多芯光纤激光器及新波长固体激光器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究内容包括两部分,一部分是多芯光纤激光器的理论研究;另一部分是掺钕钆镓石榴石(Nd:GGG)晶体激光器在新波长运转的实验研究。
     随着高功率光纤激光器的应用范围逐渐从光通信领域扩展到机械加工、材料处理、激光医疗、热核聚变、航空和军事等行业,百瓦乃至千瓦量级高功率光纤激光器成为当今光电子技术研究领域中最炙手可热的研究课题。但是由于非线性效应、放大自发辐射及热损伤阈值等因素的限制,传统单根光纤激光器的输出功率受到限制。因此科学家们采用双包层泵浦技术、光子晶体光纤、光纤激光器相干组束等多种方案,来提高光纤激光器的输出功率。而多芯光纤是最近提出的一种新的相干合成解决方案,同时满足高激光功率输出、稳定的位相锁定和高的光束质量,是实现高功率光纤激光器的最佳方案。
     开拓新波段以适应各种应用需求一直是晶体激光器的重要研究方向。掺钕钆镓石榴石(Nd:GGG)晶体与其他掺钕晶体相比,具有优良的激光性能和物理化学性能,已经在大功率热容激光器和LD泵浦激光器中得到广泛应用。目前已报道的Nd:GGG晶体激光器输出波长一般为1062nm,1331 nm和938 nm。
     目前1110nm激光主要由掺镱光纤激光器获得,应用于通信、机械加工等领域。1110nm激光可以作为产生谐波的光源,倍频产生555 nm的黄绿光,位于人眼最敏感波长,在医疗、生物检测分析等方面有重要应用。
     本论文研究内容可概括为两个方面:一方面是关于多芯光纤中超模传导特性,超模选择,及多芯光纤激光器的理论研究,另一方面是掺钕钆镓石榴石(Nd:GGG)晶体激光性能的研究,对其在新波长1110 nm附近的输出特性进行实验研究和分析。
     本论文主要研究内容包括:
     1.理论推导获得多芯光纤中的耦合模方程,并计算和分析三芯、四芯、六芯和七芯光纤中的超模特性,获得各个超模的近场和远场强度分布。计算各个超模的衍射及传输特性时,分别采用M2因子和桶中功率(PIB)来衡量其光束质量。通过比较可以得出在任意多芯光纤中,同相位超模总是具有最大的传播常数和最好的光束质量,其远场强度分布为准高斯分布。桶中功率(PIB)的计算在非连续模场分析中得到更好的应用。解析的耦合模理论适用于任何符合弱耦合的多芯光纤,与数值法相比更加直观。
     2.以三芯、四芯、六芯和七芯光纤为例,分别对环型、有心型多芯光纤中各个超模与单模光纤中的基模的耦合效率进行讨论。在单模光纤纤芯半径和两种光纤之间的间隙距离均为变量的情况下,对不同类型多芯光纤中的各个超模和单模光纤基模之间的耦合效率进行分析和优化,理论结果表明由于环型和有心型光纤中超模分布的不同特性,其与单模光纤中基模的耦合呈现出不同特点。为两种光纤的耦合连接提供了理论依据。
     3.基于三芯、四芯、六芯和七芯光纤中耦合效率的分析,提出一种新型选模机制,即利用单模光纤进行选模。提出利用耦合效率差来衡量不同机制中同相位超模的选择效率,优化后与传统塔尔伯特腔进行比较,证明单模光纤选模机制对环型和有心型多芯光纤中同相位超模的选择均具有优越性和灵活性,在实际应用中具有很大潜力。
     4.建立速率方程,以环形六芯光纤和有心型七芯光纤为例,对基于单模光纤选模机制的多芯光纤激光器进行理论模拟,获得信号光的功率传输和输出特性。单模光纤选模为求解速率方程提供边值条件,因此系统中耦合效率的变化将引起信号光输出功率的变化。模拟结果显示信号光输出和耦合效率成正比,同相位超模输出功率在总输出功率中所占比例与耦合效率差几乎成正比,因此验证了采用耦合效率差来衡量同相位超模选择效率的合理性。理论模拟显示基于单模光纤选模机制的六芯和七芯光纤激光器可以获得较高的光-光转换效率,优化后均可以实现同相位超模的单模输出,该研究为高功率高亮度的多芯光纤激光器的实现提供了理论基础。
     5.对掺钕钆镓石榴石(Nd:GGG)晶体的激光性能进行研究,获得1110 nm激光输出。实验过程中获得LD侧泵Nd:GGG晶体激光器1110nm和1105nm双波长连续运转,两种波长之间存在竞争。采取在谐振腔中插入另外一片平面镜的方法,可以成功地将1110nm选择出来。该平面镜对1110nm,1105nm及808nm均高透,通过微调其相对激光方向的角度,可以改变不同波长处的腔内损耗,从而抑制1105 nm的振荡,实现1110nm单波长运转。本论文主要创新点如下:
     1.以耦合模理论和基尔霍夫衍射理论为基础,首次对环型三芯、六芯和有心型四芯、七芯光纤中的各个超模的近场及远场特性做了系统分析和比较,并采用M2因子和桶中功率(PIB)两种不同参数理论计算各个超模的光束质量因子,证明同相位超模的光束质量明显高于其他超模。所建立的完整理论模型,可以用来对任何满足弱耦合条件的多芯光纤进行完善的模场分析。
     2.首次对单模光纤和多芯光纤之间的模式耦合效率进行系统的分析和优化。通过调节单模光纤纤芯尺寸和两者之间的间隙距离,对耦合效率和耦合效率差进行理论优化,并展示了不同类型多芯光纤与单模光纤之间耦合的不同特点。理论模拟结果为实际实验操作过程中光纤之间的耦合提供详细可靠的参考依据。
     3.首次提出利用单模光纤对多芯光纤进行选模,在单模光纤选模机制下对两类光纤与单模光纤之间的耦合特性进行优化和比较,证明单模光纤选模可以完全抑制环型多芯光纤中的高阶超模,同时可以抑制有心型多芯光纤中除同相位超模和反相位超模以外的高阶超模。提出使用耦合效率差来衡量同相位超模的选择效率,通过与塔尔伯特腔比较,单模光纤对同相位超模的选择效率可以提高一倍以上,从而证明单模光纤选模机制的有效性和优越性。
     4.首次从理论上获得单模输出的基于单模光纤选模机制的全光纤多芯光纤激光器。基于速率方程理论,对单模光纤选模环型六芯光纤和有心型七芯光纤激光器进行理论模拟,证明此种机制下,信号光输出功率与耦合效率的大小成正比,而同相位超模在总输出功率中所占比例几乎与耦合效率差成正比,从而证明采用耦合效率差衡量同相位超模选模机制的科学性。优化后均可以得到同相位超模的单模输出,从而为实现高功率高亮度的全光纤多芯光纤激光器提供了理论依据。
     5.首次实验获得LD侧泵Nd:GGG晶体激光器在1110nm处的连续运转。首次实现了LD侧泵Nd:GGG晶体激光器1110nm和1105nm双波长连续运转,并采用插入高透平面镜从而改变腔内损耗的方法对两种波长之间的竞争进行控制,最终获得1110 nm处的单波长运转。
The research in this dissertation includes two parts. One is the theoretical research on multicore fiber laser, the other is the experimental research on Nd:GGG crystal laser operating at novel wavelengths.
     As the application of the high power fiber laser extends from optical communication to mechanical processing, material processing, laser medicine, thermonuclear fusion, aviation, military and other fields, high power fiber laser with hundreds or even thousands of watt output power has become one the hottest topics in the present optoelectronic technology area.
     At the same time, the output power of traditional single core fiber laser is limited by lots of factors, such as nonlinear effect, amplified spontaneous emission, and thermal damage threshold, and so on. Therefore scientists have applied methods like double-cladding pump technique, photonics crystal fiber, coherent beam combination of fiber lasers to scale the output power of fiber laser. And muticore fiber, which can guarantee high power laser output, stable phase-locking and good beam beam quality simultaneously, is lately raised for coherent beam comibination and is the best method to accomplish high power fiber laser.
     It is very important to develop new wavelengths to meet various application requirements. Compared to other Nd-doped crystal, Nd:GGG crystal has good lasing properties, as well as physical and chemical properties. It has been widely used for high power heat capacity lasers and LD pumped lasers. So far the reported Nd:GGG crystal lasers generally operate at 1062 run,1331 nm and 938 nm.
     Up to now 1110 nm laser has been obtained from Ytterbium-doped fiber lasers, and applied for communication, mechanical working and other fields. As a light source for second harmonic generation,1110 nm can be frequency-doubled to generate yellow-green laser at 555 nm, which is most sensitive for human eyes and has important application for medicine, biological test and so on.
     There are two general research topics in this thesis:one is theoretical research on supermode propagation properties of multicore fiber, supermode selection and muticore fiber laser; the other is research on lasing performance of Nd:GGG crystal, experimentally verifying and studying its operation at around 1110 nm.
     The content studied in this paper mainly includes the following several respects:
     1. The coupled-mode equation in multicore fiber is derived, and the supermode characteristics in three-core, four-core, six-core and seven-core fibers are calculated and analyzed, to obtain the near-field and far-field intensity distributions of each supermode. The M2 factor and power-in-bucket(PIB) are calulated to weight their beam quality during diffraction and propagation. The in-phase supermode of any mutlicore fiber always has the maximum propagation constant and best beam quality, and it has a Gaussian-like far-field distribution. The power-in-bucket(PIB) has better application for non-continuous mode fields. The analytical coupled-mode theory can be used for any multicore fiber with weakly-coupling, and is more intuitive than numerical methods.
     2. Take three-core, four-core, six-core and seven-core fibers as examples to discuss the coupling efficiency between supermodes of ring-type and concentric-type multicore fiber and fundamental mode of single-mode (SM) fiber. The coupling efficiencys are analyzed and optimized with core radius of SM fiber and the gap distance between the two fibers as variables. The theoretical results show their couplings with fundamental mode of SM fiber are different, which can be attributed to their different supermode profiles. The study provides good theoretical foundation for the coupling and connection between the two types of fibers.
     3. A new mode selection method by using single-mode fiber is proposed based on the analysis of coupling efficiencys of three-core, four-core, six-core and seven-core fibers. A parameter of coupling efficiency difference is put forward to measure the in-phase supermode selection efficiency in different mode selection schemes. The coupling efficiency difference is optimized and then compared to that in traditional Talbot cavity. The simulation results show the SM fiber mode selection scheme has superiority and flexiblility for in-phase supermode selection for both ring-type and concentric-type multicore fibers, and the scheme has great potential for pratical applications.
     4. Take ring-type six-core fiber and concentric-type seven-core fiber as examples, rate equations are established for multicore fiber laser with SM fiber mode selection scheme, to obtain the signal power properties. The SM fiber mode selection provides boundary condition for solving rate equations. So the signal power is affected by the coupling efficiency. Simulation results reveal the output power is propotional to the coupling efficiency, and the ratio of in-phase supermode output to total output is almost propotional to the coupling efficiency difference. It is proved to be reasonable using coupling efficiency difference to weight in-phase supermode selection. Simulation results show that single in-phase supermode output with high optical conversion efficiency can be achieved after optimization in six-core and seven-core fiber lasers based on SM fiber mode slection scheme. This study provides us theoretical foundation for high power, high brightness multicore fiber laser.
     5. Investigate the lasing behavior of Nd:GGG crystal and obtain 1110nm laser. In experiment, dual wavelength operation at 1110nm and 1105nm is obtained by diode-pumped Nd:GGG crystal laser, with competition existing between them. 1110 nm can be selected successfully by inserting a third plane mirror, which has high transmission at 1110nm,1105nm and 808nm. Adjusting its orientation slightly will change the intracavity losses of different wavelengths. Consequently 1105nm is suppressed, and single wavelength operation at 1110nm is achieved. The innovations in the thesis include:
     1. For the first time, systematic analysis and comparison has been done for three-core, six-core ring-type and four-core, seven-core concentric-type fibers based on coupled-mode theory and Kirchhoff diffraction theory. The Beam quality of supermodes is calculated with M2 factor and power-in-bucket (PIB). In-phase supermode is proved to have much better beam quality than other supermodes. The theoretical model established is suitable for any multicore fiber if weakly-coupling is satisfied.
     2. For the first time, the coupling efficiency between SM fiber and multicore fiber is systematically analyzed and optimized. The coupling efficiency and coupling efficiency difference are optimized by varing SM fiber core radius and the gap distance between two fibers. Different coupling characteristics of two types of multicore fiber with SM fiber have been demonstrated. Simulation results provide detailed and reliable basis for coupling between SM fibers and multicore fibers in practical operation.
     3. The mode selection scheme based on SM fiber is proposed for the first time. And the proposed scheme for two different types of multicore fiber is optimized and compared. In ring-type multicore fiber, the SM fiber can suppress all the high-order supermodes. In concentric-type multicore fiber, the SM fiber can suppress all the high-order supermodes except in-phase supermode and anti-phase supermode. The coupling efficiency difference is put forward to weight in-phase supermode selection. Compared to Talbot cavity, SM fiber can improve in-phase mode selection more than 100%, proving its effectiveness and superiority.
     4. For the first time, single mode output all-fiber multicore fiber laser based on SM mode selection is obtained theoretically. Based on rate equations, simulations on six-core ring-type and seven-core concentric-type fiber lasers have verified that, output power is propotional to coupling efficiency, and the ratio of in-phase supermode output to total output is almost propotional to coupling efficiency difference. Therefore coupling efficiency difference is proved to be quite reasonable to weight in-phase supermode selection. Single in-phase supermode output can be achieved after optimization. This study provides us theoretical foundation for high power, high brightness all-fiber multicore fiber laser.
     5. For the first time, continous wave operation at 1110 nm is obtained in diode-pumped Nd:GGG crystal laser in experiment. And continous wave dual wavelength operation at 1110 nm and 1105 nm are obtained for the first time. By inserting a third high transmission mirror to change the intracavity loss, single wavelength operation at 1110 nm is finally achieved.
引文
1. V. P. Gapontsev, "High power, kilo-Watt class fiber lasers are winning and securing new opportunities in automotive and heavy industry," in Technical Summary Digest, Photonics West, San Jose, USA,24-29 January 2004, LASE 2004,5335-32, Session 6. IPG Photonics, YLR-1000-SM Datasheet, in Catalog of High Power Lasers.
    2. J. Legrange, E. Vogel, K. Quol, D. Digiovanni, A. Hale, R. Pedrazzani, T. Strasser, and M. LuValle, "Optical reliability of cladding pump fiber for high power communication networks," IEEE Military Comm. Conference Proc., vol.1, pp.690-693,1999.
    3. J. Nilssion, J. K. Sahu, Y. Joeng, W. A. Clarkson, R. Selvas, Anatoly B. Grudinin and Shaiful A lam, "High power fiber lasers:new developments," Proc. of SPIE, vol.4974, pp.50-59, 2003.
    4. L. Zenteno, "High power double-clad fiber laser," J. Lightwave Technol., vol.11, pp. 1435-1446,1993.
    5. V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P. S. Yeh, and E. Zucker, "110W fiber laser," Electron. Lett., vol.35, pp.1158-1160,1999.
    6. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power", Opt. Express, vol.12, pp.6088-6092,2004.
    7. V. Gapontsev, D. Platonov, N. Shkurikhin, O. Fomin, V. Mashkin, A. Abramov, and M. Ferin, "2 kW CW ytterbium fiber laser with record diffraction-limited brightness", Lasers and Electro-Optics Europe,2005. CLEO/Europe.2005 Conference on, pp.508,2005.
    8. D. Gapontsev, "6 kW CW single mode Ytterbium fiber laser in all-fiber format," Solid State and Diode Laser Technology Review, Albuquerque,2008.
    9. 赵鸿,周寿桓,朱辰,李尧,吴健,“大功率光纤激光器输出功率超过1.2 kW,”中国激光,vol.33, pp.1359,2006.
    10. J. Limpert, A. Liem, H. Zellmer, and A. Tiinnermann, "500 W continuous-wave fibre laser with excellent beam quality," Electron. Lett. vol.39, pp.645-647,2003.
    11. Y. Jeong, J. K. Sahu, S. Baek, C. Alegria, D. B. S. Soh, C. Codemard, and J. Nilsson, "Cladding-pumped ytterbium-doped large-core fiber laser with 610 W of output power," Opt. Commun., vol.234, pp.315-319,2004.
    12. C. H. Liu, A. Galvanauskas, B. Ehlers, F. Doerfel, S. Heinemann, A. Carter, K. Tankala, and J. Farroni, "810 W single transverse mode Yb-doped fiber laser", in Proc Advanced Solid State Photonics, Santa Fe, New Mexico, USA, February 1-4,2004, pp. PDF17,2004
    13. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power," Electron. Lett., vol.40, pp.470-471,2004.
    14. A. Liem, J. Limpert, H. Zellmer, A. Tunnermann, V. Reichel, K. Morl, S. Jetschke, S. Unger, H.-R. Miiller, J. Kirchhof, T. Sandrock, A. Harschak, "1.3 kW Yb-doped fiber laser with excellent beam quality," in Proc. Conference on Lasers and Electro-Optics 2004, San Francisco, USA, May 16-21, pp.1067-1068,2004.
    15. P. Russell, J. C. Knight, T. A. Birks, B. J. Mangan, and W. J. Wadsworth, "Resent progress in photonics crystal fibers," in Optical Fiber Communication Conference, (Optical Society of America), vol.3, pp.98-100,2000.
    16. J. Limpert, O. Schmidt, J. Rothhardt, and F. Salin, "Extended single-mode photonic crystal fiber lasers," Opt. Express., vol.14, pp.2715-2720,2006.
    17. Y. Zaouter, D. N. Papadopoulos, M. Hanna, J. Boullet, L. Huang, C. Aguergaray, F. Druon, E. Mottay, P. Georges, and E. Cormier, "Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers," Opt. Lett., vol.33, pp.107-109,2008.
    18. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. Price, H. N. Rutt, and D. J. Richardson, "Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications," Opt. Express, vol.16, pp.13651-13656,2008.
    19. C. D. Brooks, and F. D. Teodoro, "Multi-megawatt peak-power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rod-like photonic crystal fiber amplifier," Appl. Phys. Lett., vol.89, pp.111119-111121,2006.
    20. L. B. Fu, H. A. McKay, and L. Dong, "Extremely large mode area optical fibers formed by thermal stress," Opt. Express, vol.17, pp.11782-11793,2009.
    21. J. Limpert, T. Schreiber, and S. Nolter, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express, vol.11, pp.818-823,2003.
    22. L. Xiao, W. Jin, and M. S. Demokan, "Fusion splicing small-core photonics crystal fibers and single-mode fibers by repeated arc discharges," Opt. Lett, vol.32, pp.115-117,2007.
    23. C. J. Hin, M. K. Rao, Z. Yinian, and S. Ping, "An effective splicing method on photonic crystal fiber using CO2 laser," IEEE Photonics Thechnol. Lett., vol.15, pp.942-944,2003.
    24. A. D. Yablon and R. T. Bise, "Low-loss high-strength microstructured fiber fusion splices using grin fiber lasers," IEEE Photonics Technol. Lett., vol.17, pp.118-120,2005.
    25. J. Boullet, A. Desfarges-Berthelemot, V. Kermene, D. Pagnoux, P. Roy, and B. Dussardier, "Coherent combing in an Yb doped double core fiber laser," IEEE. Conference on Lasers & Electro-Optics (CLEO), vol.1, pp.523-525,2005.
    26. H. Bruesselbac, D. C. Jones, M. S. Mangir, M. Minden, and J. L. Rogers, "Self-organized coherent in fiber laser arrays," Opt. Lett., vol.30, pp.1339-1341,2005.
    27. T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," IEEE Journal of selected topics in quantum electronics, vol.11, pp.570-571,2005.
    28. J. Morel, A. Woodtli, and R. Dandliker, "Coherent coupling of an array of Nd3+-doped single-mode fiber lasers by use of all intracavity phase grating," Opt. Lett., vol.18, pp. 1520-1522,1993.
    29. S. J. Augst, T. Y. Fan, and A. Sanchez, "Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers," Opt. Lett., vol.29, pp.474-476,2004.
    30. M. Wickham, J. Anderegg, S. Brosnnan, D. Hammons, H. Komine, and M. Weber, "Coherently coupled high power fiber arrays," in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America,2004), paper MA4,2004.
    31. S. P. Chen, Y. G. Li, and K. C. Lu, "Branch arm filtered coherent combining of tunable fiber lasers," Optics Express, vol.13, pp.7878-7883,2005.
    32.何兵,楼棋洪,周军,董景星,魏运荣,王之江,“两根大芯双包层光纤激光器获得60W相干输出,”光学学报,vol.26, pp.1-2,2006.
    33.李剑峰,段开椋,王建明,王屹山,赵卫,郭永康,“两光子晶体光纤激光器相干锁定的实验研究,”光学学报,vol.28, pp.923-926,2008.
    34. S. Inao, T. Sato, H. Hondo, M. Ogai, S. Sentsui, A. Otake, K. Yoshizaki, K. Ishihara, and N. Uchida, "High density multicore-fiber cable," Proc. Int. Wire & Cable Symp., pp.370-384, 1979.
    35. P. Jacob, C. Anne, and R. Vallee, "Optical bandpass filter from a curved segment of a detuned two core fiber," Appled Optics, vol.36, pp.5064-5071,1997.
    36. M. Fokine, L. E. Nillson, A. Glaesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, "Integrated fiber Mach-Zehnder interferometer for electro-optic switching," Opt. Lett., vol.27, pp.1643-1645,2002.
    37. P. Yvernault, D. Mechin, E. Goyat, L. Brilland, and D. Pureur, "Fully functional optical add and drop multiplexer using two core fiber based on Mach-Zehnder interferometer with photoimprinted fiber Bragg gratings," in Conference on Optical Fiber Communication, Technical Digest Series, vol.54, pp. WDD92/1-WDD92/3,2001.
    38. W. Pan, B. Lin, "Two core fiber interferometric strain sensor," IEEE International Syposium on Circuits and Systems, Digital Signal Processing Industrial Applications, pp.2773-2776, 1997.
    39. W. N. Macpherson, M. J. Gander, R. Mcbride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knightc and P. St. J. Russellc, "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fiber," Opt. Communications, vol.193, pp.97-104,2001.
    40. W. N. Macpherson, M. J. Gander, R. Mcbride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, "Bend measurement using Bragg gratings in multicore fiber," Electron. Letters, vol.36, pp.120-121,2001.
    41. M. Silva-Lopez, C. Li, W. N. M acpherson, A. J. Moore, J. S. Barton, J. D. C. Jones, D. H. Zhao, L. Zhang, and I. Bennion, "Differential birefringence in Bragg gratings in multicore fiber under transverse stress," Opt. Lett., vol.29, pp.2225-2227,2004.
    42. M. Silva-Lopez, C. Li, W. N. MacPherson, G. M. H. Flockhart, A. J. Moore, J. S. Barton, J. D. Jones, D. Zhao, L. Zhang, and I. Bennion, "Transverse loading of multicore fiber gratings," Proc. SPIE, vol.5502, pp.96-99,2004.
    43. D. R. Scifres, "Multiple core fiber lasers and optical amplifiers," US Patent #5,566,196 (1996).
    44. P. Glas, M. Naumann, A. Schirrmacher, and Th. Pertsch, "The multicore fiber-a novel design for a diode pumped fiber laser," Opt. Commun, vol.151, pp.187-195,1998.
    45.赵士刚,“基于多芯结构的光纤传感器研究”,哈尔滨工程大学博士论文,2006.
    46. Y. Huo, P. K. Cheo, and G. G. King, "Fundamental mode operation of a 19-core phase locked Yb-doped fiber amplifier," Opt. Express, vol.12, pp.6230-6239,2004.
    47. Y. Huo, and P. K. Cheo, "Analysis of transverse mode competition and selection in multicore fiber lasers," J. Opt. Soc. Am. B, vol.22, pp.2345-2349,2005.
    48. P. Zhou, J. Hou, Z. L. Chen, and Z. J. Liu, "Study on the supermode and mode selection in multicore fiber laser," Acta Optica Sinica, vol.27, pp.1812-1816,2007.
    49. E. J. Bochove, "Prediction of passive synchronous phasing in ytterbium-doped multi-core fiber laser arrays due to a negative nonlinear index," Proc. SPIE, vol.5708, pp.132-139, 2005.
    50. A. Mafi, and J. V. Moloney, "Shaping modes in multicore photonic crystal fibers," IEEE Photon. Technol. Lett., vol.17, pp.348-350,2005.
    51. H. Kogelnick, and C.V. Shank, "Coupled wave theory of distributed feedback lasers," J. Appl. Phys., vol.43 pp.2327-2335,1972.
    52. A. N. Kireev, and Th. Graf, "Symmetric vector coupled mode theory of dielectric waveguide," vol.244, pp.25-35,2005.
    53. A. N. Kireev, Th. Graf, and H. P. Weber, "Phase locking in fiber laser arrays," vol.4, pp. 50-56,2007.
    54. N. N. Elkin, A. P. Napartovich, and V. N. Troshchieva, "Diffraction modeling of the multicore fiber amplifier," vol.25, pp.3072-2077,2007.
    55. M. Wrage, P. Glas, M. Leitner, T. Sandrock, N. N. Elkin, A. P. Napartovich, and D. V. Vysotsky, "Reconstruction of field distributions of an active multicore fiber in multimode fibers," Proc. of SPIE, vol.3930, pp.212-221,2000.
    56. A. Mafi, and J. V. Moloney, "Phase locking in a passive multicore photonic crystal fiber," J. Opt. Soc. Am. B, vol.21, pp.897-902,2004.
    57. C. Y. Guan, L. B. Yuan, J. H. Shi, "Supermode analysis of multicore photonic crystal fibers," Optics Communications, vol.283, pp.2686-2689,2010.
    58. N. N. Elkin, A. P. Napartovich, V. N. Troshchieva and D.V. Vysotsky, "Mode competition in multi-core fiber amplifier," Optics Communications, vol.277, pp.390-396,2007.
    59. D. V. Vysotsky, N. N. Elkin, and A. P. Napartovich, "Selection of optical modes in multichannel fibre lasers," Quantum Electronics, vol.36, pp.73-75,2006.
    60. M. Wrage, P. Glas, and M. Leitner, "Combined phase locking and beam shaping of a multicore fiber laser by structured mirrors," Optics Letters, vol.26, pp.980-982,2001.
    61. H. F. Talbot, "Facts relating to optical science," Philos. Mag., vol.9, pp.401-407,1836.
    62. J. R. Leger, "Lateral mode control of an AIGaAs laser array in a Talbot cavity," Applied Physics Letters, vol.55, pp.334-336,1989.
    63. V. P. Kandidov and V. Irina, "Terekhova Phase filtering of the inphase mode of a linear laser array in the Talbot resonator," Quantum Electron., vol.33, pp.531-536,2003.
    64. M. Wrage, P. Glas, D. Fischer, M. Leitner, D. V. Vysotsky and A. P. Napartovich, "Phase locking in a multicore fiber by means of a Talbot resonator," Optics Letters., vol.25, pp. 1436-1438,2000.
    65. M. Wrage, P. Glas, M. Leitner, D.V. Vysotsky and A.P. Napartovich, "Phase-locking and self imaging properties of a talbot resonator applied to circular structures," Optics Communications, vol.191, pp.149-159,2001.
    66. A. P. Napartovicha, and D. V. Vysotskya, "Phase-locking of multicore fibre laser due to talbot self-reproduction," Journal of Modern Optics, vol.50, pp.2715-2725,2003.
    67. Q. Li, P. Zhao, W. Guo, and B. Liu, "The in-phase mode selection of a high-power diode laser array by a talbot cavity with an amplitude compensator," Optics Communications, vol. 270, pp.323-326,2007.
    68. P. Glas, D. Fischer, T. Sandrock, M. Wrage, and T. Pertsch, "Bessel beam like emission characteristics of a neodymium-doped multicore fiber laser using a Talbot cavity," Conference on Lasers and Electro-Optics (CLEO 2000), pp.599-600,2000.
    69. M. Wrage, P. Glas, and M. Leitner, "Combined phase locking and beam shaping of a multicore fiber laser by structured mirrors," Opt. Lett., vol.26, pp.980-982,2001.
    70. L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, and B. G. Ward, "Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area," Opt. Lett., vol.33, pp.71-73,2008.
    71. C. J. Corcoran and K. A. Pasch, "Modal analysis of a self-Fourier laser cavity," J. Opt. A: Pure Appl. Opt., vol.7, pp. L1-L7,2005.
    72. D. V. Vysotskii, A. P. Napartovich, and V. N. Troshchieva, "Theory of laser array phase locking by Fourier coupling," Quantum Electron., vol.37, pp.345-350,2007.
    73. E. J. Bochove and C. J. Corcoran, "In-phase supermode selection in a multicore fiber laser array by means of a self-Fourier external cavity," Appl. Opt., vol.46, pp.5009-5018,2007.
    74. M. Wrage, P. Glas, D. Fischer, M. Leitner, N. N. Elkin, D. V. Vysotsky, A. P. Napartovich, and V. N.Troshchieva, "Phase-locking of a multicore fiber laser by wave propagating through an annular waveguide," Opt. Commun., vol.205, pp.367-375,2002.
    75. L. Li, A. Schulzgen, and S. Chen, "Phase locking and in-phase super mode selection in monolithic multicore fiber laser," Opt. Lett., vol.31, pp.2577-2579,2006.
    76. L. Li, A. Schulzgen, H. Li, V. L. Temyanko, J. V. Moloney and N. Peyghambarian, "Phase-locked multicore all-fiber lasers:modeling and experimental investigation," J. Opt. Soc. Am. B, vol.24, pp.1721-1728,2007.
    77. C. Wang, F. Zhang and S. Jian, "Microstructured optical fiber for in-phase mode selection in multicore fiber lasers," Opt. Express, vol.16, pp.5505-5515,2008.
    78. D. V. Vysotskii, A. P. Napartovich, A. G. Trapeznikov, "Selection of optical modes in a ribbon fibre with a modulated gain," Quantum Electronics, vol.33, pp.1089-1095,2003.
    79. P. K. Cheo, A. Liu, and G. G. King, "A high-brightness laser beam from phas-locked multicore Yb-doped fiber laser array," IEEE Photonics Tech. Lett., vol.13, pp.439-441, 2001.
    80. L. Michaille, C. R. Bennett, D. M. Taylor, T. J. Shepherd, J. Broeng, H. R. Simonsen, and A. Petersson, "Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area," Opt. Lett., vol.30, pp.1668-1670,2005.
    81. X. Zhu, A. Schulzgen, L. Li, H. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, "Birefringent in-phase supermode operation of a multicore microstructured fiber laser," Opt. Express, vol.15, pp.10341-10345,2007.
    82. L. Michaille, C. R. Bennett, D. M. Taylor, D. M. Taylor, and T. J. Shepherd, "Multicore photonic crystal fiber lasers for high power/energy applications," IEEE Select. Top. Quantum. Electron., vol.15, pp.328-335,2009.
    83. P. K. Cheo, G. G. King and Y. Huo, "Recent advances in high-power and high energy multicore fiber lasers," Proc. of SPIE, vol.5335, pp.106-115,2004.
    84.王春灿,张帆,童治等,“改进的高功率19芯光纤激光器的理论分析,”中国激光,vol.35,pp.61-66,2008.
    85.周朴,侯静,陈子伦等,“多芯光纤激光器的超模及模式选择问题研究,”光学学报,vol.27,pp.1812-1816,2007.
    86. R. Mahajan, A. L. Shah, S. Pal, and A. Kumar, "Analytical study for investigating the behavior of Nd-doped Glass, YAG and GGG under the heat capacity mode of operation," Opt. Laser Technol., vol.39, pp.1406-1412,2007.
    87.左春华,“掺钕钆镓石榴石晶体(Nd:GGG)激光特性研究,”山东大学博士论文,2009.
    88.张寒贫,"Nd:GGG固体热容激光晶体材料及生长技术的研究,”长春理工大学硕士论文,2008.
    89. Z. Jia, X. T. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang. "Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method," Journal of Crystal Growth, vol.292, pp.386-390,2006.
    90.曾繁明,张莹,孙晶,刘景和,“掺钕钕钆镓石榴石激光晶体光谱分析,”光谱学与光谱分析,vol.29, pp.1323-1326,2009.
    91. Y. Dong, J. F. Zu, L. Q. Hou, X. H. Yin, T. Zhang, Y. L. Gu, Z. G. Liu, J. Q. Zhu, "Approximate formulas of temperature and stress distributions and thermal induced effects in a heat capacity slab laser," Chinese Opt. Lett., vol.4, pp.326-328,2006.
    92. M. D. Rotter, C. B. Dane, S. Fochs, K. L. Fortune, R. Merrill, and B. Yamamoto, "Solid-state heat-capacity lasers:Good candidates for the marketplace," Photon. Spectra, vol. 38, pp.44-52,2004.
    93. B. Labranche, W. Qun, and P. Galarneau, "Diode-pumped CW and quasi-CW Nd:GGG (Ca, Mg, Zr) laser," Proc. of SPIE, vol.2041, pp.326-331,1994.
    94. C. L. Bonner, A. A. Anderson, R. W. Eason, D. P. Shepherd, D. S. Gill, C. Grivas, and N. Vainos, "Performance of a low-loss pulsed-laser-deposited Nd:Gd3Ga5O12 waveguide laser at 1.06 and 0.94 mm," Opt. Lett., vol.22, pp.988-990,1997.
    95. L. J. Qin, D. Y. Tang. G. Q. Xie, C. M. Dong, Z. T. Jia, and X. T. Tao, "High-power continuous wave and passively Q-switched laser operations of a Nd:GGG crystal," Laser Phys. Lett., vol.5, pp.100-103,2008.
    96. L. J. Qin, D. Y. Tang. G. Q. Xie, H. Luo, C. M. Dong, Z. T. Jia, H. H. Yu, and X. T. Tao, "Diode-end-pumped passively mode-locked Nd:GGG laser with a semiconductor saturable mirror," Optics Communications, vol.281, pp.4762-4764,2008.
    97. C. H. Zuo, B. T. Zhang, J. L. He, H. T. Huang, X. L. Dong, J. L. Xu, Z. T. Jia, C. M. Dong, and X. T. Tao, "13.2 W cw output generated by a diode-end-pumped Nd:GGG laser," Laser Physics Letters, vol.5, pp.582-584,2008.
    98. C. H. Zuo, J. L. He, H. T. Huang, B. T. Zhang, Z. T. Jia, C. M. Dong, and X. T. Tao, "Efficient passively Q-switched operation of a diode-pumped Nd:GGG laser with a Cr4+:YAG saturable absorber," Opt. Laser Technol., vol.41, pp.17-20,2009.
    99. L. J. Qin, D. Y. Tang, G. Q. Xie, H. Luo, C. M. Dong, Z. T. Jia and X. T. Tao, "Diode-pumped passively Q-switched Nd:GGG crystal with GaAs saturable absorber," Laser Physics, vol.18, pp.719-721,2008.
    100. C. H. Zuo, B. T. Zhang, J. L. He, X. L. Dong, K. J. Yang, H. T. Huang, J. L. Xu, S. Zhao, C. M. Dong, and X. T. Tao, "CW and passively Q-switching characteristics of a diode-end-pumped Nd:GGG laser at 1331 nm," Optical Materials, vol.31, pp.976-979, 2009.
    101. C. H. Zuo, B. T. Zhang, Y. B. Liu, J. L. He, H. T. Huang, J. F. Yang and J. L. Xu, "Diode-pumped passively Q-switched and mode-locked Nd:GGG laser at 1.3 μm with V3+:YAG saturable absorber," Laser Physics, vol.20, pp.1717-1720,2010.
    102. C. Y. Zhang, C. Q. Gao, L. Zhang, Z. Y. Wei and Z. G. Zhang, "Laser performance of Nd:GGG operating at 938 nm," Chin. Phys. Lett., vol.24, pp.440-441,2007.
    103. H. T. Huang, J. L. He, B. T. Zhang, J. F. Yang, J. L. Xu, C. H. Zuo, and X. T. Tao, "V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser," Optics Express, vol.18, pp.3352-3357,2010.
    104. Z. W. Zhao, B, X. Jiang, Y. H. Zhang, Y. P. Liu, X. D. Xu, P. X. Song, X. D. Wang, and J. Xu, "Ti:sapphire laser pumped high average power laser crystal Nd:GGG with high efficiency output," Chinese Opt. Lett., vol.3, pp.163,2005.
    1. I. Tsopelas, Y. Kominis, K. Hizanidis, "Linear and nonlinear coupling properties of a novel multicore circular dielectric waveguide," Optics Communications, vol.274, pp.85-93,2007.
    2. K. M. Gundu, M. Brio and J. V. Moloney, "A mixed high-order vector finite element method for waveguides:Convergence and spurious mode studies," Inter. J. Num. Modeling:Electron. Networks, Devices & Fields, vol.18, pp.351-364,2005.
    3. R. Ghosh, A. Kumar, J. P. Meunier, and E. Marin, "Modal characteristics of few-mode silica-based photonic crystal fibres," Opt. Quantum Electron., vol.32, pp.926-970,2000.
    4. A. Mafi, and J. V. Moloney, "Phase locking in a passive multicore photonic crystal fiber," J. Opt. Soc. Am. B, vol.21, pp.897-902,2004.
    5. Y. Huo, and P. K. Cheo, "Analysis of transverse mode competition and selection in multicore fiber lasers," J. Opt. Soc. Am. B, vol.22, pp.2345-2349,2005.
    6. C. Y. Guan, L. B. Yuan, and J. H. Shi, "Supermode analysis of multicore photonic crystal fibers," Opt. Communications, vol.283, pp.2585-2589,2010.
    7. Y. Huo, P. K. Cheo, and G. G. King, "Fundamental mode operation of a 19-core phase locked Yb-doped fiber amplifier," Opt. Express vol.12, pp.6230-6239,2004.
    8. M. Wrage, P. Glas, M. Leitner, T. Sandrock, N. N. Elkin, A. P. Napartovich, and A. G. Sukharev, "Experimental and numerical investigation of field propagation in multicore fibers," Proc. of SPIE, vol.3930, pp.204-211,2000.
    9. A. Mafi, and J. V. Moloney, "Shaping modes in multicore photonic crystal fibers," IEEE Photon. Technol. Lett. vol.17, pp.348-350,2005.
    10. N. N. Elkin, A. P. Napartovich, V.N. Troshchieva, and D. V. Vysotsky, "Diffraction modeling of the multicore fiber amplifier," J. Lightwave Technol., vol.25, pp.3072-3077, 2007.
    11. N. N. Elkin, A. P. Napartovich, A. G. Sukharev, V. N. Troshchieva, and D. V. Vysotsky, "Direct numerical simulation of radiation propagation in a multicore fiber," Opt. Commun., vol.177, pp.207-217,2000.
    12. M. Wrage, P. Glas, M. Leitner, T. Sandrock, N. N. Elkin, A. P. Napartovich, and A. G. Sukharev, "Experimental and numerical determination of coupling constant in a multicore fiber," Opt. Commun., vol.175, pp.97-102,2000.
    13. M. Wrage, P. Glas, M. Leitner, T. Sandrock, N. N. Elkin, A. P. Napartovich, and D. V. Vysotsky, "Reconstruction of field distributions of an active multicore fiber in multimode fibers," Proc. of SPIE, vol.3930, pp.212-221,2000.
    14. M. Nguyen, and K. Church, "Tailoring modal power distribution in common-core waveguide arrays," J. Lightwave Technol., vol.24, pp.2324-2421,2006.
    15. P. J. Roberts and T. J. Shepherd, "The guidance properties of multi-core photonic crystal fibres," J. Opt. A:Pure Appl. Opt., vol.3, pp. S133-S140,2001.
    16. S. C. Lee, "Dependent scattering of an obliquely incident plane wave by a collection of parallel cylinders," J. Appl. Phys., vol.68, pp.4952-4957,1990.
    17. J. R. Pierce, "Coupling of modes of propagations," Journal of Applied Physics, vol.25, pp. 179-183,1954
    18. S. E. Miller, "Coupled wave theory and waveguide applications," J.Bell Syst.Tech., vol.33, pp.661,1954.
    19. M. C. Pease, "Generalized coupled mode theory," J. App. Phys., vol.32, pp.1736-1743, 1961.
    20. H. C. Huang, "TheoryofcoupledWaveguide," ScientiaSinica, vol.11, pp.16-57,1962.
    21. W. P. Huang, "Coupled-mode theory for optical waveguides:an overview," J. Opt. Soc. Am. A, vol.14, pp.962-983,1994.
    22. A. Ankiewicz, A.W. Snyder and X. H. Zheng, "Coupling between parallel optical fiber cores-critical examination," J. Light. Technol., vol.4, pp.1317-1323,1986.
    23. W. P. Huang and H. A. Haus, "Self-consistent vector coupled-mode theory for tapered optical waveguides," J. Light. Technol., vol.8, pp.922-926,1990.
    24. L. A. Weller-Brophy and D. G. Hall, "Local normal mode analysis of guided mode interactions with waveguide gratings," J. Lightwave Technol., vol.6, pp.1069-1082,1988.
    25. A. Hardy, "Coupled modes of multiwaveguide systems and phased arrays," J. Light. Technol., vol.4, pp.90-99,1986.
    26. E. Kapon, J. Katz, and A. Yariv, "Supermode analysis of phase-locked arrays of semiconductor lasers," Opt. Lett., vol.10, pp.125-127,1984.
    27. E. J. Bochove, P. K. Cheo, and G. G. King, "Self-organization in a multicore fiber laser array," Opt. Lett., vol.28, pp.1200-1202,2003.
    28. A. E. Siegman, "How to (maybe) measure laser beam quality," OSA TOPS, vol.17, pp.1-18, 1998.
    29. A. E. Siegman, "New developments in laser resonators," Proceedings of SPIE, vol.1224, pp. 2-14,1990.
    30. A. E. Siegman, "Defining, measuring, and optimizing laser beam quality," Proc. of SPIE, vol. 1868, pp.2-12,1993.
    31. ISO Standard 11146, "Lasers and laser-related equipment-Test methods for laser beam widths, divergence angles and beam propagation ratios," 2005.
    32. B. D. Lv, and H. Ma, "Coherent and incoherent off-axis Hermite-Gaussian beam combinations," Appl. Opt., vol.39, pp.1279-1289,2000.
    33. B. D. Lv, and H. Ma, "Coherent and incoherent combinations of off-axis Gaussian beams with rectangular symmetry," Opt. Commun., vol.171, pp.185-194,1999.
    34. Y. Z. Li, L. J. Qian, D. Q. Lu, D. Y. Fan, and S. C. Wen, "Coherent and in coherent combining of fiber array with hexagonal ring distribution," Opt. Laser Technol., vol.39, pp. 957-963,2007.
    35. Stephan Wielandy, "Implications of higher-order mode content in large mode area fibers with good beam quality", Opt. Express, vol.15, pp.15402-15409,2007.
    36. Y. Huo, P. K. Cheo, and G. G. King, "Fundamental mode operation of a 19-core phase locked Yb-doped fiber amplifier," Opt. Express, vol.12, pp.6230-6239,2004.
    37. Y. Huo, P. K. Cheo, "Analysis of transverse mode competition and selection in multicore fiber lasers," J. Opt. Soc. Am. B, vol.22, pp.2345-2349,2005.
    38. L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, "Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area," Opt. Lett., vol. 30, pp.1668-1670,2005.
    39.吕百达,“激光光学——光束描述、传输变换与光腔技术物理,”高等教育出版社,2002.
    40. P. Zhou, Z. J. Liu, X. J. Xu, Z. L. Chen, and X. L. Wang, "Beam quality factor for coherently combined fiber laser beams," Opt. Laser Technol., vol.41, pp.268-271,2009.
    1. Q. Li, P. F. Zhao, W. R. Guo, and B. Liu, "The in-phase mode selection of a high-power diode laser array by a talbot cavity with an amplitude compensator," Optics Communications, vol.270, pp.323-326,2007.
    2. Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, "A coherent all-solid-state laser array using the talbot effect in a three-mirror cavity," IEEE Quantum Electron., vol.36, pp. 607-614,2000.
    3. P. Peterson, A. Gavrielides, and M. P. Sharma, "Extraction characteristics of a one dimensional Talbot cavity with stochastic propagation phase," Opt. Express, vol.8, pp. 670-681,2001.
    4. Q. Li, P. F. Zhao, and W. R. Guo, "Amplitude compensation of a diode laser array phase locked with a Talbot cavity," Appl. Phys. Lett., vol.89, pp.231120,2006.
    5. V. P. Kandidov, A. V. Kondrat'ev, "Influence of the Talbot cavity selectivity on the evolution of collective operation of diffraction-coupled laser arrays," Quantum Electron., vol.28, pp. 972-976,1998.
    6. Y. Huo, and P. K. Cheo, "Analysis of transverse mode competition and selection in multicore fiber lasers," J. Opt. Soc. Am. B, vol.22, pp.2345-2349,2005.
    7. M. Wrage, P. Glas, D. Fischer, M. Leitner, D. V. Vysotsky and A. P. Napartovich, "Phase locking in a multicore fiber by means of a Talbot resonator," Optics Letters., vol.25, pp. 1436-1438,2000.
    8. M. Wrage, P. Glas, M. Leitner, D.V. Vysotsky and A.P. Napartovich, "Phase-locking and self imaging properties of a talbot resonator applied to circular structures," Optics Communications, vol.191, pp.149-159,2001.
    9. A. P. Napartovicha, and D. V. Vysotskya, "Phase-locking of multicore fibre laser due to talbot self-reproduction," Journal of Modern Optics, vol.50, pp.2715-2725,2003.
    10. Q. Li, P. Zhao, W. Guo, and B. Liu, "The in-phase mode selection of a high-power diode laser array by a talbot cavity with an amplitude compensator," Optics Communications, vol. 270, pp.323-326,2007.
    11. P. Glas, D. Fischer, T. Sandrock, M. Wrage, T. Pertsch, "Bessel beam like emission characteristics of a neodymium-doped multicore fiber laser using a Talbot cavity," Conference on Lasers and Electro-Optics (CLEO 2000), pp.599-600,2000.
    12. M. Wrage, P. Glas, and M. Leitner, "Combined phase locking and beam shaping of a multicore fiber laser by structured mirrors," Opt. Lett., vol.26, pp.980-982,2001.
    13. L. Li, A. Schulzgen, and S. Chen, "Phase locking and in-phase super mode selection in monolithic multicore fiber laser," Opt. Lett., vol.31, pp.2577-2579,2006.
    14. L. Li, A. Schulzgen, H. Li, V. L. Temyanko, J. V. Moloney and N. Peyghambarian, "Phase-locked multicore all-fiber lasers:modeling and experimental investigation," J. Opt. Soc. Am. B, vol.24, pp.1721-1728,2007.
    15. L. Michaillle,C. R. Bennett, D. M. Taylor, T. J. Shepherd J. Broeng, H. R. Simonsen, and A. Petersson, "Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area," Opt. Lett., vol.33, pp.1668-1670,2005.
    16. C. Wang, F. Zhang and S. Jian, "Microstructured optical fiber for in-phase mode selection in multicore fiber lasers," Opt. Express, vol.16, pp.5505-5515,2008.
    17. A. Mafi, and J. V. Moloney, "Phase locking in a passive multicore photonic crystal fiber," J. Opt. Soc. Am. B, vol.21, pp.897-902,2004.
    18. M. Wrage, P. Glas, D. Fischer, M. Leitner, N. N. Elkin, D.V. Vysotsky, A. P. Napartovich, V. N. Troshchieva, "Phase-locking of a multicore fiber laser by wave propagation through an annular waveguide," Opt. Comm., vol.205, pp.367-375,2002.
    19. L. B. Yuan, Z. H. Liu, and J. Yang, "Coupling characteristics between single-core fiber and multicore fiber," Opt. Lett., vol.15, pp.3237-3239,2006.
    20. L. B. Yuan, Z. H. Liu, J. Yang and C. Y. Guan, "Bitapered fiber coupling characteristics between single-mode single-core fiber and single-mode multicore fiber," Appl. Opt., vol.47, pp.3307-3312,2008.
    21. X. Zhu, A. Schulzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, "Single-transverse-mode output from a fiber laser based on multimode interference," Opt. Lett., vol.33, pp.908-910,2008.
    22. Y. Jung, Y. Jeong, G. Brambilla, and D. J. Richardson, "Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber," Opt. Lett., vol.34, pp. 2369-2371,2009.
    23. W. B. Case, M. Tomandl, S. Deachapunya, and M. Arndt, "Realization of optical carpets in the Talbot and Talbot-Lau configurations," Opt. Express, vol.17, pp.20966-20974,2009.
    24. L. Rayleigh, "On copying diffraction-gratings, and on some phenomenon connected therewith," Philos. Mag., vol.11, pp.196-205,1881.
    25. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. Price, H. N. Rutt, and D. J. Richardson, "Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications", Opt.Express, vol.16, pp.13651-13656,2008.
    26. A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne,'MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,'J. Non-Crystalline Solids, vol.356, pp.848-851,2010.
    27. L. Fu, H. A. McKay, and L. Dong, "Extremely large mode area optical fibers formed by thermal stress," Opt. Express, vol.17, pp.11782-11793,2009.
    1. D. G. Youmans, "Phase locking of adjacent channel leaky waveguide CO2 lasers," App. Phys. Lett., vol.44, pp.365-367,1984.
    2. J. P. Hohimer, A. Owyoung, and G. R. Hadley, "Single-channel injection locking of a diode-laser array with a CW dye laser," Appl. Phys. Lett., vol.47, pp.1244-1246,1985.
    3. L. Goldberg, H. F. Taylor, J. F. Weller, and D. R. Scifres, "Injection locking of coupled-stripe diode laser arrays," Appl. Phys. Lett., vol.46, pp.236-238,1985.
    4. F. Wang, A. Hermerschmidt, and H. J. Eichler, "Narrow-bandwidth high-power output of a laser diode array with a simple external cavity," Opt. Commun., vol.218, pp.135-139,2003.
    5. Y. Liu and Y. Braiman, "Synchronization of high-power broad-area semiconductor lasers," IEEE J. Seleted Topics in Quantum Electron., vol.10, pp.1013-1024,2004.
    6. Y. Liu, H. K. Liu, and Y. Braiman, "Injection locking of individual broad-area lasers in an integrated high-power diode array," Appl. Phys. Lett., vol.81, pp.978-980,2002.
    7. Y. Zhou, L. P. Liu, C. Etson, Y. Abranyos, A. Padilla, and Y. C. Chen, "Phase locking of a two-dimensional laser array by controlling the far-field pattern," Appl. Phys. Lett., vol.84, pp.3025-3027,2004.
    8. J. Morel, A. Woodtli, and R. Dandliker, "Coherent coupling of an array of Nd3+-doped single-mode fiber lasers by use of an intracavity phase grating," Opt. Lett., vol.18, pp. 1520-1522,1993.
    9. L. P. Liu, Y. Zhou, F. T. Kong, and Y. C. Chen, "Phase locking in a fiber laser array with varying path lengths," Appl. Phys. Lett., vol.85, pp.4837-4839,2004.
    10. A. F. Glova, "Phase locking of optically coupled lasers," Quantum Electron., vol.33, pp. 283-306,2003.
    11. L. Michaille, C. R. Bennett, D. M. Taylor, D. M. Taylor, and T. J. Shepherd, "Multicore photonic crystal fiber lasers for high power/energy applications," IEEE Select. Top. Quantum. Electron., vol.15, pp.328-335,2009.
    12. C. Wang, F. Zhang, Z. Tong, T. G. Ning, and S. S. Jian, "Suppression of stimulated Brillouin scattering in high-power single-frequency multicore fiber amplifiers," Optical Fiber Technology, vol.14, pp.328-338,2008.
    13. A. P. Napartovich, N. N. Elkin, V. N. Troshchieva, and D. V. Vysotsky, "Numerical modeling of the multi-core fiber amplifier," Proc. of SPIE, vol.6346, pp.634623,2007.
    14. P. K. Cheo, "Clad-pumped, eye-safe and multi-core phase-locked fiber lasers," US Patent 6031850, Feb.29,2000.
    15. Y. Huo, G. G. King, and P. K. Cheo, "Second harmonic generation using a high-energy and tunable qswitched multicore fiber Laser," IEEE Photon. Technol. Lett., vol.16, pp. 2224-2226,2004.
    16. P. Zhou, X. J. Xu, S. Guo, and Z. J. Liu, "Analysis on power scalability of multicore fiber laser," IEEE PhotonicsGlobal, IPGC,2008.
    17. A. Chavez-Pirson, B. C. Hwang, D. Nguyen, T. Luo, and S. B. Jiang, "New approach to image amplification based on an optically-pumped multi-core optical fiber," Proc. of SPIE, vol.6289, pp.628909,2006.
    18. A. S. Kurkov, V.M. Paramonov, E.M. Dianov, V.A. Isaev, and G.A. Ivanov, "Fiber laser based on 4-core Yb-doped fiber and multimode Bragg grating," Laser Phys. Lett., vol.3, pp. 441-444,2006.
    19. L. J. Cooper, P. Wang, R. B. Williams, J. K. Sahu, W. A. Clarkson, A. M. Scott and D. Jones, "High-power Yb-doped multicore ribbon fiber laser," Opt, Lett., vol.30, pp.2906-2908, 2005.
    20. R. J. Beach, M. D. Feit, S. C. Mitchell, K. P. Cutter, S. A. Payne, R. W. Mead, J. S. Hayden, D. Krashkevich, and D. A. Alunni, "Phase-locked antiguided multiple-core ribbon fiber," IEEE Photon. Technol. Lett., vol.15, pp.670-672,2003.
    21. N. N. Elkin, A. P. Napartovich, A. G. Sukharev, V. N. Troschieva, and D. V. Vysotsky, "Direct numerical simulation of radiation propagation in a multicore fiber," Opt. Commun., vol.177, pp.207-217,2000.
    22. D. V. Vysotsky, N. N. Elkin, A. P. Napartovich, V. N. Troshchieva, "Phase locking of a multicore fibre laser with a large spread of microcore optical paths," Quantum Electronics, vol.32, pp.271-276,2002.
    23. C. Wang, F. Zhang, R. Geng, C. Liu, T. Ning, Z. Tong, and S. H. Jian, "Photonic crystal fiber for fundamental mode operation of multicore fiber lasers and amplifiers," Opt. Communications, vol.281, pp.5364-5371,2008.
    24. Y. Huo, and P. K. Cheo, "Analysis of transverse mode competition and selection in multicore fiber lasers," J. Opt. Soc. Am. B, vol.22, pp.2345-2349,2005.
    25. Z. Lali-Dastjerdi, F. Kroushavi, and M. H.Rahmani, "An efficient shooting method for fiber amplifiers and lasers," Optics & Laser Technology, vol.40, pp.1041-1046,2008.
    26. X. M. Liu, and M. D. Zhang, "An effective method for two-point boundary value problems in Raman amplifier propagation equations," Optics Communications, vol.235, pp.75-82,2004.
    27.王春灿,张帆,童治,宁提纲,简水生,“多芯光纤激光器中共相位模式功率的提高,”强激光与粒子束,vol.19, pp.1594-1598,2007.
    1. B. Keszei, J. Paitz, J. Vandlik, A. S.uveges, "Control of Nd and Cr concentrations in Nd, Cr: Gd3Ga5O12 single crystals grown by Czochralski method," J. Crystal Growth, vol.226, pp. 950-100,2001.
    2. H. Hayakawa, K. Maeda, T. Ishikawa, T. Yokoyama, and Y. Fujii, "High Average Power Nd: Gd3Ga5O12 Slab Laser," Jpn. J. Appl. Phys., vol.26, pp.1623-1625,1987.
    3. B. Labranche, Q. Wu, and P. Galarneau, "Diode-pumped-cw and quasi-cw Nd:GGG (Ca, Mg, Zr) laser," Proc. SPIE, vol.2041, pp.326-331,1994.
    4. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, "Optical properties and highly efficient laser oscillation of Nd:YAG ceramics," Appl. Phys. B, vol.71, pp.469-473,2000.
    5. 吕景霞,张莹,曾繁明,张学建,王成伟,刘景和,"Nd:GGG晶体生长、光谱性能及激光性能,”硅酸盐学报,vol.36, pp.821-824,2008.
    6. Y. Dong, J. Zu, L. Hou, X. Yin, T. Zhang, Y. Gu, Z. Liu, and J. Zhu, "Approximate formulas of temperature and stress distributions and thermal induced effects in a heat capacity slab laser," Chin. Opt. Lett., vol.4, pp.326-328,2006.
    7. C. H. Zuo, B. T. Zhang, J. L. He, X. L. Dong, K. J. Yang, H. T. Huang, J. L. Xu, S. Zhao, C. M. Dong, and X. T. Tao, "The acousto-optical Q-switched Nd:GGG laser," Laser Phys. Lett., vol.5, pp.719-721,2008.
    8. R. Mahajan, A. L. Shah, S. Pal, and A. Kumar, "Analytical study for investigating the behavior of Nd-doped Glass, YAG and GGG under the heat capacity mode of operation," Opt. Laser Technol., vol.39, pp.1406-1412,2007.
    9. T. T. Basiev, A. V. Fedin, V. V. Osiko, and A.V. Rulev, "Efficient Nd:GGG Laser with Self-Phase Conjugation," Laser Physics, vol.11, pp.807-809,2001.
    10. C. H. Zuo, J. L. He, H. T. Huang, B.T. Zhang, Z. T. Jia, C. M. Dong, and X. T. Tao, "Efficient passively Q-switched operation of a diode-pumped Nd:GGG laser with a Cr4+:YAG saturable absorber," Optics & Laser Technology, vol.41, pp.17-20,2009.
    11. L. J. Qin, D.Y. Tang, G. Q. Xie, H. Luo, C. M. Dong, Z. T. Jia, H. H. Yu, and X. T. Tao, "Diode-end-pumped passively mode-locked Nd:GGG laser with a semiconductor saturable mirror," Optics Communications, vol.281, pp.4762-4764,2008.
    12. C. H. Zuo, B. T. Zhang, J. L. He, H. T. Huang, X. L. Dong, J. L. Xu, Z. T. Jia, C. M. Dong, and X. T. Tao, "13.2 W cw output generated by a diode-end-pumped Nd:GGG laser," Laser Physics Letters, vol.5, pp.582-584,2008.
    13. L. J. Qin, D. Y. Tang, G. Q. Xie, H.L uo, C.M. Dong, Z. T. Jia and X. T. Tao, "Diode-pumped passively Q-switched Nd:GGG crystal with GaAs saturable absorber," Laser Physics, vol.18, pp.719-721,2008.
    14. Z. Y. Li, H. T. Huang, J. L. He, B. T. Zhang and J. L. Xu, "High peak power eye-safe intracavity optical parametric oscillator pumped by a diode-pumped passively Q-switched Nd:GGG laser," Laser Physics, vol.20, pp.1302-1306,2010.
    15. C. H. Zuo, B. T. Zhang, J. L. He, X. L. Dong, K. J. Yang, H. T. Huang, J. L. Xu, S. Zhao, C. M. Dong, and X. T. Tao, "CW and passively Q-switching characteristics of a diode-end-pumped Nd:GGG laser at 1331 nm," Optical Materials, vol.31, pp.976-979, 2009.
    16. C. H. Zuo, B. T. Zhang, Y. B. Liu, J. L. He, H. T. Huang, J. F. Yang and J. L. Xu, "Diode-pumped passively Q-switched and mode-locked Nd:GGG laser at 1.3μm with V3+:YAG saturable absorber," Laser Physics, vol.20, pp.1717-1720,2010.
    17. C. H. Zuo, B. T. Zhang, Y. B. Liu, J. L. He, X. L. Dong, J. F. Yang H. T. Huang, J. L. Xu, S. Zhao, C. M. Dong, and X. T. Tao, "CW and passive Q-switching of 1331nm Nd:GGG laser with Co2+:LMA saturable absorber," Appl. Phys. B, vol.95, pp.75-80,2009.
    18. K. N. He, C.Q. Gao, Z. Y. Wei, Q. M. Li, Z. G. Zhang, H. H. Jiang, S. T. Yin, and Q. L. Zhang, "Diode-Pumped Quasi-Three-Level Passively Q-Switched Nd:GGG Laser with a Codoped Nd, Cr:YAG Saturable Absorber," Chin. Phys. Lett., vol.26, pp.094202,2009.
    19. C. L. Bonner, A. A. Anderson, R. W. Eason, D. P. Shepherd, D. S. Gill, C. Grivas, and N. Vainos, "Performance of a low-loss pulsed-laser-deposited Nd:Gd3Ga5O12 waveguide laser at 1.06 and 0.94 μm," Optics Letter, vol.22, pp.988-990,1997.
    20. C. Y. Zhang, C. Q. Gao, L. Zhang, Z. Y. Wei and Z. G. Zhang, "Laser performance of Nd:GGG operating at 938 nm," Chin. Phys. Lett., vol.24, pp.440-441,2007.
    21. H. T. Huang, J. L. He, B. T. Zhang, J. F. Yang, J. L. Xu, C. H. Zuo, and X. T. Tao, "V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser," Optics Express, vol.18, pp.3352-3357,2010.
    22. Q. H. Lou, J. Zhou, J. Q. Zhu, and Z. J. Wang, "10 watts double-dladding fiber laser," Acta Opt. Sinica, vol.23, pp.385-386,2003.
    23. H. H. Yu, K. Wu, H. J. Zhang, Z. P. Wang, J. Y. Wang, and M. H. Jiang, "Nd:YGG crystal laser at 1110 nm:a potential source for detecting carbon monoxide poisoning," Opt. Lett., vol.36, pp.1281-1283,2011.
    24. Y. F. Lii, J. Xia, X.H. Zhang, Z. T. Liu and J. F. Chen, "Dual-wavelength laser operation at 1064 and 914 nm in two Nd:YVO4 crystals," Laser Physics, vol.20, pp.737-739,2010.
    25. N. Pavel, "Simultaneous Dual-Wavelength Emission at 0.90 and 1.06μm in Nd-doped Laser Crystals," Laser Physics, vol.20, pp.215-221,2010.
    26. B. M. Walsh, "Dual wavelength lasers," Laser Physics, vol.20, pp.622-634,2010.
    27. J. F. Yang, S. D. Liu, J. L. He, X. Q. Yang, F. Q. Liu, B. T. Zhang, J. L. Xu, H. W. Yang and H. T. Huang, "Tunable simultaneous dual-wavelength laser at 1.9 and 1.7μm based on KTiOAsO4 optical parametric oscillator," Laser Physics Letters, vol.8, pp.28-31,2011.
    28.姜本学,赵志伟,徐军,邓佩珍,“高功率固体激光晶体Nd3+:Gd3Ga5O12的生长和光谱性能的研究,”中国激光,vol.31, pp.1465-1468,2004.
    29.左春华,“掺钕钆镓石榴石晶体(Nd:GGG)激光特性研究,”山东大学博七论文,2009.
    30.毛艳丽,邱宏伟,徐军,邓佩珍,干福熹,“高浓度掺钕钇铝石榴石(Nd:YAG)晶体的光谱与激光特性,”光学学报,vol.10, pp.1264-1267,2001.
    31. Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, "Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method," Journal of Crystal Growth, vol.292, pp.386-390,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700