数据采集系统及控制系统,满足了克拉维酸钾混合粉尘爆炸试验强度要求,特别是结合粉尘爆炸的压力传播及速度要求,选用了A/D24bit高频压力传感器,编制16通道的粉尘爆炸数据采集和控制软件,满足数据传输和控制点火等各项要求。
     通过水平输运通风管道爆炸试验台,采用单因素逐项试验方法,研究得到了压力、爆破片厚度,入口管道长径比等对水平管道内粉尘爆炸的影响关系。试验对成功发生粉尘爆炸的三种气流组织的管道条件进行分别研究,在环境温度29℃、相对湿度87%基础上,研究得到了不同气流组织和不同粉尘浓度对面粉粉尘爆炸形成的规律、条件的影响,以及爆炸形成后的爆炸压力波超压发展特点。研究表明粉尘爆炸产生活塞式冲击波气流中反应了粉尘爆炸强度和激烈程度。在粉尘强烈爆炸的气流组织三的基础上,重点研究克拉维酸钾混合粉尘在不同浓度下爆炸特点。在克拉维酸钾混合粉尘强烈爆炸的基础上又进行了抑制爆炸试验研究,选取碳酸钙作为抑制剂,就克拉维酸钾混合粉尘爆炸在不同喷入时间下压力衰减影响进行研究。研究表明气流组织三下,抑制剂流场形态在500ms以内对粉尘爆炸冲击波传播起到抑制作用。
     结合试验平台和理论分析,采用标准k—ε湍流模型,对管道内扬尘输送或通风气流数值模拟,研究得到了气流压力、气流速度等大小及变化规律。模拟研究得出了粉尘强烈爆炸弱激波气流情况下的气流速度、速度矢量、气流压力、气流湍流度、气流温度等变化情况。通过气固耦合方程,利用离散相DPM模型,研究了颗粒物在管道内运动特点。气流组织条件三下,激波破膜之后管道内流场数值模拟结果与试验测试具有一定的符合性,研究得出在该条件下粉尘发生强烈爆炸前的水平管道内的气流条件和特征数值范围。
     研究得出的克拉维酸钾混合粉尘爆炸影响因素和爆炸燃烧速度的模型,混合粉尘基本爆炸参数的特点,以及提出的对管道内粉尘爆炸气流形成条件,特别是水平管道条件下,以及粉尘爆炸气流冲击波在管道内发生、发展,以及在抑爆等情况’下抑制粉尘爆炸压力上升强度变化规律特点,能对该类型粉尘加工行业中防爆、抑制爆炸技术提供相应对策和理论借鉴。对管道内冲击气流对沉积粉尘迁移、传播、分布的特性进行了初步研究和分析,建立的影响粉尘爆炸的气流组织条件和特征还需通过试验检测进行进一步的修正,以达到准确性要求。
Since dust explosion accident about Harbin flax plant happened after the founding of new China, dust explosion accidents have always been a serious problems under public spotlight.However; most researchers now focus many on coal dust explosion in mine.Basing on the fact that production of industrial powder in a large scale and vigorous development processing in both pharmaceutical industry and foodstuff industry,which had given rise to a huge of accidents in succession, Based on the background of those,The paper, with an attempt to study dust explosion in pipe, The study object is clavulanate potassium and microcrystalline cellulose(1:1) mix dust, a kind of material which constitutes the main ingredients of prevalent anti-inflammatory drugs. Dust explosion influence factors in pipes,explosion combustion velocity, basic flow development parameter features,rule and forming condition of mix dust explosion had been studied, Airflow and flow field characteristics before dust explosion were investigated in horizontal pipeline.
     Firstly, from the start of the causes about dust explosion in pipes,By theoretical analysis, Influence factors about dust explosion, which is generated from three level indicator, gas flow mode, gas-powder coupling effect, condition and energy of the ignition source. Combustible gas concentration, Oxygen or asphyxiant gas concentration, initial airflow pressure in pipe, tube temperature,gas humidity, air flow, dust clouds of dust cloud area, the degree of uniformity, the dust cloud turbulence, ignition spark shape,which is ten level two influence factors. Clavulanate potassium mixed dust explosion factors model had been derivated in theory. and clavulanate potassium mixed dust explosion combustion velocity model is induced by the conservation law.
     Using20L spherical explosion test system, dust ignition temperature tester, dust cloud ignition temperature test instrument and so on, clavulanate potassium mixed dust moisture content, particle size distribution, minimum ignition temperature of dust layer, minimum ignition temperature of dust cloud, explosion limit, explosion index, heat transfer characteristics had been researched. Characteristicof potassium clavulanate mix dust explosion basic parameters had been studied. In the thermal explosion balanced method,mix dust explosion limit prediction model had been studied. To base on study at dust particles in explosive parameters, combining with the actual production process,The relationship between dust explosion effect and moisture content,gas pressure, dust cloud concentration, gas temperature, combustible gas concentration, inert gas concentration,other environmental parameters,had been studied.
     Dust explosive experiment platform of horizontal transport and ventilation pipe had build, according to the characteristic of dust explosion.design the multi-functional experimental rigs that is operated under the different air flow, different dust states and position, and differentinhibition entries,etc.Set up high-speed data collecting system and control system, calculating needed strength requirements that is check,To meet dust explosion experiment demand.In order to match with the pressure of the exploding dust and velocity of propagated wave,The transducer of A/D24bit high-frequency pressure had been selected. Dust explosion data collecting and control software of16high-speed channel had been work out, to satisfy such requirements as data transmission and controlling,ignition,etc.
     On the basis of transportation and horizontal ventilation pipe experimental station, In a single factor test method, item by item, pressure, film thickness, entry pipe length diameter ratio and other factors were tested,The relationship between these factors and dust explosion had mde. Three airflow pipeline experiments of dust explosion were shown respectively,with environment in29℃and87%, Different airflow and dust concentration impacting on forming rule, conditions of dust explosion,and the explosion overpressure development characteristics had been studied. Studies show that dust explosion shock wave piston flow had responsed dust explosion strength and intensity. On the foundation about dust explosion air flow case3,had focused on the study of clavulanate potassium mix dust explosion characteristics under different concentrations. On the basic about strong explosions about clavulanate potassium mix dust, explosion suppression experimental research were conducted, selection calcium carbonate as inhibitors, pressure attenuation effect have been studied about clavulanate potassium mix dust explosion at different injection time. Studies show that,in air flow case3, inhibitors of flow field within500ms had playeded and worked at dust explosion propagation front surface field.
     According to the experiment platform and theoretical analysis,standard k-s turbulent model,do numerical simulation were used to analyze and simulation on raised dust ventilation and gas flow in pipe, Gas pressure, air velocity magnitude and variation rules had been stuied. The result of flow speed, speed vector. gas pressure, flow turbulence intensity, gas temperature had made under weak shock wave gas and air flow leading to strong dust explosion.analysising on transport or ventilation gas flow field,according to gas solid coupled equations,Combining the discrete phase DPM model,do simulation of the flow in the shock wave,to get the movement rule of dust particles under pipe gas flow organization case3experiment.made up conditions and characteristics about gas wave spread before strong dust explosion in the horizontal pipeline.
     These reseach had given potassium clavulanate mix dust explosion factors and explosion combustion velocity model, the basic characteristics of mix dust explosion parameters.and had proposed to explosion dust flow formation conditions in pipe, especially under the condition of horizontal pipelines,the rules about dust explosion gas flow intensity, changing,development characteristics about shock wave which were occurs in the pipeline, and gas transmission conditions to lead to dust explosion, which can provide corresponding countenneasures and using for reference for this type of dust processing industry to prevent explosion, inhibit dust explosions.This paper conducts a study of preliminary research and analysis for impact gas flow affecting on sedimentary particles migration, the transmission, distribution characteristics in pipe,But gas flow value and model impacting on dust exposion needs to be further stuied by continue detection for further correction and meet accuracy requirement.
引文
[1]景国勋,乔奎红,王振江.瓦斯爆炸中的火球伤害效应[J].工业安全与环保,2009,35(3):37-38.
    [2]林柏泉,菅从光,张辉.管道壁面散热对瓦斯爆炸传播特性影响的研究[J],中国矿业大学学报,2009,38(1):1-4.
    [3]李刚,过程工业粉尘爆炸及其危险性评价[C].城市与工业安全:276—279.
    [4]中国安全网[EB/OL] http://www.safety.com/anlifx/fileview.asp?filename=ns04 1935.
    [5]王新泉,通风工程学[M].北京:机械工业出版社,2008.
    [6]新浪网[EB/OL].http://news.sina.com.cn/society/2000-1-23/55650.html.
    [7]搜狐网[EB/OL]http://news.sohu.com/20050918/n226987168.shtml.
    [8]新浪网[EB/OL].http://news.sina.com.cn/c/2006-02-23/05228277933s.shtml.
    [9]永嘉热线网[EB/OL].http://www.yj0577.com/news/23063.html.
    [10]搜狐新闻网[EB/OL]http://news.sohu.com/20100225/n270434872.shtml
    [11]深圳新闻网[EB/OL].http://news.sznews.com/content/2010-08/06/content_481 0967.htm.
    [12]新华网[EB/OL]http://news.xinhuanet.com/tech/2011-05/25/c_121454465.htm
    [13]薄涛,谭迎新,粉尘爆炸事故预防及其扑救对策研究[J].武警学院学报,2008,24(4):46-49.
    [14]Angela S.Blair,Dust explosion incidents and regulations in the United States, [J].Journal of Loss Prevention in the Process Industries,2007(20):523-529.
    [15]李艳强,吴超,易斌等.受限空间内粉尘流动的浓度分布模型及其数值模拟[J].中国安全科学学报,2007,17(10):50-55.
    [16]陈宝智,李刚,法兰科·赫尔特.粉尘爆炸特殊风险的辨识、评价和控制[J].中国安全科学学报,2007,17(5):96-100.
    [17]司荣军.矿井瓦斯煤尘爆炸传播数值模拟研究[J].中国安全科学学报,2008,18(10):82-86.
    [18]王东岩.我国粉尘爆炸事故原因及预防对策[J].中国安全科学学报,1995,5(3):1-4
    [19]张景林.气体、粉尘爆炸灾害及其安全技术[J].中国安全科学学报,2002,12(5):9-11.
    [20]Eckhoff R K. Current status and expected future trends indust explosion research[J]. Journal of Loss Prevention in the Process Industries.2005,18(4/5/6): 225-237.
    [21]Tasneem Abbasi, S.A. Abbasi. Dust explosions-Cases, causes, consequences, and control[J], Journal of Hazardous Materials,2007(140):7-44.
    [22]Eckhoff R K. Understanding dust explosions:The role of Powder Science and Technology[J],Journal of LossPrevention in the Process Industries, 2009,22(1):105-116.
    [23]郑大高.密闭空间粉尘爆炸特性的实验研究与泄放计算[D],大连理工大学,2005.
    [24]M.赫茨贝格,K.L凯什多勒.粉尘爆炸知识介绍[J].防爆电机,1994,1:42-51.
    [25]中国科协.工业粉尘防爆和治理[M].北京:中国科技出版社,1990.
    [26]赵衡阳.气体和粉尘爆炸原理[M].北京:北京理工大学出版社,1995.
    [27]王孝元.工业危险消除与控制技术[M].北京:中国标准出版社,2003:166-168.
    [28]张守中.爆炸基本原理[M].北京:国防工业出版社,1988.
    [29]李运芝,袁俊明,王保民.粉尘爆炸研究进展[J].太原师范学院学报(自然科学版),2004,3(2):79-82.
    [30]Lunn G A, Holbrow P, Andrews S,et al. Dust explosionsin totally enclosed interconnected vessel systems[J]. Journalof Loss Prevention in the Process Industries, 1996,9(1):45-58.
    [31]Holbrow P, Andrews S, Lunn G A. Dust explosions ininterconnected vented essels[J] Journal of LossPrevention in the Process Industries,1996,9(1):91-103.
    [32]Roser M, Vogl A, Radandt S,et al. Investigations of flame front propagation between interconnected process vessels. Development of a new flame front propagation time prediction model [J]. Journal of Loss Prevention in the ProcessIndustries,1999,12(5):421-436.
    [33]Kosinski P, Hoffmann A C. An investigation of the consequences of primary dust explosions in interconnected vessels[J]. Journal of Hazardous Materials,2006, 137(2):752-761.
    [34]Zhong S J, Deng X F. Modeling of maize starch explosions in a 12 m3 silo[J]. Journal of Loss Prevention in the Process Industries,2000,13(3/4/5):299-309.
    [35]Proust C, Daubech J, Leprette E. Differentiated routes for the simulation of the onsequences of explosions[J].JournalofLoss Prevention in the Process Industries, 2009,22(3):288-294.
    [36]Skjold T.review of the DESC project[J].Journal of Loss Prevention in the Process Industries,2007.20(456):291-302.
    [37]Bielert U. Sichel M. Numerical simulation of dust explosionsin pneumatic onveyors[J].Shock Waves.1999.9(2):125-139.
    [38]Wang J, Li X G, Zhong S J,et al. Flame propagation through potato starch/air mixture in pipe of interconnected vessels [C].The 8th International Conference on Measurement and Control of Granular Materials. Shenyang:Northeastern University Press,2009:376-380.
    [39]Francesco Tamanini, The role of turbulence in dust explosions[J], Journal of Loss Prevention in the Process Industries 11 (1998):1-10.
    [40]陈曼曼.粉尘泄爆特性实验研究[D].大连:大连理工大学,2009.
    [41]Paul R. Amyottea, Michael J. Pegg, Faisal I. Khan,et al. Moderation of dust explosions. Journal of Loss Prevention in the Process Industries,2007,20,675-687.
    [42]Amyotte P R, Chippett S, Pegg M J. Effects of turbulence on dust explosion[J]. Prog Energy Combust Sci,1988,14:293-310.
    [43]Bnedetto D, Russo P. Thermo-kinetic modelling of dust explosions[J].Journal of Loss Prevention in the Process Industries,2007,20(46):303-309.
    [44]浦以康,严楠.微重力条件下粉尘燃烧机理研究[J].燃烧科学与技术,1999,5(3):223-230.
    [45]任纯力,李新光,王福利.粉尘云最小点火能数学模型[J].东北大学学报,2009,30(12):1702-1705.
    [46]任纯力,李新光,王福利等.敏感条件对粉尘云最小点火能的影响规律分析[J],中国安全科学学报,2009,19(8):77-83.
    [47]范宝春,丁大玉,浦以康.球型密闭容器中铝粉爆炸机理的研究[J].爆炸与冲击,1994,14(2):148-156.
    [48]炎正馨,邓军,张嬿妮.纳米铝粉点火机理的快速光谱研究[J],光谱学与光谱分析,2010,30(8):2057-2060.
    [49]赵江平,王振成,热爆炸理论在粉尘爆炸机理研究中的应用[J].中国安全科学学报,2004,14(5):80-83.
    [50]中华人民共和国国家标准.粉尘防爆术语[S].2008.
    [51]尹燕鸣,曾象志,汪佩兰等.含能材料粉尘爆炸下限浓度的实验研究[J].北京理工大学学报,1996,16(1):106-110.
    [52]付文文.黑索今的粉尘爆炸特性研究[D].南京:南京理工大学,2008.
    [53]付羽,陈宝智,李刚.粒径对镁粉爆炸特性的影响[J].工业安全与环保,2009,35(8):36-38.
    [54]Mnifuku, S Koyanaka, Hohya,et al. Ignitability characteristics of alu-minum and magnesium dusts relating to the shredding processes of indus-trial wastes. Proceedings of Sixth International Symposium on Hazards[J].prevention,and mitigation of industrial explosions,Vol.1,Halifax,NS,Canada:Dalhousie University,2006:77-86.
    [55]苑春苗,王丽茸,陈宝智等1.2LHarttman管式与20L球型爆炸测试装置爆炸猛度实验研究[J].中国安全生产科学技术,2008,1(4):108-111.
    [56]李化,高聪,苏丹等.烟煤粉爆炸特性实验研究[J].四川大学学报(工程科学版),2009,41(6):79-83.
    [57]A. Di Benedetto, P. Russo. Thermo-kinetic modelling of dust explosions[J].Loss prevention in the process industries,2007,20:303-309.
    [58]Kai-Tai Lua,Yung-Chuan Chub, Ting-Chi Chena, Kwan-Hua Huc, Investigation of the decomposition reaction and dust explosion characteristics of crystalline dicumyl peroxide[J].Process safety and environmental protection,2010.88:356-365.
    [59]O.Dufaud, M. Traore, L. Perrin. Experimental investigation and modelling of aluminum dusts explosions in the 20 L sphere[J].Loss prevention in the process industries,2010,23:226-236.
    [60]M. Hertzberg, K.L. Cashdollar. I.A. Zlochower. Flammability limits measurements for dust and gases. Ignition energy requirements and pressure dependence[J].21st Symposium (International) on Combustion,The Combustion Institute,1986:303-313.
    [61]K.L. Cashdollar, M. Hertzberg, I.A. Zlochower,Effect of volatility on dust flammability limits for coals gilsonite and polyethylene[J].22nd Symposium (International) on Combustion, The Combustion Institute,1988:1757-1765.
    [62]K.L.Cashdollar,Flammability of metals and other elemental dust clouds[J].Process Safety Program,1994,13(13):139-145.
    [63]A.Garcia-Agreda,A.Di Benedetto,P.Russo.et al.Dust/gas mixtures explosion regimes[J].Powder Technology,2011,205:81-86.
    [64]Stephane Bernard,Kazimierz Lebecki. Philippe Gillard. Statistical method for the determination of the ignition energy of dust cloud-experimental validation[J].Loss Prevention in the Process Industries,2010,23:404-411.
    [65]薄涛.水平管道爆炸装置中粉尘爆炸特性研究[J].山西化工,2008(28):14—16.
    [66]谭迎新,霍晓东,尉存娟.不同粒度铝粉在水平管道内的爆炸压力测定[J].中国安全科学学报,2008,18(12):80-83.
    [67]胡双启,晋日亚,谭迎新.管道条件下超细煤粉尘的爆炸特性研究[J].中北大学学报(自然科学版),2008,29(3):228-231.
    [68]王乐勤,郝宗睿,焦磊.防爆型多管旋风除尘器内流分析及结构设计[J].流体机械,2007,35(11):21-41.
    [69]孙金华PMMA(?)微粒子云中传播火焰的基本结构[J].热科学与技术,2004,3(1):76-80.
    [70]孙金华,土桥律,平野敏右.铁粉云中上下方向传播火焰附近微粒子的运动规律及其密度分布[J].爆炸与冲击,2005,23:31-32.
    [71]孙金华,卢平,刘义.空气中悬浮金属微粒子的燃烧特性[J].南京理工大学报,2005,29(5):582-585.
    [72]刘义.甲烷、煤尘火焰结构及传播特性的研究[D].合肥:中国科技大学,2006.
    [73]丁以斌,锆粉尘云火焰传播特性的实验研究[D].合肥:中国科技大学,2010.
    [74]王健,李新光,钟圣俊等.相连容器中粉尘爆炸的火焰传播[J].东北大学学报(自然科学版),2010,31(2):157-160.
    [75]Mehdi Bidabadi,Ali Haghiri, Alireza Rahbari. Mathematical modeling of velocity and number density profiles of particles across the flame propagation through a micro-iron dust cloud[J].Journal of Hazardous Materials,2010,176:146-153.
    [76]Francois David Tang, Samuel Goroshin, Andrew Higgins.et al. Flame propagation and quenching in iron dust clouds[C].Proceedings of the Combustion Institute,2009,11:235-238.
    [77]J.H.Sun, R. Dobashi,T. Hirano,Combustion behavior of iron particles suspended in air[M].Combust. Sci. Technol,2000,150:99-114.
    [78]J.H. Sun, R. Dobashi,T. Hirano,Temperature profile across the combustion zone propagating through an iron particle cloud[J].Loss Prevent Process,2001,14:463-467.
    [79]王保民,肖林,安琴.TNT粉尘爆炸压力发展过程研究[J].华北工学院学报,1997,18(3):223-227.
    [80]李延鸿.管道式可燃气体一粉尘爆炸试验装置设计[D],太原:中北大学,2006.
    [81]Kosinski P.Hoffmann A. Dust explosions in connected vessels:Mathematical modeling[J].Powder Technology,2005,155:108-116.
    [82]杨少丽.镁铝粉尘泄爆特性的实验研究[D].大连:大连理工大学,2006.
    [83]吕明宇泄爆导管对燃爆泄放过程影响的研究[D].大连:大连理工大学,2008.
    [84]姜孝海.泄爆外流场的动力学机理研究[D].南京:南京理工大学,2004.
    [85]Loth E, SivierS, Baum J. Dusty detonation simulations with adaptive unstructured finite elements [J], Advanced dynamics(AIAA),1997,35(6):1018-1024.
    [86]范宝春,李鸿志.惰性颗粒抑爆过程的数值研究[J].爆炸与冲击,2000,20(3):208-214.
    [87]范宝春,邢晓江,李鸿志.可燃介质中高温火团诱导的爆炸及其抑制[J],兵工学报,2001,22(2):195-198.
    [88]董刚,邱榕,蒋勇.惰性颗粒抑制CH4/02/N2爆炸过程的二维数值模拟与实 验验证[J].燃烧科学与技术,2005,11(4):329-335.
    [89]K.Lebecki,J. Sliz, K. Cybulski,et al. Efficiency of triggered barriers in dust explosion suppression in Galleries[J].Loss Prevention in the Process Industries,2001, 14:489-494.
    [90]Pawel Kosinski,Explosion suppression by a cloud of particles,Numerical analysis of the initial processes[J], Applied Mathematics and Computation[J].2011,217(11): 5087-5094.
    [91]Pawel Kosinski. Numerical investigation of explosion suppression by inert particles in straight ducts, Journal of Hazardous Materials[J].2008,154:981-991.
    [92]Amyotte, P. R. Solid inertants and their use in dust explosion prevention and mitigation[J]. Journal of Loss Prevention in the ProcessIndustries,2006,19:161-173.
    [93]Amyotte, P. R., Basu, A., & Khan, F. I. Reduction of dustexplosion hazard by fuel substitution in power plants[J]. Process Safety and Environmental Protection,2003, 81:457-462.
    [97]Amyotte, P. R., Basu, A., & Khan, F. I.. Dust explosion hazard ofpulverized fuel carry-over[J].Journal of Hazardous Materials,2005,122,23-30.
    [95]Amyotte, P. R., Goraya, A. U., Hendershot, D. C., & Khan, F. I. Incorporation of Inherent Safety Principles in Process Safety Management.21st annual CCPS International Conference[C],Orlando, FL:American Institute of Chemical Engineers, April 2006:23-27.
    [96]Amyotte, P. R., Khan, F. I., Basu, A., Dastidar, A. G., Dumeah, R. K., & Erving, W. L. Explosibility parameters for mixtures of pulverized fuel and ash. Journal of Loss Prevention in the ProcessIndustries.2006.19:142-148.
    [97]Amyotte, P. R., Khan, F. I., & Dastidar, A. G. Reduce dust explosions the inherently safety way. Chemical Engineering Progress,2003,99(10):36-43.
    [98]Amyotte, P. R., Mintz, K. J., Pegg, M. J.. Sun, Y. H., & Wilkie, K. I. Laboratory investigation of the dust explosibility characteristicsof three Nova Scotia coals. Journal of Loss Prevention in theProcess Industries,1991,4:102-109.
    [99]Ou-Sup Han, Masaaki Yashima, Toei Matsuda. A study of flame propagation mechanisms in lycopodium dust clouds based on dust particles behavior, Journal of Loss Prevention in the Process Industries.2001.14:153-160.
    [100]Wypych P. Cook D, Cooper P. Controlling dust emissions and explosion hazards in powder handling plants[J].Chemical Engineering and Processing,2005,44:323-326.
    [101]I lea C.G.. Kosinski P.. Hoffmann A.C. Three-dimensional simulation of a dust lifting process with varying parameters. International Journal of Multiphase Flow. 2008,34:869-878.
    [102]蒋军成.化工安全[M].北京:机械工业出版社,2007.
    [103]郑超峰.激波卷扬粉尘爆炸实验研究[D].太原:中北大学,2008.
    [104]美国化学安全委员会EB/OL].http://www.csb.gov/investigations/detail.aspx?S ID=100
    [105]Lee D.,Sichel M, The Chapman - Jouguet Condition and Structure of Detonation in Dust - Oxidizer Mixtures[A],AIAA Progress in Astronautics and Aeronautics,AIAA,1986,New York,505-521.
    [106]顾兆林.风扬粉尘—近地层湍流与气固两相流[M].北京:科学出版社,2010.
    [107]杨立中.工业热安全工程[M].合肥:中国科学技术大学出版社,2001.
    [108]徐通模.燃烧学[M].北京:机械工业出版社,2011.
    [109]岳树元.高速气固两相流输运技术研究[D].杭州:浙江理工大学,2007.
    [110]杨伦,谢一华.气力输送工程[D].北京:机械工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700