超大规模地下铁路车站围岩强度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以新京张城际铁路八达岭地下车站为依托,查阅相关资料,对大跨度地下工程的研究现状、基于模糊数学的围岩分类的研究现状等有了一个基本的认识,然后根据前期的勘察和实验资料做了如下相关工作并且得到了一些研究成果:
     1.根据实验和勘察资料,在RMR分级的基础上通过模糊数学再次对围岩级别进行研究,根据评价结果可知,八达岭地下车站围岩,可以认为是三级偏弱,也可认为是四级偏强,如果考虑经济效益可选用三级围岩进行设计,如果考虑施工安全可选用四级围岩进行设计。
     2.根据八达岭地区花岗岩的常规三轴试验数据,对不同强度准对实验数据进行拟合。根据拟合结果,建议在工程实际中可采用Drucker-Prager强度准则。
     3.通过定性的方式研究跨度对围岩塑性区的影响。研究结果显示,第二主应力和地质条件等对塑性区有一定的影响。
     4.研究不同跨度、不同计算理论下作用在支护结构上的围岩压力。从围岩压力计算结果可知,普氏理论对于岩石坚固系数的依赖较高,计算结果偏于不安全;按太沙基理论和Bieniawski理论计算出的围岩压力最大,在深埋地下工程中不是很适用;按《公路隧道设计规范》计算出的围岩压力处于中间,具有一定的平均效果,可作为设计的参考。
     5.基于层次分析法研究断面形状和扁平率对围岩强度的影响。结果可知,不同断面的权重排序为:D3(椭圆形)>D4(圆形)>D2(马蹄形)>D1(矩形),即椭圆形断面方案最优。
     6.对扁平率为0.5-0.9的椭圆形断面的围岩应力状态进行对比,最后确定最优的扁平率。根据数值模拟结果的,结合国内外以往修建的大跨度地下工程的实际经验,发现埋深较大的大跨度地下工程扁平率控制在0.6-0.8之间较为合理,对八达岭地下车站,建议采用扁平率0.70进行设计施工
     7.研究不同施工步中围岩应力的变化,提出合理的开挖施工和支护方案。根据数值模拟的计算结果可知,随着施工的进行可能导致已开挖的部分拱顶稳定性变差,拱腰处应力集中程度变强,拱底有可能鼓起,所以施工过程中要加强对已开挖部分的监控量测,当发现不稳定迹象时及时采用支护措施进行处理。
This paper is based on the engineering of Badaling underground station of the new Jing Zhang Inter-city rail. Read some relevant information and have a basic understanding about the current situation of large-span underground engineering and rock classification based on fuzzy mathematics, and then do the following work according to the pre-survey and experimental data k and get some research results:
     1. According to the experimental data and survey material, study the surrounding rock level again by fuzzy mathematics based on the RMR classification. According to the evaluation results known that the surrounding rock of the Badaling underground station can be considered the three on the weak side or four on the strong side, select the three level to design if consider the economic benefits, select the four level to design if consider the construction safety.
     2. Fit the different strength criterion based on the conventional triaxial test data of the Bdaling granite. According to the fitting results, it is recommended that the strength criterion of Drucker-Prager can be used in engineering.
     3. Study the impact of plastic zone by span of underground engineering through qualitative style. The results show that the second principal stress and geological conditions have a certain impact on the plastic zone.
     4. Study the rock pressure on the supporting structure by different span and different computing theory. Through the calculation results of the rock pressure, the Platt's theory rely on a higher on coefficient of rock solid and the results of calculations are unsafe; the results of the calculations of the rock pressure by Terzaghi's theory and Bieniawski's theory rock pressure are maximum and are not fit to deeply engineering; the results of the calculations by Highway tunnel design specifications are in the middle and have some average effect, so it can be used as a reference design.
     5. Study the impact of rock strength by section shape and flat rate depending on the analytic hierarchy process. From the results get the order of the weight of the different sections:D_3(Oval)> D_4(Round)> D_2(horseshoe)> D_1(rectangular), the shape of oval is the best.
     6. Study the surrounding rock stress state through changing the flat rate of the oval-shaped section from0.5to0.9and get the optimal flat rate by the results of the calculations. Through the numerical simulation results and combined with practical experience of large span underground works in the past, the flat rate of the large and depth span underground engineering should be controlled in the range of0.6to0.8. Chose the flat rate of0.70for the design and construction to the Badaling underground stations.
     7.Study the change of the surrounding rock stress of different construction steps and propose a suggestion of excavation、construction and support. According to the calculation results of the numerical simulation, the dome will become unstable and the degree of stress concentration of the arch waist will become higher and the arch bottom will muster with the conduct of the construction, so the monitoring and measurement should be strengthened, and the timely deal with supporting measures to when the discovery of signs of instability.
引文
[1]张孝伟.隧道跨度对围岩支护需求的影响分析[D].重庆.重庆交通大学.2008.
    [2]于萍萍.超大规模地下铁路车站围岩特征及其稳定性研究[D].北京.北京交通大学.2011.
    [3]康富中.深埋超大规模地下铁路车站结构方案及关键支护参数优化研究[D].北京.北京交通大学.2011.
    [4]康志强,周辉,冯夏庭.模糊层次分析法在地下洞石围岩稳定行评价中的应用[J].岩土力学.2006,27(增刊):311-314.
    [5]杨小永,伍法权,苏生瑞.公路隧道围岩模糊信息分类的专家系统[J].岩石力学与工程学报.25(1):100-105.
    [6]苏永华,赵明华,刘晓明.岩体分类的二元相对模糊评判法[J].岩石力学与工程学报.25(5):1049-1055.
    [7]祁文生,伍法权.基于模糊数学的TBM施工岩体质量分级研究[J].岩石力学与工程学报.30(6):1225-1229.
    [8]许传华,任青文.地下工程围岩稳定性的模糊综合评判法[J].岩石力学与工程学报.23(11):1852-1855.
    [9]盛继亮.地下工程围岩稳定性模糊综合评价模型研究[J].岩石力学与工程学报.22(增1):2418-2421.
    [10]张永兴.岩石力学[M].北京:中国建筑工业出版社.2008
    [11]王仲仁,苑世剑,胡连喜,王忠金,何祝斌.弹塑性力学基础[M].哈尔滨:哈尔滨工业大学出版社,2007.
    [12]张学岩,闫澎旺.岩土塑性力学基础[M].天津:天津大学出版社,2006.
    [13]关宝树.隧道里学概论[M].成都:西南交通大学出版社.1993.
    [14]石祥超,孟英峰,李皋.几种岩石强度准则的对比分析[J].岩土力学.32(增1).209-216.
    [15]李杭州,廖红建.复杂应力状态下岩体强度的各向异性研究[J].岩石力学与工程学报.29(7):1397-1403.
    [16]尤明庆.统一强度理论的试验数据拟合及评价[J].岩石力学与工程学报.27(11):2193-2203.
    [17]尤明庆.岩石指数准则在主应力空间的特征[J].岩石力学与工程学报.28(8).1541-1543.
    [18]尤明庆.岩石强度准则的数学形式和参数确定的研究[J].岩石力学与工程学报.29(11).2172-2184.
    [19]杨学强,余天庆,何世秀.对岩石双剪强度准则的探讨[J].岩石力学与工程学报.21(7):1049-1053.
    [20]胡盛明,胡修文.基于量化的GSI系统和Hoek-Brown准则的岩体参数的估计[J].岩石力学与工程学报.32(3).861-866.
    [21]于远忠,宋建波.经验参数m,s对岩体强度的影响[J].岩土力学.26(9):1461-1468
    [22]曾钱帮,王恩志,王思敬.深埋圆形硐室围岩塑性区形变压力的广义Hoek-Brown破坏准则及其三元非线性回归模型[J].岩石力学与工程学报.28(增2).3543-3549.
    [23]翟所业,贺宪国.巷道围岩塑性区的德鲁克-普拉格准则解[J].地下空间与工程学报.1(2).223-226.
    [24]曲海峰,朱合华,蔡永昌.扁平打垮公路隧道松动荷载计算方法探讨[J].岩土力学.29(4).989-1000
    [25]刘学增,罗仁立.大跨度公路隧道围岩竖向压力分布特征探讨[J].同济大学学报(自然科学版).38(12).1741-1745.
    [26]姜德义,刘春,李光扬,谢圣纲.大跨度隧道围岩数值压力计算的对比分析[J].中国矿业.14(11).63-66.
    [27]朱正国,陈明长,孙明磊.双连拱公路隧道围岩压力计算方法[J].长安大学学报(自然科学版).75-79
    [28]曲海峰.扁平特大断面隧道修筑及研究概述[J].隧道建设.29(2).166-171.
    [29]段慧玲,张林.大跨度公路隧道合力开挖方法对比研究[J].土木工程学报.42(9).114-119.
    [30]赵兴东,段进超,唐春安,朱万成.不同断而形式隧道破坏模式研究[J].岩石力学与工程学报.23(增2).4921-4925.
    [31]李刚.不同断面大跨度隧道的力学特性[J].湖南交通科技.36(2).152-157.
    [32]王飞,于海龙.大断面公路隧道断面形状数值分析与研究[J].公路.2008(8).210-216.
    [33]黄朱林.扁平率对大跨度隧道围岩及支护稳定性影响分析[J].西部探矿工程.196-198.
    [34]陈卫忠,王辉,田洪铭.浅埋破碎岩体中大跨隧道断面扁平率优化研究[J].岩石力学与工程学报.30(7).1389-1395.
    [35]李士勇.工程模糊数学及应用[M].哈尔滨:哈尔滨工程大学出版社.2004.1-125
    [36]谢季坚,刘承平.模糊数学方法及其应用[M].武汉:华中科技大学出版社.2006.1-211
    [37]齐伟.岩石力学[M].长春:吉林大学出版社,2008.
    [38]颜庆津.数值分析[M].北京:北京航空航天大学出版社,2006.
    [39]胡波.基于精细结构描述及数值试验的断续节理岩体力学参数智能选取[J].岩石力学与工程学报.29(10).2160-2164
    [40]陈育民,徐鼎平FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008.
    [41]彭文斌FLAC3D实用教程[M].北京:机械工业出版社,2011.
    [42]易力.大跨隧道施工方法选择的敏感性[D].重庆.重庆大学.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700