撞击流微混合器的结构、性能及其在沉淀过程中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于混合直接影响到沉淀法制备功能粉体的性能,为了提高混合器内反应物料的混合效果,本研究根据撞击流微混合器内流体的流动形式及两股流体的撞击方式,提出了直流对撞(M1)、锥流对撞(M2)、直流旋撞(M3)和旋流旋撞(M4)四种不同流体碰撞方式的微混合器。通过实验研究和理论模拟计算,对四种微混合器的液液及气液两相的混合过程进行了探讨。在此基础上,考察了四种微混合器在沉淀法制备硫酸钡(BaSO4)、氢氧化铝(Al(OH)3)、铈掺杂钇铝石榴石(YAG:Ce3+)黄色荧光粉中的应用。
     1、微混合器液液混合性能:利用饱和KC1溶液为示踪剂,实验研究了物料在微混合器内的平均停留时间分布,结果显示:微混合器内流体几乎接近全混流;撞击区进口管径对停留时间及其分布影响很小;M4型混合器的出峰时间延迟,峰宽变窄,说明旋流旋撞改善了微混合器内物料的返混程度。利用碘化物-碘酸盐平衡竞争反应,实验研究了表征微混合器的液相微观混合特性的离集指数(Xs),并考察了流体的流速、流动形式及撞击方式对Xs的影响。结果表明,实验条件下,微混合器的Xs的大小在3.5×10-3-6.0x10-3之间;对于四种结构微混合器的Xs,发现存在如下规律:XSM4     2、微混合器的气液混合特性:用NaOH-CO2-N2和H2O-CO2-N2化学吸收法测量了这四种微混合器在气液两相逆流接触条件下平均相界比表面积(a)及液相吸收传质系数(kL);研究了微混合器结构形状、管道直径(Φ)、液体流量(qv,L)和气体流量(qv,g)等参数对a和kL的影响。发现a为1.2×105~1.0×106m2.m-3,经数据处理得a与各操作参数的关系有aM1     3、液液混合制备BaSO4的研究:以BaCl2和Na2SO4为原料,采用四种撞击流微混合器制备BaSO4的研究表明,M4型混合器与其它混合器相比,获得的BaSO4颗粒的粒径更小,粒度分布更窄;流体流量增大及混合器进口管径减小有利于获得较小粒径颗粒;而初始反应物浓度增加也会导致产品粒径下降,但当浓度超过0.50mol·L-1后,产品粒度基本处于稳定。在优化的条件下,可获得平均粒径约100nm,比表面积为29.25m2.g-1的近椭球形超细硫酸钡粉体。
     4、气液两相混合制备氢氧化铝:以NaAlO2-CO2溶液为反应体系,利用撞击流微混合器制备拟薄水铝石的研究表明:与直撞M1相比,旋撞M3所得产品粒度小,分布均匀;四种微混合器中旋流旋撞M4更具有优势;随着液体和气体流量的增加,所获得的拟薄水铝石颗粒呈现平均粒径减小,粒度分布变窄的趋势;随着NaAlO2溶液初始浓度的增加,会导致产品粒度增大及其分布变宽的趋势;通过对操作条件进行控制,可获得细长纤维状拟薄水铝石粉末,该粉末粒径仅1Onm左右,长径比约为20,孔容为2.54cm3.g-1,比表面积高达390.6m2.g-1。
     5、多组分共沉淀制备YAG:Ce3+黄色荧光粉的研究:以碳酸氢氨为沉淀剂,采用撞击流共沉淀法制备的YAG:Ce3+前驱体于1000℃煅烧2h后,完全转变为YAG相,获得分散性良好的球形YAG:Ce3+黄色荧光粉:其晶相转变温度比固相法降低了约500℃;随着初始原料浓度的增大,荧光粉的发光强度逐渐减小;当掺铈浓度为2.6%Ce时,荧光粉发光强度最大;荧光粉的发光强度随着加料速度逐渐增加,当加料速速增大到20mL·min-1以上时发光强度基本保持恒定。控制相同的工艺条件,M3制得荧光粉的发光强度比M1的增大了18.6%;M4比Ml的升高23%。结果表明,旋流和旋撞能进一步强化微混合器内反应物料间的混合效果,有利于制得粒度小,且粒度分布均匀的YAG:Ce3+荧光粉,其发光性能良好。
Precipitation is a very important method which is widely used in chemical industry in the production of ultrafine powders. Usually, micromixing affects the performance of the powders in the precipitation. Four types of micromixers, straight flow impinging streams micromixer (Ml), conical flow impinging streams micromixer (M2), straight streams vortex micromixer (M3), and twice vortex streams micromixer (M4) were designed on the base of impinging streams mixer according to flow forms and impinging manners of fluids. Then the mixing characteristics of the four types of micromixers were studied by experimental research and theoretical simulation method. The dissertation had a detailed research that the synthesis of barium sulfate (BaSO4), aluminum hydroxide (A1(OH)3) and cerium-doped yttrium aluminum garnet (YAG:Ce3+) yellow phosphor powders by precipitation methods in the four types of micromixers.
     1. The mixing performance of liquid-liquid in the micromixers. The residence time distribution experiments were performed in the four micromixers and saturated KC1solution was used as a tracer. The results showed fluid in the micromixers was close to full Francis. The inlets diameter of micromixers had little effects on mean residence time and its distribution. The mean residence time delayed and peak width became narrower in the micromixer M4because vortex improved macromixing process of the fluids. The iodide-iodate fast parallel competing reaction was used to quantitatively determine the segregation index Xs in the four different micromixers. The micromixing performance was characterized with segregation index. The smaller the Xs is, the better the micromixing effects are. The effects of volumetric flow, volumetric flow ratio and micromixer configuration on the micromixing performance Xs were studied in details. The experimental results showed the value of Xs was about3.5×10-3~6.0×10-3and Xs had the following rule, XsM4     2. The mixing performance of gas-liquid in the micromixers. The averaged gas-liquid interfacial specific surface area (a) and liquid-mass transfer coefficient kL were experimentally measured by chemical absorption method, in which NaOH-CO2-N2and H2O-CO2-N2reaction systems were used. The experimental results showed a value was about1.2×105~1.0×106m2·m-3, the relation of the averaged gas-liquid interfacial specific surface area a and operating parameters was, The a value of M1, M2, M3and M4gradually increased at the same technological conditions, a had the proportional relations with d-2.22~2.02, qv,L0.55-o.62and qv,g0.38~0.50.The KL value was about0.02-0.12cm·s-1and it increased at least one or two orders of magnitude higher liquid side volumetric mass transfer coefficients compared with the conventional gas-liquid contactors. Vortex resulted in extra contact areas which can guarantee high mass transfer rates in the subsequent micromixer. The kL value decreased with the increase of liquid and gas flow rate, as well as the decrease of the inlet diameter. When the liquid flow rate increased from5L·h-1to25L·h-1, kL increased about2.69-3.23times. When the inner diameter decreased from2mm to1mm, kL increased about1.08~1.36times. According to the vortex model, the theoretical mass transfer coefficient kL was consistent with the experimental results.
     3. BaSO4was prepared by liquid-liquid mixing in the micromixers. The experiments were performed with two reactants, BaCl2solution and Na2SO4solution to prepare BaSO4in the four micromixers. The results indicated the particles prepared by impinging streams micromixer M4had smaller mean size and narrower size distribution than the other three micromixers because Vortex could intensify micromixing in the precipitation process. The mean size decreased with the increase of liquid flow rate, initial concentration, as well as the decrease of volumetric ratio of reactants and the inlets diameter size. Barium sulfate superfine ellipsoidal particles were prepared with the size of about100nm and the specific surface area of the particles29.25m·g-1at the best technological conditions.
     4. Al(OH)3was synthesized by gas-liquid mixing in the micromixers. Fibrous pseudoboehmite particles with average diameter about10nm,200nm in length, surface area of390.6m·g-1and large pore volume of2.54cm3·g-1, were prepared by the carbonation method from sodium aluminates solution and carbon dioxide at the optimum conditions. Vortex resulted in smaller particle size and narrower distribution than straightly impinging streams. The mean size and dimensionless variance decreased with the increase of liquid flow rate, gas flow rate, as well as the decreasing of initial concentration and the inlets diameter size.
     5. Micromixers were further optimized for the preparation of YAG:Ce3+yellow phosphor, used ammonium bicarbonate as precipitant. The results indicated that YAG:Ce3+phosphor particles with a ellipsoidal shape, a mean particle size of about100nm and a narrow particle size distribution could be successfully prepared in them. The YAG powders without any impurity phases could be obtained at1000℃for2h and its crystalline phase transition temperature was about500℃lower than solid-phase sintered method. The luminescent intensity gradually decreased with the increase of the initial concentration of raw materials. The luminescent intensity first increased then decreased with the increase of Ce%doped concentration, and the best Ce%was2.6%. The luminescent intensity gradually increased the increasing flow rate and which changed little when the flow rate exceeded20mL·min-1. The emission intensity of YAG:Ce3+phosphor prepared by shaped impinging streams micromixer M3had about18.6%higher than that by M1and that from M423%higher than that from M1. The results show that the impinging streams micromixers can intensify micromixing effects among reaction materials. So the YAG:Ce3+phosphor with small particle size and a uniform distribution were prepared, and which has excellent luminescence properties.
引文
[1]Hessel V, Lowe H. Mixing principle for microstructure mixers:active and passive mixing [M]. Acount for chemical research Publications, Mainz, Germany,2005.
    [2]朱丙辰编.化学反应工程[M],北京:化学工业出版社,2001.
    [3]Barresi A A, Marchisio D, Baldi G. On the role of micro-and mesomixing in a continuous Couette-type precipitator [J]. Chemical Enginnering Science,1999, 54(13-14):2339-2349.
    [4]Jaehnisch K, Hessel V, Lowe H, et al. Chemistry in microstructured reactors [J]. Angewandte Chemie-Internatinal Edition,2004,43(4):406-446.
    [5]Hessel V, Lowe H. Organic synthesis with microstructured reactors [J]. Chemical Engineering Technology,2005,28(3):267-284.
    [6]Lioubov K M, Albert R. Microstructured reactors for catalytic reactions [J]. Catalysis Today,2005,110(1-2):2-14.
    [7]Elperin I T. Transport processes in impinging jets (in Russian) [M]. Naukai Tekhnica, Minsk,1972.
    [8]Tamir A. Impinging-streams reactor:fundamentals and applications [M]. Elsevier Besloten Vennootschap.1994.
    [9]伍沅.撞击流——原理·性质·应用[M].化学工业出版社,2006.
    [10]Tamir A.撞击流反应器:原理与应用[M].伍元译.北京:化学工业出版社,1996.
    [11]肖杨,伍沅.浅析循环撞击流反应器中的混合[J].三峡大学学报(自然科学版),2002,24(2):189-190.
    [12]刘海峰,王辅臣,吴韬,等.撞击流反应器内微观混合过程的研究[J].华东理工大学学报,1999,25(3):228-231.
    [13]吴国华,周洪兆,朱慎林.撞击流微反应器制备超细硫酸钡研究[J].无机材料学报,2006,21(5):1079-1084.
    [14]陈建峰.混合—沉淀过程的理论和实验研究[D].杭州:浙江大学,1992.
    [15]Dirksen J A. Fundamentals of crystallization:Kinetic effects on particles size distributions and morphology [J]. Chemical Engineering Science,1991,46(10): 2389-2427.
    [16]李彩虹.一种制备单分散纳米粉体的液相沉淀法及其结晶动力学[D].天津:天津大学,2004.
    [17]Wu G H, Zhou H Z, Zhu S L. Preparation of barium sulfate nanoparticles via impinging streams [J]. Materials letters,2007,61(1):168-170.
    [18]张明,李新海,胡启阳,等.EDTA络合法合成硫酸钡微粒[J].中国有色金属学报,2009,19(8):1511-1516.
    [19]Tosun G Process of the 6th European conference on mixing [C]. Pavia, Italy, 24-26, May,1988:161-170.
    [20]Garside J, Tavare N S. Mixing, reaction and precipitation:Limits of micromixing in an MSMPR crystallizer [J]. Chemical Engineering Science,1985,40(8): 1485-1493.
    [21]Chen J F, Zheng C, Chen G A. Interaction of Macro-and micromixing on particle size distribution in reactive precipitation [J]. Chemical Engineering Science, 1996,51(10):1957-1966.
    [22]卢寿慈主编,粉体技术手册[M].北京:化学工业出版社,2004:35-61.
    [23]黄凯,郭学益,张多默.超细粉末湿法制备工艺的粒子粒度和形貌控制[J].粉末冶金材料科学与工程,2005,10(5):267-276.
    [24]Subrt J, Stengl V. Bakardjieva S. Synthesis of spherical metal oxide particles using homogeneous precipitation of aqueous solutions of metal sulfates with urea [J].Powder Technology,2006,169(1):33-40.
    [25]Sugimoto T, Zhou X P, and Muramatsu A. Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method:3. Formation process and size control [J]. Journal of Colloid and Interface Science.2003,259(1):43-52.
    [26]Hadi A, Yaacob I I. Novel synthesis of nanocrystalline CeO2 by mechanochemical and water-in-oil microemulsion methods [J]. Materials Letters,2007,61(1):93-96.
    [27]Andrade S S, Rabelo D, Garg V K, et al. Synthesis of magnetite nanoparticles in hydrophobic styrene-divinylbenzene copolymer templates [J]. Journal of Magnetism and Magnetic Materials,2005,289(3):25-27.
    [28]吕灼菲,李铁,张学建,等.溶胶-凝胶燃烧法合成Er3+:YAG纳米粉体[J].硅酸盐学报,2008,36(10):1454-1457.
    [29]孙占兴,房明浩,卫李贤,等.溶胶-凝胶法制备Y3-xCexAl5O12纳米粉体的研究[J].人工晶体学报,2009,38(S1):308-311.
    [30]Paula F S P, Jose M A C, Sidney J L R, et al. Microwave synthesis of YAG:Eu by sol-gel methodology [J]. Journal of Luminescence,2007,126(2):378-382.
    [31]Qi L, Ma J, Cheng H, et al. Preparation of BaSO4 nanoparticles in non-ionic W/O microemulsions [J]. Colloids surface A:Physicochemical and Engineering Aspects,1996,108(1):117-126.
    [32]Kim E J, Hahn S H. Microstructure and photoactivity of titania nanoparticles prepared in nonionic W/O microemulsions [J]. Materials Science and Engineering:A,2001,303(1-2):24-29.
    [33]陆胜,方荣利.W/O型微乳液碳化法制备超细氢氧化铝和氧化铝粉体[J].无机盐工业,2003,35(5):18-20.
    [34]Guo R, Zeng R J, Wu Y,et al. Preparation and photoluminescence properties of YAG:Ce3+ spherical phosphor nano-powders by the microemulsion method [J]. Journal of the Chinese Ceramic Society,2008,36(3):354-357.
    [35]杜朝锋,黄英,秦秀兰.模板技术在纳米材料制备中的应用与发展[J].材料导报,2006,20(SV):38-42.
    [36]苏丽红.以有机化学为模板构筑零维和一维无机纳米材料[D].吉林大学,2006.
    [37]Poovathin T R, Archana G, Marc A. et al. Stabilization and growth of silver nanocrystals in dendritic polyol dispersions [J]. Materials letters,2006,60(7): 897-900.
    [38]赵启涛,侯立松,黄瑞安.软化学法低温合成银纳米线及其生长机制[J].化学学报,2003,61(10):1671-1674.
    [39]王利军,李宝会,金庆华,等.混合模板剂合成TS-1的非成键互作用能学分子[J].无机化学学报,2000,16(3):455-460
    [40]Benet N, Muhr H, Plasari E, et al. New technologies for the precipitation of solid particles with controlled properties [J]. Powder Technology,2002,128(2-3): 93-98.
    [41]Sophie G F, Montaha A H. High-quality nickel manganese oxalate powder synthesized in a new segmented flow tubular reactor [J]. Solid State Ionics, 2004,171(1-2):135-140.
    [42]Tagagi M, Maki T, Miyahara M, et al. Production of titania nanoparticles by using a new micrometer assembled with same axle dual pipe [J]. Chemical Engineering Journal,2004,101:269-276.
    [43]Youfeng Li, Hongqi Ye, Xianda He, Hui Liu. Study of reactive precipitation in vortex impinging streams reactor [J]. Advanced Materials Research,2012, 455-456:617-623.
    [44]叶明星,Mansur H A,王运东,等.微混合技术研究进展[J].化工进展,2007,26(6):755-761.
    [45]Ehrfeld W, Hessel V, and Lowe H. Microreactors:New Technology for Modern Chemistry [M].Weinheim:Wiley-VCH,2000.
    [46]吴玮,王丽军,李希.T型微通道结构中的流体混合规律[J].化工学报,2011,62(5):1212-1218.
    [47]闵乃本.晶体生长的物理基础[M].上海:上海科学技术出版社,1982.
    [48]Baldyga J, Bourne J R. Simplification of micromixing calculations I. Derivation and application of new models [J]. Journal of Chemical Engineering,1989, 42(1):83-92.
    [49]Baldyga J, Pohorecki R. Micromixing effects in semi-batch precipitation [C], Symptoms on Industrial Crystallization, Garmisch Parteakirchen,1990.
    [50]Schwarzer H C, Peukert W. Combined experimental/numerical study on the precipitation of nanoparticles [J]. AIChE Journal,2004,50(12):3234-3247.
    [51]向阳,王琦安,杨旷,等.微通道反应器中反应沉淀过程的工艺研究[J].高校化学工程学报,2009,3(23):474-479.
    [52]刘涛.欧洲微反应器技术的发展与应用现状[J].现代化工,2007,27(10):66-68.
    [53]李斌.微反应器技术在精细化工中的应用[J].精细化工,2006,23(1):1-7.
    [54]丁涛,王芳.微/纳反应器的研究现状及发展前景[J].化学工程师,2010,183(12):39-43.
    [55]肖杨,伍沅.浸没循环撞击流反应器中微观混合的影响因素[J].华中师范大学学报,2006,40(2):226-229.
    [56]Chen G W, Li S L, Yuan Q. Pd-Zn/Cu-Zn-Al catalysts prepared for methanol oxidation reformatting in microchannel reactors [J]. Catalysis Today,2007, 120(1):63-70.
    [57]Sakamon D, Arum S M. A study of turbulent mixing of confined impinging streams using a new composite turbulence model [J]. Industrial & Engineering Chemistry Researched,2001,40(22):4998-5004.
    [58]伍沅,肖杨,陈煜.浸没循环撞击流反应器[J].武汉化工学院学报,2003,25(2):1-5.
    [59]刘海峰,王辅臣,吴韬等.撞击流反应器内微观混合的研究[J].华东理工大学学报,1999,25(3):228-231.
    [60]Elperin I T. Heat and mass transfer in opposing currents [J]. Journal of Engineering Physics,1961, (6):62-68.
    [61]伍沅,陈煜,刘华彦.浸没循环撞击流反应器:极具应用潜力的液相和液固相反应装置[J].湖北化工,1999,16(6):38-40.
    [62]伍沅.浸没循环撞击流反应器[P].中国专利,ZL002303264,2000207206.
    [63]Daniele L M, Liliana R, Antonelle A B. Design and scale-up of chemical reactors for nanoparticles precipitation [J]. AIChE Journal,2006,52(5):1877-1887.
    [64]王丽军,吴玮,李希.T型微通道结构中液液两相流动与传质规律[J].化工学报,2011,62(10):2713-2720.
    [65]Benin J, Maio W G D, Morin C F. Automatic vortex mixer [P]. United States Patent 4848917.
    [66]乐军,陈光文,袁权.微观混合技术的原理和应用[J].化工进展,2004,23(12):1271-1276.
    [67]王维,阎红,潘艳秋,王喜忠.撞击流技术的研究进展及应用前景[J].化工进展[J],1999,18(4):8-11.
    [68]Lowe H, Ehrfeld W, Hessel V, et al. Micromixing technology [A]. In proceedings of the 4th international conference on microreaction technology (IMRET 4) [C]. Atlanta:American Institute of Chemical Engineers Topic Conference Proceeding,2000:31-47.
    [69]Richard G, Loui S E D, Jacques T M M. Residence time distribution in extruders determined by in line ultrasonic measurements [J]. Advanced in Polymer Technology,1996,15(2):111-125.
    [70]Tomas J A, Sebastiao V C. In line optical detection in the transient state of extrusion polymer blending and reactive processing [J]. Polymer Engineering and Science,2005,45 (1):11-19.
    [71]Ajay K, Girish M G, David D J, et al. Digital image processing for measurement of residence time distribution in a laboratory extruder [J]. Journal of Food Engineering,2006,75 (2) 237-244.
    [72]Emine Uu, James F F. Geometric mean vs arithmetic mean in extrusion residence time studies [J]. Polymer Engineering and Science,2001,41 (5):743-751.
    [73]Hu G H, Kadri I H. On-line measurement of the residence time distribution in screw extruders [J]. Polymer Engineering and Science,1999,39 (5):930-939.
    [74]Wolf D, White D H. Experimental study of the residence time distribution in plasticating screw extruders [J]. AICHE Journal,1976,22 (1):122-131.
    [75]Gifford S, Costas T. The effects of kneading block design and operating conditions on distributive mixing in twin screw extruders [J]. Polymer Engineering and Science,2000,40 (5):1095-1106.
    [76]胡立舜,俞志楠,沈军杰,等.循环浆态床气体停留时间分布的研究[J].化学反应工程与工艺,2006,22(6):519-525.
    [77]Hoffmann M, Schllter M, Rabiger N. Experimental investigation of liquid-liquid mixing in T-shaped micromixers using μ-LIF and μ-PIV [J]. Chemical Engineering Science,2006,61(9):2968-2976.
    [78]林苛利,毕荣山,谭心舜,等.利用面激光诱导荧光技术研究喷射器内液-液湍流混合特性[J].高校化学工程学报,2009,23(1):28-33.
    [79]Meinhart C D, Wereley S T, Santiag J G PIV measurement of a microchannel flow [J]. Experiments in Fluids,1999,227(5):414-419.
    [80]Danckwerts P V. The effects of incomplete mixing on homogeneous reactions [J]. Chemical Engineering Science,1958,8(1-2):93-102.
    [81]Danckwerts P V. The definition and measurement of some characteristics of mixtures [J]. Applied Science Research A,1952(3):279-296.
    [82]Bourne J R, Kozichi F, Rys P. Mixing and fast chemical reaction—Ⅰ:Test reactiongs to determine segregation [J]. Chemical Engineering Science,1981, 36(10):1643-1648.
    [83]Bourne J R. The characterization of micromixing using fast multiple reactions [J]. Chemical Engineering Communication,1982,16(1-6):79-90.
    [84]Bourne J R, Hilber C, Tovstiga G Kinetics of the azo coupling reactions between 1-naphthol and diazotised acid [J]. Chemical Engineering Communication,1985, 37(1-6):293-314.
    [85]Assirelli M, Bujalski W, Eaglesham A, et al. Study of micromixing in a stirred tank using a rushton turbine:Comparision of feed position and other mixing devices [J]. Trans IChemE,2002,80, part A:855-863.
    [86]肖杨,伍沅.浸没循环撞击流反应器中微观混合的影响因素[J].华中师范大学学报,2006,40(2):226-229.
    [87]焦维洲,刘有智,祁贵生,等.化学偶合法研究IS-RPB反应器微观混合特性[J].化学工程,2007,35(5):36-39.
    [88]Guichardon P, Falk L, Villermaux J. Extension of a chemical method for the study of micromixing process in viscous media [J].Chemical Engineering science,1997,52(24):4649-4658.
    [89]Ying Y, Chen G W, Zhao Y C, et al. A high throughput methodology for continuous preparation of monodispersed nanocrystals in micro fluidic reactors [J]. Chemical Engineering Journal,2008,135(3):1-7.
    [90]李友凤,叶红齐,何显达,等.撞击流混合器微观混合性能的研究[J],高校化学工程学报,2012,26(1):49-55.
    [91]楮广文,宋韵华,陈建明,等.碘-碘化物反应体系离集指数的修正)[J].化工学报,2005,56(10):1856-1868.
    [92]Morteza S, Behrooz Z. Modeling of the residence time distribution and application of the continuous two impinging streams reactor in liquid-liquid reactions [J]. Chemical Engineering and Technology,2005,28(1):61-66.
    [93]Gobby D, Angeli P, Gavriilidis A. Mixing characteristics of T-type micromfluidic mixers [J]. Journal of Micromechanics and Microengineering,2001,11(2):126-132.
    [94]Charinrat S, Sakamon D. Numerical simulation of flow and mixing behavior of impinging streams of shear-thinning fluids [J]. Chemical Engineering Science, 2006,61(15):4884-4892.
    [95]Bekenkamp D, Desia A, Yang X, et al. Microfabricated silicon mixers for submillisecond quench-flow analysis [J]. Analytical Chemistry.1998,70(2): 232-236.
    [96]Engler M, Kockmann N, Kiefer T. Numerical and experimental investigations on liquid mixing in static micromixers [J]. Chemical Engineering Journal,2004, 101:315-320.
    [97]Morteza S, Behrooz Z. Modeling of the residence time distribution and application of the continuous two impinging streams reactor in liquid-liquid reactions [J]. Chemical Engineering Technology,2005,28(1):61-66.
    [98]倪建军,梁禽锋,代正华,等.撞击流气化炉内气粒两相流动的数值模拟[J].化工学报,2009,60(4):864-871.
    [99]Qian D Y, Lawal A. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel [J]. Chemical Engineering Science,2006,61(23): 7609-7625.
    [100]伍沅.撞击流中连续相研究重点的转移[J].化工进展,2003,22(10):1066-1071.
    [101]Polat S. Heat and mass transfer in impingement drying [J]. Drying Technology,
    [102]Francis N D, Wepfer W J. Jet impingement drying of a moist porous solid [J]. International Journal of Heat and Mass Transfer,1996,39(9):1911-1923.
    [103]伍沅.武汉化工学院.循环撞击流干燥机[P]. CN ZL00230326.4.2000.
    [104]Leiner A I, Lainer Yu A, Israfilov T D, et al. Investigation of the process of evaporation of sail solutions in apparatus with impinging streams [J]. Non-Ferrous Metallurgy,1976,6:37-40.
    [105]Kuts P S, Elperin I T, Tutova E G, et al. Apparatus for drying of thermolabile solutions or suspension [P]. RU 373496.1973.
    [106]Tamir A, Herskowist D. Absorption of CO2 in a new two impinging streams absorber [J]. Chemical Engineering Science,1985,40(12):2149-2151.
    [107]Tamir A. Absorption of acetone in a two impinging streams absorber [J]. Chemical Engineering Science,1986,41(12):3023-3030.
    [108]Gaddis E S, Vogelpohl A. The impinging-streams reactor:A high performance loop reactor for mass transfer controlled by chemical reactions [J]. Chemical Engineering Science,1992,47(9-11):2877-2882.
    [109]Atsushi T M, Chen W. Expansion of Supercritical Suspensions in Impinging-Streams Reactors [J]. Powder Technology,2003,138(2-3):211-215.
    [110]Daniele L M, Federica O. Production of TiO2 nanoparticles with controlled characteristics by means of a Vortex Reactor [J]. Chemical Engineering Journal, 2009,146(3):456-465.
    [111]陈斌,包传武,伍沅.撞击流反应器中反应动力学研究[J].河南化工,2006,23(10):18-19.
    [112]Zhou Y X, Wu Y, Bao C P. Crystal-growth rate of di-sodium hydrogen phosphate in impinging streams crystallizer [J]. Chemical Engineering (China), 2007,35(12):12-17.
    [113]陈光文,袁权.微化工技术[J].化工学报,2003,54(4):427-439.
    [114]Marchisio, D, Rivautella, L, Barresi, A. Design and scale-up of chemical reactors for nanoparticles precipitation [J]. AIChE Journal,2006,52, (5): 1877-1887.
    [115]Fournier M C, Falk L, Villermaux J. A new parallel competing reaction system for assessing micromixing efficiency-experimental approach [J]. Chemical Engineering Science,1996,51 (22):5053-5064.
    [116]Nouri L H, Legrand J, Benmalek N, et al. Characteristics and comparison of the micromixing efficiency in torus and batch stirred reactors [J]. Chemical Engineering Journal,2008,14291):78-86.
    [117]王琦安,王洁欣,余文,等.微通道反应器微观混合效率的实验研究[J].北京化工大学学报,2009,36(3):1-5.
    [118]纪利俊,刘海峰,王辅臣,等.撞击流反应器停留时间分布[J].华东理工大学学报,2006,32(1):24-27.
    [119]曹晓畅,张延安,赵秋月,等.管式搅拌反应器停留时间分布的数值模拟[J].过程工程学报,2008,8(1):94-97.
    [120]Danckwerts P V. The effect of incomplete mixing on homogeneous reactions. Chemical Engineering Science,1958,13(8):93-98.
    [121]Fournier M C, Falk L, Villermaux J. A new parallel competing reaction system for assessing micromixing efficiency-determination of micromixing time by a simple model [J]. Chemical Engineering Science,1996,51 (23):5187-5192
    [122]Guichardon P, Falk L. Characterization of micromixing efficiency by the iodide-iodate reaction system. Part (I):Experimental procedure [J]. Chemical Engineering Science,2000,55(19):4233-4243.
    [123]赵玉潮,应盈,陈光文,等.T形微混合器内的混合特性[J].化工学报,2006,57(8):1884-1890.
    [124]向阳.新型反应器微观混合—沉淀过程的理论、实验及应用研究[D].北京:北京化工大学,2009.
    [125]张攀峰,邓松圣,张福伦.液-液动态旋流器内两相湍流的数值分析[J].中国储运,2011,12:122-124.
    [126]Rousseaux J M. Muhr H, Plasari E. Mixing and micromixing times in the forced vortex region of unbaffled mixing devices [J], Canadian Journal of Chemical Engineering,2001,79(5):697-707.
    [127]Phillips R, Rohani S, Baldyga J. Micromixing in a single-feed semi batch precipitation process [J], AIChE Journal,1999,45(1):82-92.
    [128]周玉新,伍沅,包传平.液体连续相撞击流特性及其对动力学的影响[J].广西轻工业,2007(4):29-31.
    [129]Tegrotenhuis W E, Cameron R J, Vismanathan V V. Solvent extraction and gas absorption using microchannel contactors//Ehrfeld W. Proceedings of Third International Conference on Microreaction Technology [C]. Berlin:Springer, 2000:541-549.
    [130]Jahnish K, Baerns M, Hessel V, et al. Direct Fluorination of toluene using elemental fluorine in gas/liquid microreactors [J]. Journal of Fluorine Chemistry,2000,105(1):117-128.
    [131]De M N, Gunther A, Schmidt M A, et al. Microfabricated multiphase reactors for the selective direct fluorination of aromatics [J]. Industrial & Engineering Chemistry Research,2003,42(4):698-710.
    [132]Yeong K K, Gavriilidis A, Zapf R, et al, Experimental studies of nitrobenzene hydrogenation in a microstructured falling film reactor [J]. Chemical Engineering Science,2004,59(16):3491-3494.
    [133]Kobayashi J, Mori Y, Okamoto K, et al. A microfluidic device for conducting gas-liquid-solid hydrogenation reactions [J]. Science,2004,304(5675): 1305-1308.
    [134]Diego G D, Jose M N. Carbon dioxide absorption to Theologically complex liquid phases [J], Chemical Engineering Journal,2009,149(l-3):50-56
    [135]Mandal A, Kundu G, Mukherjee D. Interfacial area and liquid-side volumetric mass transfer coefficient in a down flow bubble column [J], Canadian Journal of Chemical Engineering.2003,8(2):212-219.
    [136]Jurascik M, Blazej M, Annus J, et al. Experimental measurements of volumetric mass transfer coefficient by the dynamic pressure-step method in internal loop airlift reactors of different scale [J], Chemical Engineering Journal.2006, 125(2):81-87.
    [137]王志魁.化工原理第四版[M].化学工业出版社,2010年6月.
    [138]乐军,陈光文,袁权.微通道内气-液传质研究[J].化工学报,2006,57(6):1296-1303.
    [139]Danckwerts P K, Sharma M M. Consecutive reactions:role of mass transfer reactors [J]. Chemical Engineering Science,1974,29(2):561-569.
    [140]李正兴,袁惠新,曹仲闻.静态超重力(旋流器)中吸收过程的研究[J].煤矿机械,2006,27(1):24-27.
    [141]Haverkamp V. Characterization of gas/liquid microreactors. Proceedings of the Fifth International conference on Microreaction Technology [C]. Berlin: Springer,2001:202-213.
    [142]Kockmann N, Dreher P, Woias P. Unsteady laminar flow regimes and mixing in T-shaped micromixer [C]. ASME 5th International Conference on Nanochannels, Microchannels, and Minichannels, Puebla, Mexico, June 18-20, 2007:671-678.
    [143]Yue J, Chen G W, Yuan Q, et al. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel [J]. Cheimcal engineering Science,2007,62(7):2096-2108.
    [144]Akbar M K, Plummer D A, Ghiaasiaan S M. On gas-liquid two-phase flow regimes in microchannels [J]. Chemical Engineering Science,2003,29(5): 855-865.
    [145]Tortopidis P, Bontozoglou V. Mass transfer in gas-liquid flow in small diameter tubes [J]. Chemical Engineering Science,1997,52(14):2231-2237.
    [146]马友光,付涛涛,朱春英.微通道内气液两相行为研究进展[J].化工进展,2007,26(8):1068-1074.
    [147]Scott D S, Hayduk W. Gas absorption in horizontal corruent bubble flow [J]. Canadian Journal of Chemistry and engineering,1966,44(3):130-136.
    [148]Charpentier J C. Recent progress in two phase gas-liquid mass transfer in packed beds [J]. Chemical Engineering Journal,1976,11:161-181.
    [149]Kalic A, Heindel T J. Correlating gas-liquid mass transfer in stirred-tank reactor [J]. Chemical Engineering research and Design,2006,84(3):239-245.
    [150]Luo D, Ghiaasiaan S M. Liquid-gas interphase mass transfer in cocurrent vertical two-phase channel flows [J]. Chemistry Engineering Journal,1973, 5(1):23-31.
    [151]Herskowits D, Herskowits V, Stephan K, et al. Characterization of a two-phase impinging jet absorber(I):Physical absorption of CO2 in water [J]. Chemical Engineering Science,1988,43(10):2773-2780.
    [152]Dlusa E, Wronski S, Hubacz R. Mass transfer in gas-liquid Couette-taylor flow reactor [J]. Chemical Engineering Science,2001,56(3):1131-1136.
    [153]Yue J, Luo L, Gonthier Y, et al. An experimental investigation of gas-liquid two-phase flow in single microchannel contactor [J]. Chemical Engineering Science,2008,63(16):4189-4202.
    [154]Fortescue G E, Pearson J R. Most absorption models propose that the mass transfer coefficient varies with exponent of the Schmidt number [J]. Chemical Engineering Science,1967,22(9):1163-1176.
    [155]Lamont J C, Scott D S. An eddy cell model of mass transfer into the surface of a turbulent liquid [J]. AIChE Journal,1970,16(4):513-519.
    [156]Luk S, Lee Y H. Mass transfer in eddies close to air-water interface [J]. AIChE Journal,1986,32(9):1546-1554.
    [157]Hence J O.湍流[C].黄永念,严大椿译.北京:科学出版社,1987.
    [158]罗和安,胡蓉蓉,刘平乐.自由界面气液传质系数的旋涡作用模型[J].化工学报,2002,53(11):1164-1168.
    [159]Kresta S M, Wood P E. The flow field produced by a pitched blade turbine: Characterization of the turbulence and estimation of the dissipation rate [J]. Chemical Engineering Science,1993,48(10):1761-1774.
    [160]曹仲文,袁慧鑫,李正兴.旋流反应器的气液传质系数的研究[J].石油化工高等学校学报,2006,19(4):85-87.
    [161]牛海宁,潘立卫,王树东.微通道气液两相流型及界面面积测定[J].现代化工,2009,29(5):60-64.
    [162]Zhang Y M, Yu H M. Synthesis of YAG by the co-precipitation method [J]. Ceramics International,2009,35(5):2077-2081.
    [163]Lee M H, Kang Y J, Myung S T. Synthetic optimization of Li [Ni1/3Co1/3 Mn1/3]O2 via co-precipitation [J]. Electrochimica Acta,2004,50(4):939-948.
    [164]Carlos M. P, Michael E, Andrew P. The composition of solid solutions crystallizing from aqueous solutions:the influence of supersaturation and growth mechanisms [J]. Chemical Geology,2000,168(3):195-210.
    [165]Jia Z Q, Liu Z Z, He F. Synthesis of nanosized BaSO4 and CaCO3 particles with a membrane reactor:effects of additives on particles [J]. Journal of Colloid and Interface Science,2003,266(2):322-327.
    [166]Danckwerts P V. The effect of incomplete mixing on homogeneous reactions [J]. Chemical Engineering Science,1958,8(1):93-101.
    [167]Carlos M P, Michael E, Andrew P. The composition of solid solutions crystallizing from aqueous solutions:the influence of supersaturation and growth mechanisms [J]. Chemical Geology,2000,168(3):195-210.
    [168]Wang H Z, Nakamura H, Uehara M. Preparation of Titania particles utilizing the insoluble phase interface in a microchannel reactor [J]. Chemical Communications,2002,2(14):1462-1463.
    [169]Kiwamu S, Kazuhito K, Kunio A. Hydrothermal synthesis of ZnO nanocrystals using microreactor [J]. Materials Letters,2004,58(25):3229-3231.
    [170]Shirure V S, Pore A S, Pangarkar V G. Intensification of precipitation using narrow channel reactors:magnesium hydroxide Precipitation [J]. Industrial and Engineering Chemistry Research,2005,44(15):5500-5507.
    [171]Pennemann H, Forster S, Kinkel J, et al. Improvement of dye properties of the azo pigment yellow 12 using a micromixer-based process [J]. Organic Process Research Deviation,2005,9(2):188-192.
    [172]Wagner J, Kohler J M. Continuous synthesis of gold nanoparticles in a microreactor [J]. Nano Letters,2005,5(4):685-691.
    [173]Ying Y, Chen G W, Zhao Y C, et al. A high throughput methodology for continuous preparation of monodispersed nanocrystals in microfluidic reactors [J]. Chemical Engineering Journal,2008,135(3):209-215.
    [174]Schwarzer H C, Schwertfirm F, Manhart M. Predictives simulation of nanoparticles precipitation based on the population balance equation [J]. Chemical Engineering Science,2006,61(1):167-181.
    [175]Guo S C, David G E, Li D Q, et al. Experimental and Numerical Investigation of the Precipitation of Barium Sulfate in a Rotating Liquid Film Reactor [J]. AIChE Journal,2009,55(8):2024-2034.
    [176]Limin Q, Helmut C, Markus A. Control of barite morphology by double-hydrophilic block copolymer [J].Chemistry of materials,2000,12(8):2392-2403.
    [177]樊晶.撞击流微反应器性能及在BaSO4粉体制备中的应用[D].长沙:中南大学,2008.
    [178]Kockmann N, Dreher S, Woias P. Unsteady Laminar Flow Regimes and Mixing in T-shaped Micromixers [C].ASME-ICNMM 2007-30041,2007.
    [179]Bokenkamp D, Desia A, Yang X, et al. Microfabricated silicon mixers for submillisecond quench-flow analysis [J]. Analytical Chemistry.1998,70(2): 232-236.
    [180]Nielsen A E, Kinetics of Precipitation [M]. New York:Macmilla Corporation: 1964.
    [181]徐华蕊,李凤生,陈舒林,等.沉淀法制备纳米级粒子的研究一化学原理及影响因素[J].化工进展,1996(5):29-31.
    [182]王明德编.分析化学[M].济南:山东教育出版社,1984年9月.
    [183]Schwarzer h c, Peukert W G. Experimental investigation into the influence of mixing on nanoparticles precipitation [J]. Chemical Engineering Technology, 2002,25(6):657-661.
    [184]Nielsen A E. Nucleation and growth of crystals at high supersaturation [J]. Krist. Technik,1969,4:17-38.
    [185]蔡卫权,李会泉,张懿.SB粉水热种分过饱和铝酸钠溶液制备拟薄水铝石[J].无机化学学报.2006,22(7):1303-1306.
    [186]Liu R J, Li Y J, Zhao H, et al. Synthesis and characterization of Al2O3 hollow spheres [J]. Material letters,2008,62(17-18):2593-2595.
    [187]Hassanzadeh-Tabrizi S A, Taheri-Nassaj E, Sarpoolakr H. Synthesis of an alumina-YAG nanopowder via sol-gel method [J]. Journal of Alloys and Compounds.2008,456(1-2):282-285.
    [188]Rashidi F, Kharat A N, Rashidi A M, et al. Fractal geometry approach to describe mesostructured boehmite and gamma-alumina nanorods [J]. European Journal of Inorganic Chemistry,2010,106(10):1544-1551.
    [189]杨清河,李大东.NaAlO2-CO2法制备拟薄水铝石规律的研究[J].石油炼制与 化工,1999,30(4):59-63.
    [190]伍沅,陈振,李国朝.液体连续相撞击流反应制取纳米粉体[C].2005年全国粉体设备-技术-产品信息交流会暨纳米颗标准培训班论文集,中国北京,2005:74-78.
    [191]李友凤,周继承,廖立民,等.超重力碳分反应沉淀法制备分散性纳米氢氧化铝[J].硅酸盐学报,2006,34(10):1290-1294.
    [192]刘有智,李裕.旋转填料床中铝酸钠溶液碳化机理分析[J].华北科技学院学报,2003,24(4):253-256.
    [193]吴争平.氢氧化铝结晶行为及其晶体微观叠合的理论研究[D].长沙:中南大学,2007.
    [194]王东光,郭奋,陈建峰,等.超重力法碳分制备纳米三是氧化铝的研究[J].北京化工大学学报,2006,33(3):1-5.
    [195]崔国文.表面与界面[M].北京:清华大学出版社,1990.
    [196]Houslow M J. A discretized population balance for nucleation, growth and aggregation [D]. Ph D Thesis,1989, Australia:University of Adelaide.
    [197]丁绪淮.工业结晶[M].化学工业出版社,北京,1985.
    [198]Misra C, White E T. Kinetics of crystallization of aluminum trihydroxide from seeded caustic aluminate solutions [J]. Chemistry & Engineering Progress Symposium Series,1971,67(110):53-65.
    [199]Halfon A, Kaliaguine D S. Alumina trihydrate crystallization part 1:Secondary nucleation and growth rate kinetics [J]. The Canadian Journal of Chemical Engineering,1976,54(3):160-167.
    [200]李洁.过饱和铝酸钠溶液结构及分解机理的研究[D].长沙:中南大学,2002.
    [201]Mullin J W. Crystallization,3rd [M]. Butterworth-Heinamann Ltd., London, 1993.
    [202]Sohnel O, Mullin J W. Interpertation of crystallization induction periods [J]. Journal of Colloid and Interface Science,1988,123(1):43-50.
    [203]Scohel O, Garside J. Precipitation [M]. Butterworth-Heinemann Limited, Oxford,1992.
    [204]Misra C, White E T. Crystallization of Bayer aluminium trihydroxide [J]. Journal of Crystal Growth,1971,8(2):172-178.
    [205]Brown N. Secondary nucleation of aluminium trihydroxide in seededcaudtic alumiuate solutions [J]. Journal of Crystal Growth,1972,16(2):163-167.
    [206]Woods I. Investigation into the induction time in the precipitation of the seeded batches caustic aluminate solution [D]. Department of chemical engineering, University of Queensland,1983.
    [207]Wilkinson T. The induction time in the precipitation of the seeded batches caustic aluminate solution [D].Department of chemical engineering, University of Queensland,1982.
    [208]王志,毕诗文,杨毅宏,等.碳酸化分解的机理研究与进展[J].轻金属,2001,(12):13-15.
    [209]彭卫国.螺旋通道型旋转床(RBHC)可控制备大孔容纳米纤维状拟薄水铝石[D].湘潭:湘潭大学,2007.
    [210]Rossiter D S, Fawell P D, et al. Investigation of unseeded nucleation of gibbsite, Al(OH)3 from synthetic Bayer liquors [J]. Journal of Crystal Growth,1998, 191:522-536.
    [211]Hao Z D, Zhang J H, Zhang X, et al. White emitting diode by using alpha-Ca2P2O7:Eu2+, Mn2+phosphor [J]. Applied Physics Letters,2007,90(26): 261113-261119.
    [212]Jang H S, Jeon D Y. Yellow-emitting Sr3SiO5:Ce3+, Li+phosphor for white-light-emitting diodes and yellow-light-emitting diodes [J]. Applied Physics Letters,2007,90,041906:(1-3).
    [213]Zhang Y F, Li L, Zhang X S, et al. Temperature effects on photoluminescence of YAG:Ce3+phosphor and performance in white light-emitting diodes [J]. Journal of Rare Earths,2008,26(3):446-449.
    [214]Lakshminar A N, Varadaraju U V. White-light generation in Sr2Si04:Eu2+,Ce3+ under near-UV excitation [J]. Journal of the Electrochemical Society,2005, 152(9):H152-H156.
    [215]Li Y X, Li Y Y, Min Y L, et al. Synthesis of YAG:Ce3+phosphor by polyacrylamide gel method and promoting action of alpha-Al2O3 seed crystal on phase formation [J]. Journal of Rare Earths,2007,23(5):517-523.
    [216]Zhang N, Wang D J, Li L, et al. YAG:Ce3+phosphors for Wled via nano-pesudoboehmite sol-gel route [J]. Journal of Rare Earths,2006,24(3): 294-297.
    [217]Pan Y X, Wu M M, Su Q. Tailored photoluminescence of YAG:Ce3+phosphor through various methods [J]. Journal of Physics and Chemistry of Solids,2004, 65(5):845-850.
    [218]Jong S B, Sung B K, Jung H J, et al. Photoluminescence characteristics of Li-doped Y2O3:Eu3+thin film phosphors [J]. Thin Solid Films,2005, 471(1-2):224-229.
    [219]Li X, Li Q, Wang J Y, et al. Effect of process parameters on the synthesis of YAG nano-crystallites in supercritical solvent [J]. Journal of alloys and compounds,2006,421(1-2):298-302.
    [220]Zhang S S, Zhuang W D, He T. Study on co-precipitation synthesized YAlOCe yellow phosphor for white LED [J]. Journal of Rare Earth,2010,8(5):713-716.
    [221]Zhang J H, Jia M L, Lu S Z, et al. Study on UV excitation properties of Eu3+at the S6 site in bulk and nanocrystalline cubic Y2O3 [J]. Journal of Rare Earths, 2004,22(1):45-48.
    [222]Pan Y X, Wu M M, Su Q. Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphor [J]. Materials Science & Engineering B:Solid State Materials Advanced Technology,2004,106 (3):251-256.
    [223]Chiang C C, Tasi M S, Hsiao C S, et al. Synthesis of YAG:Ce phosphor via different aluminum sources and precipitation processes [J]. Journal Alloy & Compound,2006,416(1-2):265-169.
    [224]Haranath D, Chander H, Sharma P, et al. Enhanced luminescence of Y3Al5O12:Ce3+ nanophosphor for white light-emitting diodes [J]. Applied Physics Letters,2006,89(17):173118-173118-3.
    [225]Zhang S S, Zhuang W D, Zhao C, et al. Study on (Y,Gd) 3(Al,Ga) 5O12:Ce3+ phosphor [J]. Journal of Rare Earths,2004,22(1):118-123.
    [226]郭瑞,曾人杰,吴音,等.微乳液法制备纳米球形YAG:Ce3+荧光粉及其发光性能[J].硅酸盐学报,2008,36(3):352-357.
    [227]Guo R, Zeng R J, Wu Y, et al. Preparation and photoluminescence properties of YAG:Ce3+ spherical phosphor nano-powders by the microemulsion method [J]. Journal of Chinese Ceramics Society (in Chinese),2008,36(3):352-357.
    [228]Kang Y C, Lenggoro I W, Park S B, et al. YAG:Ce phosphor particles prepared by ultrasonic spay pyrolysis [J]. Materials Research Bulletin,2000,35 (5): 789-798.
    [229]Yang Z P, Li X, Yang Y, et al. The influence of different conditions on the luminescent properties of YAG:Ce phosphor formed by combustion [J]. Journal of Luminance,2007,122-123(1-4):707709.
    [230]Katelnikoyas A, Vitta P, Pobedinskas P, et al. Photoluminescence in sol-gel derived YAG:Ce phosphors [J]. Journal of Crystal Growth,2007,304(2): 361-368.
    [231]Mancic L, Marinkovic K, Marinkovic B A, et al. YAG:Ce3+ nanostructured particles obtained via spray pyrolysis of polymeric precursor solution [J]. Journal of the European Ceramic Society,2010,30(2):577-582.
    [232]Chiang C C, Tsai M S, Hsiao C S, et al. Synthesis and photoluminescent properties of Ce doped terbium aluminum garnet phosphors [J]. Journal of Alloys Compdound,2006,416:265.
    [233]Vrolijk J W G A, Willems J W M M, METSELAARA R. Coprecipitation of yttrium and aluminum hydroxide for preparation of yttrium aluminum garnet [J]. European ceramic society conference [J],1989,1:105-108.
    [234]龙震,陆田野,宋浩亮,等.共沉淀-流变相法制备YAG:Ce [J].中国稀土学报,2010,28(4):399-402.
    [235]向阳,王琦安,杨旷,等.微通道反应器中沉淀过程的工艺研究[J].高校化学工程学报,2009,23(3):474-479.
    [236]Wu G H, Zhou H Z, Zhu S L. Precipitation of barium sulfate nanoparticles via impinging streams [J] Materials Letters,2007,61(1):168-170.
    [237]Rousseaux J M. Muhr H, Plasari E. Mixing and micromixing times in the forced vortex region of unbaffled mixing devices [J]. Canada Journal of Chemical Engineering,2001,79(5):697-707.
    [238]Ageeth A B, Andries M. Luminescence quantum efficiency of nanocrystalline ZnS:Mn2+.1. Surface passivation and Mn2+ concentration [J]. Journal of physical Chemistry B,2001,105:10197-10202.
    [239]李江,潘浴柏,张俊计,等.共沉淀法制备钇铝石榴石(YAG)纳米粉体[J].硅酸盐学报,2003,31(5):490-493.
    [240]袁乐,徐华蕊.水热均匀沉淀-熔盐煅烧法制备YAG:Ce3+荧光粉及其发光性能的研究[J].材料导报,2009,23(9):18-21.
    [241]Kang Y C, Lenggorol W, Park S B, et al. YAG:Ce3+ phosphor particles prepared by ultrasonic spay pyrolysis [J].Materials Research Bulletin,2000, 35 (5):789.
    [242]Yuan L, XU H R. Preparation of YAG:Ce3+phosphor by hydrothermal homogeneous precipitation-molten salt method and its luminescent properties [J]. Materials Revenue,2009,23(9):18-21.
    [243]黄燕,胡运生,腾晓明.熔盐对Y2O3:Eu3+荧光粉发光强度和颗粒大小的影响[J].稀土学报,2007,25:697-700.
    [244]仝世红,卢铁城.共沉淀中影响YAG纳米粉体性能的因素[J].河南师范大学学报(自然科学版),2009,37(6):155-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700