从稻壳中提取肌醇的工艺及工程数据测定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肌醇广泛应用于医药、食品、饲料、日化等行业,是一种高附加值的精细化工原料。近年来该产品由于一些新用途的不断开发而成为国际市场上紧俏的化工商品之一。
     本文采用一种生产肌醇的新方法,在常压及高沸点溶剂多元醇存在下,以固体超强酸作催化剂,植酸水溶液经加热水解、过滤、结晶和烘干等工序,制备肌醇。由于催化剂自身的特性,肌醇可一次性结晶而获得较高质量的成品,从而简化了除杂、脱色、浓缩等工序。
     本文采用不同条件下制备的SO_4~(2-)/TiO_2型固体超强酸作为水解工业植酸的催化剂,运用4因素4水平的正交试验法筛选了植酸水解的工艺条件。结果表明不同因素对水解结果影响的大小为:催化剂型号>甘油配比>反应时间>催化剂用量。水解工业品植酸的较佳工艺条件是:催化剂用Ti22,水解时间为21h,工业植酸和甘油的质量配比为3.5,催化剂用量为工业植酸质量的0.25%。同时考察了不同制备条件下得到的SO_4~(2-)/TiO_2型固体超强酸催化剂对植酸水解的影响,确定了SO_4~(2-)/TiO_2型固体超强酸催化剂制备过程中采用的硫酸溶液浓度为1.00mol/L,干燥温度为100℃,焙烧温度为500℃,焙烧时间为2h时。本文还对SO_4~(2-)/TiO_2型固体超强酸就表面酸强度、比表面积和热分析等方面进行了研究。
     根据本实验室前期研究出的结果,从废弃物水稻稻壳中成功地提取出了菲丁,菲丁的平均提取率为3.63%。本实验采用溶离的方法从菲丁中提取植酸。当把水解工业植酸的较佳工艺条件(水解转化率为72.35%)用于从废弃物稻壳中提取的植酸溶液水解时,植酸的水解转化率为62.98%。
     本文采用XRY-1C氧弹热量计、差示扫描量热法(DSC)和热重法(DTA-TGA)对肌醇进行了热分析研究。测得肌醇的标准摩尔燃烧焓为-2805.1kJ·mol~(-1),并计算出肌醇的标准摩尔生成焓为-1270.94kJ·mol~(-1)。用DSC法测得肌醇了的熔程为225.37~231.92℃,熔化热为256.67J·g~(-1),用DTA-TGA联合分析得到的肌醇分解温度在300℃以上。丰富了肌醇的有关热力学数据,为该产品的新工艺开发、设计和工业化生产提供了相关基础数据。
Inositol is a fine chemical industry raw material, and has higher value-add. It has been widely applied to the industry of pharmaceutical, food, feed, as well as daily chemical matters, and so on.
     A new preparation technique of inositol was investigated from paddy hull in this paper. Putting high boiling polyhydric alcohol and certain quantity of solid super acid catalyst into an aqueous solution of phytic acid, in which the phytic acid was hydrolyzed at atmospheric pressure. Inositol was obtained after filtering, crystaling, drying hydroiyzing resultants. Due to the particularity of the catalyst, it was possibility that higher quality of inositol can be carried out with success during one-time crystallization. Because of the characteristic of catalyst, this process of hydroiyzing phytic acid was simplified during the technique of inositol, such as removing from impurities, decoloring, concentrating, and so on.
     The different SO_4~(2-)/TiO_2 solid super acids of which applied as the catalysts of hydroiyzing phytic acid were prepared. The reacting conditions were optimized by means of the Orthogonal Test Method (L16-4-4). The experimental results showed that there were different effects of different factors on the phytic acid hydroiyzing reaction. The sequence of effect on the reaction result was given by the type of catalyst > proportion of glycerin > reaction time > usage of catalyst. The better technical conditions were acquired in which were the Ti22 type of catalyst, 3.5 the proportion of glycerin to phytic acid, the reaction time of 21h, and the dosage of catalyst was 0.25% of the quality of phytic acid, respectively. The effects of different preparation method of SO_4~(2-)/ TiO_2 solid super acids on the phytic acid hydroiyzing reaction were investigated, and the best preparation conditions were made sure in which the concentration of the spirit of sulphur was 1.00 mol/L, the temperature of dryness was 100℃, the temperature of calcinations was 500℃, the time of calcinations was 2h, respectively. The surface acid strength, specific surface area and thermal analysis were studied on SO_4~(2-)/TiO_2 solid super acid.
     On the basic of the results extracted phytin from paddy hull at our laboratory previously, phytic acid was extracted from phytin by dissolving method. According to given the better technical conditions of industry phytic acid hydrolyzating reaction in this paper, the phytic acid extracted from paddy hull was hydrolyzed, and the conversion rate was 62.98%. It was lower than the hydrolyzating conversion 72.35% of which came from the industry phytic acid.
     The thermodynamics of inositol were determined by XRY-1C calorimeter, DSC and DTG-TGA, respectively. The combustion enthalpy and the formation enthalpy of inositol is -2805.1 kJ·mol~(-1) and -1270.94 kJ·mol~(-1) at the standard state. The melting range, the melting heat, and decomposition temperature is 225.37~231.92℃, 256.67 J·g~(-1), 300℃for inositol, respectively. The necessary basic data of inositol are provided for the exploiting new synthesis method, engineering design and industrialized production.
引文
[1] 刘晓勇,钱和,刘建利.肌醇研究近况与展望[J].江苏食品与发酵,2003,(4):7-10.
    [2] Eastcott. E. wildiers' bios the isolation and indentification of"biosl" [J]. J. Phys. Chem. 1928, 32: 1094.s
    [3] 刘守信,张红利,李振朝等.生产肌醇新工艺的研究[J].河北轻化工学院学报.1995,16(1):7-9.
    [4] 任云娥,李好管.肌醇的应用、市场及技术进展[J].化工科技市场,2001,(10):11-13.
    [5] 任鸿均.植酸、植酸钙和肌醇[J].化工科技市场,2003,26(4):25-30.
    [6] 汪家铭.肌醇生产应用与市场趋势[J].化工技术经济,1995,(6):57-58.
    [7] 李亚文,李劲松,李林杰.肌醇项目的可行性研究.化工商品科技情报[J].1997,2:13-17.
    [8] 汪多仁.肌醇的开发与应用进展[J].化工中间体,2002,18/19,23-25.
    [9] York John D, Ouo Shuling, Odom Audrey, et al. An expanded view of inositol signaling [J]. Advances in Enzyme Regulation, 2001, 41(1): 57-71.
    [10] 孙灵霞,陈锦屏.肌醇生产、应用及前景展望[J].粮油与油脂,2004,11:6-8.
    [11] Levine J, Chengappa K. N, Reddy R. Acute myo-inositol enhances swimming activity in goldfish [J]. J. Neural Transm, 1999, 106(5-6): 433-41.
    [12] 荻野珍吉.鱼类的营养和饲料[M].北京:海洋出版社,1987,270.
    [13] 孙超,高景慧,张文晋.不同水平肌醇对黑白花奶牛牛乳成分的影响[J].西北农林科技大学学报(自然科学版),2001,29(1):100-102.
    [14] 孙超,薄会颖.不同水平肌醇对西农莎能奶山羊某些生产性能的影响[J].畜牧兽医杂志,1999,18(4):10-12.
    [15] Steiner S, Lester R. L. Studies on the diversity of inositolcontaining yeast hospholipids: incorporation of 2-deoxyglucose into lipid [J]. J Bacteriol, 1972, 109(1): 81-88.
    [16] Vucenik I, Zhang Z. S, Shamsuddin A. M. IP6 in treatment of liver cancer Ⅱ [J]. Anticancer Res., 1998, (18): 4091-4096.
    [17] 周秀琴.日本开发米糠抗癌新品EGMP[J).粮油与油脂,2003,(2):46.
    [18] 刘晓永,钱和,刘建利.肌醇研究近况与展望[J].江苏食品与发酵.2003,4:7-9.
    [19] 韦振雷.肌醇的生产方法及应用[J].广西农学报.1999,2:17-19.
    [20] 石起增,刘巧茹,董文举,杨健茂.肌醇生产工艺进展[J].中国医药工业杂志.2005,36(1):56-59.
    [21] Frank Eisenberg, Arthur H. Bolden and Frank A. Loewus, lnositol formation by cyclization of glucose chain in rat testis[J]. Biochem Biophys Res Cornmum, 1964, 14 (5), 419-424.
    [22] A. E. Felice, C. Alshinawi, Polymerase chain Reaction in molecular biotechnology; appropriate technology for developing countfies[J]. World Journal of Microbiology and Biotechnology. 1996. 12(5): 467—472.
    [23] 余维芹,古绪鹏.固体超强酸在精细化学品合成中的应用[J].精细石油化工进展,2002,3(7):13.
    [24] 赵立芳,何柱生,王峰.固体超强酸在酸催化反应中的应用[J].宝鸡文理学院学报,1999,19(3):68-71.
    [25] 李德庆,米镇涛.固体超强酸催化剂的发展与应用[J].化工进展,1996,(4):5-10.
    [26] 扬声.固体超强酸催化剂的研究[J].天水师专学报,1995(1):62-63.
    [27] 李小芳,丁恩勇.固体超强酸研究的最新进展[J].广州化学,2000,25(4):44-47.
    [28] 吕恩雄.固体超强酸催化剂的制备及应用[J].精细石油化工,1993,(3):49-51.
    [29] 周国斌.固体超强酸催化萜系化合物反应的研究[D].江西:江西师范大学硕士学位论文,2002,4-13.
    [30] 周治峰.固体超强酸催化剂的研究进展[J].辽宁化工,2005,34(1):22~24.
    [31] 成战胜,行春丽,田京城,杨林.固体超强酸催化剂的研究进展[J].应用化工,2002,33(6):5.
    [32] 刘天成,王亚明.固体超强酸的研究进展[K].化工时刊,2002,(5):10-13.
    [33] 徐少华.固体超强酸催化剂研究进展[J].太原师范学院院报(自然科学版),2003,2(3):63-64.
    [34] 郑燕升,莫倩.固体超强酸的开发与应用[J].柳州师专学报,2001,16(4):68.
    [35] 缪长喜,谢在库,陈庆龄.固体超强酸催化剂研究的新进展[J].石油炼制与化工,1998,29(2):29.
    [36] 曾健青,罗庆云,王琴,钟炳.SO42-/MxOy型固体超强酸催化剂的研究进展[J].石油化工,1994,23(3):191-197.
    [37] Srinirasan R, Davis B H, Influence of zirconium salt precursors on the crystal structures of zirconia[J]. Catalysis Letters, 1992, 14(2): 165.
    [38] Matsuhashi H. Tanabe K ed. Proc intern syrup acidbase catal, Ssappera, 1988, Tekyo: Kodansha, 1989: 357.
    [39] Garin F, Andriamasinoto D, Abdulsamad A et al. Conversion of butane over the solid superacid ZRO2/SO42- in the presence of hydrogen[J]. J Catal, 1991; 131(1): 199-203
    [40] Jae S. Lee and Doo S. Park. Interaction of pyridine and ammonia with a sulfate-promoted iron oxide catalyst[J]. J Catal,1989; 120(1): 46-54
    [41] Michael Y. Wen, Irving Wender, John W. Tierney. Hydroisomerization and hydrocracking of n-heptane and n-hexadecane on solid superacids[J]. Energy and Fuels, 1990; 4(4); 372-379
    [42] 姚胜.M_xO_y-SO_4~(2-)型固体超强酸催化剂[J].化学通报.1990,2:23-28.
    [43] 乔亭祥,任宏强.常压催化法生产肌醇的方法[J].中外技术情报,1995,2:20.
    [44] 郝红英,周彩荣,李娜.均匀设计优选微波辅助提取米糠中菲丁的研究[J].郑州大学学报(工学版),2006,27(1):125-128.
    [45] 孙淑斌.从米糠中提取植酸[J].曲阜师范大学学报,2001,27(1):71-72.
    [46] 傅启高,李慧荃.三氯化铁比色法测定植酸含量的研究[J].营养学报.1997,19(2):216-219.
    [47] 刘红.磺基水杨酸分光光度法测铁的微型实验设计[J].天津医科大学学报,1998,4(4):412-413.
    [48] 华东理工大学,四川大学化工学院主编.分析化学[M].北京:高等教育出版社,2003.
    [49] 陈小原,谷文祥,李江涛.植酸制取的研究[J].吉首大学学报(自然科学版),1996,17(2):70-71.
    [50] 马敬中,江洪,吴谋成.微波辐射水解植酸快速制备肌醇的研究[J].中国粮油学报.2003,18(3):78-84.
    [51] 张嬿妮.热重分析在研究煤氧复合过程中的应用[D],西安科技大学硕士论文,2004.
    [52] 汤大卫.微波提取[J].医药工程设计杂志,2003,(5):5-6.
    [53] 甘师俊,李振吉,邹健强.中药现代化发展战略[M],北京;北京科学技术出版社,1998.
    [54] 化学工程手册编委会.化学工程手册:14篇萃取和浸取[M].北京:化学工业出版社,1989.
    [55] 徐莲英,陶建生.冯怡.中药制剂发展的回顾[J].中草药,2000,22(1):6-21.
    [56] Liu Chuanbin, Xie Jian, Bai Fengwu. Trehalose extraction from saccharamyces cerevisiae after microwave treatment [J]. Biotechnol Tech, 1998, 12(12): 941-943.
    [57] 张代佳,刘传斌,修志龙.微波技术在植物胞内有效成分提取中的应用[J].中草药,2000,31(9):附5-附6.
    [58] 刘峙嵘,俞自由,方裕勋,李传茂.微波萃取银杏叶黄酮类化合物[J].东华理工学院学报(自然科学版),2005,28(2):151-154.
    [59] Craveiro A A, MatosF JA, AlencarJW etal. Microwave oven extraction of an essential oil[J]. Flavour and Fragrance Journal, 1989, 4: 43-44.
    [60] 曹光明.中药工程学[M].北京:中国医药科技出版社,1994.
    [61] 沈平孃,绍忠法,唐青华,朱莲华.新技术在中成药工业中的应用与展望[J].中成药,1998,20(5):1-3.
    [62] 郝红英.从米糠中微波辅助提取植酸的研究[D],郑州大学硕士论文,2006
    [63] 陈新焕,袁智能,傅明,胡宇东等.植酸的分析方法[J].食品科技.2003,(2):88-89.
    [64] 李余增.热分析[M].北京:清华大学出版社,1987.2
    [65] Ahmet Sari, Hayati Sad etal., Thermal properties and thermal reliability of eutetic mixtures of some fatty acids as latent heat storage materials[J]. Energy Conversion and Management, 2004, 45: 365-376.
    [66] Jinan Cao, Melting study of the a-form crystallites in human hair keratin by DSC[J]. Thermochinmica Acta, 1999, 335: 5-9.
    [67] L. Yu, G. Christie, Measurement of starch thermal transitions using differential scanning calorimetry[J]. Carbohydrate Polymers, 2001, 46: 179-184.
    [68] 蒋登高,周彩荣,王斐,李惠萍,卫冬燕.1,2-环己二醇标准摩尔燃烧焓和定压热容测定[J].化学工程.2005,33(4):63-67.
    [69] 天津大学物理化学教研室.物理化学(上册)[M].北京:高等教育出版社.2001.
    [70] 符斌.常用化学手册[M].北京:地质出版社.1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700