环氧基与胺基-POSS改性通用环氧树脂的固化动力学与热性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文目的在于合成低成本的环氧基和胺基-笼型倍半硅氧烷(POSS)单体,然后制备成含有笼型倍半硅氧烷的有机-无机纳米杂化材料,探讨其形成原理、组成、结构和性能等方面之间的关系。本文通过LC/MS、DSC、TBA、TG和x-射线能谱仪等对笼型倍半硅氧烷的结构进行了表征,研究了POSS/环氧树脂杂化体系的固化动力学和热性能。主要包括以下几个方面:
     (1)通过水解缩聚法合成八聚体r-环氧丙氧丙基笼型倍半硅氧烷G-POSS,以甲基四氢苯酐为固化剂(MeTHPA),与双酚-A环氧树脂(BPAER)制备成不同配比的有机/无机杂化材料,探讨了G-POSS加入量对G-POSS/BPAER/MeTHPA杂化树脂的固化行为和热性能的影响。研究结果表明:G-POSS与BPAER相容性较好,可共同固化;其非等温固化行为适用于Sestak-Berggren自催化模型,分析讨论了固化反应机理,证明改性后环氧树脂的耐热性有显著提高。
     (2)为降低G-POSS环氧树脂的官能度,合成了含有部分甲基的笼型倍半硅氧烷环氧树脂(GM-POSS)。用DSC,TG,TBA和x-射线能谱仪研究了GM-POSS/双酚-A环氧共混物与甲基四氢苯酐(MeTHPA)的固化过程及热性能。结果表明固化反应的平均活化能Ea随GM-POSS含量的增加呈现先降低后增加的趋势;固化树脂的玻璃化转变温度、热分解温度及热残余量均随GM-POSS加入量的增加而提高;热降解动力学分析表明,杂化树脂的分解主要分两步进行,且均服从一级反应动力学。
     (3)合成了笼型β-氨乙基-γ-氨丙基倍半硅氧烷(POAAS),并以此固化邻甲酚醛环氧树脂(o-CFER),制备成不同配比的纳米复合材料,探讨了其固化行为、热性能、力学性能及介电性能。研究结果表明平均活化能为58.42kJ/mol,固化反应遵循Sestak-Berggren自催化模型,Tg随POAAS含量的增加呈现先增加后降低的趋势,当N=0.50时,Tg达最大值为107℃,层压板材料具有更高的拉伸强度、冲击强度和良好的介电性能。
In order to obtain the hybrid polymeric composites with more excellent useful performance, In this paper, the Epoxy-POSS and NH2-POSS were used as modifiers and prepared the POSS-containing nanocomposites of epoxy resin. The relationships of structure-property, cure kinetics and thermal properties of the POSS/epoxy system were investigated. The main work as follow:
     (1)Polyhedral oligomeric silsesquioxanes epoxy resin (G-POSS) was prepared from 3-glycidyloxypropyl-trimethoxysilane (GTMS) by hydrolytic condensation. The co-cure kinetics and thermal properties of G-POSS with bisphenol-A epoxy resin (BPAER) using 3-methyl-tetrahydrophthalic anhydride (MeTHPA) as curing agent were investigated. The results showed that the compatibility of G-POSS with BPAER was well and can co-cure.These curing reactions can be described by the Sestak-Berggren (S-B) autocatalytic model, and the curing mechanism of epoxy/MeTHPA system was proposed. TGA and TBA analysis results showed that the heat-resistance of the hybrid nanocomposites was effectively improved.
     (2) In order to decrease the functional group density of G-POSS,a novel POSS including some amount of methyl groups i.e. GM-POSS was synthesized. Bisphenol-A epoxy resin was modified by GM-POSS used MeTHPA as curing agent to prepare organic-inorganic hybrid resin, the cure kinetics and thermal properties of which were investigated by non-isothermal differential scanning calorimetry (DSC), TGA, TBA and X-ray energy dispersive spectrometry (EDS).The results indicated that the average activation energy increased first, then decreased with the GM-POSS content increasing, the thermal decomposition temperature, thermal residue and glass transition temperature Tg of the hybrid resins were remarkably improved with the content of GM-POSS increasing. The kinetics of thermal degradation was also investigated and the results showed that the thermal degradation process can be divided into two stages and both of them follow the first order kinetics.
     (3)Polyhedral oligomeric (β-aminoethyl-y-amino propyl)silsesquioxane (POAAS) was synthesized and the hybrid nanocomposites of POAAS with o-cresol formaldehyde epoxy resin (o-CFER) were prepared. The cure kinetics, thermal, mechanical and dielectric properties were investigated with DSC, scanning electron microscopy (SEM), TGA, TBA, tensile tester, impact tester and electric analyzer, respectively. The results showed that the average Ea was 58.42 kJ/mol, and the curing reactions well obeyed for the Sestak-Berggren (S-B) autocatalytic model. The Tg increased with the content of POAAS first, and had a maximal value of 107℃at N=0.50, then decreased modestly. The tensile and impact tests of the fiberglass-reinforced laminate indicated that POAAS could reinforce the mechanical properties and electric properties of epoxy resin effectively.
引文
[1]Kyung M. K.,Keum D.K.,Chujo Y..Organic-inorganic polymer hybrids using polyoxazoline initiated by functionalized silsesquioxane [J].Macromolecules,2003,36(2):867-875.
    [2]Schwab J.J.,Lichtenhan J. D..Polyhedral oligomeric silsesquioxane (POSS)-based polymers [J].Appl Organomet Chem,1998,12(2):707-713.
    [3]Dell'erba I E, Fasced P.,Wlljamsr J. J.,et al.Poly (silsesquioxanes) derived from the hydrolytic condensation of organotrialkoxysilanes containing hydroxyl groups [J].J Organomet Chem,2003, 686(1):42-51.
    [4]Huang J.C.,He C.,Xiao Y.,Mya K. Y.,Dai J.,Siow Y. P..Polyimide/POSS nanocomposites:interfacial interaction, thermal properties and mechanical properties. Polymer,2003,44:4491-4499.
    [5]Baney R. H.,Itoh M.,Sakakibara A. et al.Silsesquioxanes.Chem. Rev.,1995,95(5):1409-1430.
    [6]Brown J. F.,Vogt L. H.,Prescott P. I.. Preparation and characterization of the lower equilibrated phenylsilsesquioxanes. J. Am.Chem. Soc.,1964,86:1120-1125.
    [7]Brown J.F.,Vogt L. H.. The polycondensation of cyclohexylsilanetriol.J. Am. Chem. Soc.,1965,87: 4313-4317.
    [8]Agaskar P. A.. New synthetic route to the hydridospherosiloxanes Oh-H8Si8O12 and D5hH10Si10O15.Inorg. Chem.,1991,30:2707-2708.
    [9]Hasegawa I. Co-hydrolysis products of tetraethoxysilane and methyltriethoxysilane in the presence of tetramethylammonium ions. J. Sol-Gel Sci. Tech.,1993,1:57-63.
    [10]Hasegawa I.,Motojima S..Dimethylvinylsilylation of Si8O208- silicate anion in methanol solutions of tetramethylammonium silicate. J.Organomet. Chem.,1992,441:373-380.
    [11]Feher F. J.,Newman D.A.,Walzer J. F..Silsesquioxanes as models for silica surfaces.J. Am. Chem. Soc.,1989,111:1741-1748.
    [12]Lichtenhan J.D.,Feher F. J.,Glman J. W..Silsesquioxane-siloxane copolymers from polyhedral silsesquioxanes. Macromolecules,1993,26:2141-2142.
    [13]Lichtenhan J. D.,Otonari Y. A.,Carr M. J.. Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers. Macromolecules,1995,28:8435-8437.
    [14]Leu C.M.,Chang Y. T.,Wei K. H.. Synthesis and dielectric properties of polyimide-tethered polyhedral oligomeric silsesquioxane (POSS) nanocomposites via POSS-diamine. Macromolecules, 2003,36:9122-9127.
    [15]Burroughes J. H.,Bradley D. D. C.,Holmes A. B.,et al. Light-emitting diodes based on conjugated polymers. Nature,1990,347:539-541.
    [16]Liu S, Lang X,Ye H,Zhang S, Zhao J. Preparation and characterization of copolymerized aminopropyl/phenylsilsesquioxane microparticles. Eur. Polym.J.,2005,41:996-1001.
    [17]Lichtenhan J.D.,Ottnari Y. A.,Carr M. J.. Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers.Macromolecules,1995,28(24):8435-8437.
    [18]Liu Y.L., Lee H.C.. Preparation and properties of polyhedral oligosilsesquioxane tethered aromatic polyamide nanocomposites through Michael addition between maleimide-containing polyamides and an amino-functionalized polyhedral oligosilsesquioxane. J. Polym. Sci.,Part A:Polym.Chem.,2006, 44:4632-4643.
    [19]Lichtenhan J. D.. Investigations into structure/property relationships for polyhedral oligomeric silsesquioxane based methacrylate polymers. Am. Chem. Soc. Polym.Prep,1997,38(1):518-519.
    [20]Feher Frank J.,Wyndham Kevin D.,Baldwin Richard K.,Soulivong Daravong, Lichtenhan Joseph D. and Ziller Joseph W..Methods for effecting monofunctionalization of (CH2=CH)8Si8012.Chem. Commun.,1999(14):1289-1290.
    [21]Shockey E.,Jones P.E.,Chaffee K.P.,Lichtenhan J.D..Thermal behavior of polyhedral oligosilsesquioxane(POSS)/siloxane copolymers.Am. Chem. Soc. Polym. Prep,1995,36(1): 391-395.
    [22]Haddd Timothy S. and Lichtenhan J.D..Polydimethylsiloxanes modified with polyhedral oligomeric silsesquioxanes:from viscous oils to thermoplastics.Am. Chem. Soc. Polym. Prep,1998,39(1): 611-612.
    [23]Haddd Timothy S.and Lichtenhan J. D.. Hybrid styryl-based polyhedral oligosilsesquioxane polymers and copolymers.Ploym. Prep.,1995,36(1):511-512.
    [24]Romo-Uribe A.,Mather P. T.,Haddad T. S.,Lichtenhan J.D..Viscoelastic and morphological behavior of hybrid styryl-based polyhedral oligomeric silsesquioxane(POSS) copolymers.Journal of Polymer Science:Polymer Physics.1998,36:1857-1872.
    [25]Feher Frank J.,Lucke Sabine, Schwab Joseph J., Lichtenhan Joseph D.,Phillips Shawn H.,Lee Andre. Hybrid materials from epoxide-substituted POSS frameworks. Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem.2004,41(1):526-530.
    [26]Lichtenhan J.D.. Structure-proparty relationship for polyhedral oligomeric silsesquioxane (POSS)-siloxane copolymers. Am. Chem. Soc. Polym. Prep,1994,35(1):523-524.
    [27]Mather Patrick T.,Jeon Hong G,Romo-Uribe A.,Haddad Timothy S.,Lichtenhan Joseph D. Mechanical relaxation and microstructure of poly(norbornyl-POSS)copolymers. Macromolecules.1999,32(4):1194-1203.
    [28]Lichtenhan Joseph D.,Vu Ngo Q. and Carr Michael J.. Sisesquioxane-siloxane copolymers from polyhedral oligosilsesquioxanes.Macromolecules,1993,26:2141-2142.
    [29]Nanda A.K.,Wicks D.A.,Madbouly S. A.,et al. Nanostructured polyurethane/POSS hybrid aqueous dispersions prepared by homogeneous solution polymerization. Macromolecules,2006,39: 7037-7043.
    [30]Huang J.C.,He C.B.,Xiao Y.,et al. Polyimide/POSS nanocomposites:interfacial interaction, thermal properties and mechanical properties. Polymer,2003,44:4491-4499.
    [31]Waddon A. J.,Zheng L.,Farris R. J.,Bryan Coughlin E..Nanostructured Polyethylene-POSS copolymers:control of crystallization and aggregation. Nano Lett.,2002,2:1149-1155.
    [32]何辉,袭锴,葛仁杰,贾叙东,余学海,陈庆民.笼型倍半硅氧烷(POSS)的合成及应用进展.高分子材料科学与工程,2008,24(4):5-9.
    [33]陈平,刘胜平编著.环氧树脂[M].北京:化学工业出版社,1999.
    [34]孟季茹,梁国正.聚丙烯增韧改性研究的最新进展.塑料科技,2000,(1):41-49.
    [35]Lee A. and Lichtenhan J. D..Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems. Macromolecules,1998,31:4970-4974.
    [36]Li G. Z.,Wang L. C.,Toghiani H.,Daulton T. L.,Koyama K. and Pittman C. U..Viscoelastic and mechanical properties of epoxy/multifunctional polyhedral oligomeric silsesquioxane nanocomposites and epoxy/ladderlike polyphenylsilsesquioxane blends.Macromolecules,2001,34:8686-8693.
    [37]Liu Y, Zheng S, Nie K. Epoxy nanocomposites with octa (propylglycidyl ether) polyhedral oligomeric silsesquioxane. Polymer,2005,46(25):12016-12025.
    [38]Choi J, Kim S.G, Laine R M. Organic/inorganic hybid epoxy nanocomposites from aminophenylsilsesquioxanes. Macromolecules,2004,37(1):99-109.
    [39]Kim K M, Adachi K, Chujo Y. Polymer hybrids of functionalized silsesquioxanes and organic polymers utilizing the sol-gel reaction of tetramethoxysilane. Polymer,2002,43(4):1171-1175.
    [40]陈平,刘胜平,宋永贤.环氧树脂与氰酸酯共固化产物性能的研究.高分子学报,1993,(4):486-489.
    [41]卢婷利,梁国正,郭治安等.含倍半硅氧烷的杂化聚合物.高分子通报,2004,(1):15-20.
    [42]蒋超杰,高俊刚,张学建.笼型倍半硅氧烷环氧树脂的合成与表征.热固性树脂.2007,22(1):5-8.
    [43]Madhusudanan P. M.,Krishnan K.,and Ninan K. N.. New approximation for the p(x) function in the evaluation of non-isothermal kinetic data. Thermochim. Acta,1986,97:189-201.
    [44]Atarsia A.and Boukhili R.. Relationship between isothermal and dynamic cure of thermosets via the isoconversion representation. Polym.Eng. Sci.,2000,40:607-620.
    [45]Herman Teo J.K.,Teo K.C.,Pan B.,Xiao Y,Lu X.. Epoxy/polyhedral oligomeric silsesquioxane(POSS) hybrid networks cured with an anhydride:cure kinetics and thermal properties.Polymer,2007,48:5671-5680.
    [46]Ehers J.E.,Rondan N. G.,Huynh L. K.,Pham H.,Marks M.,and Truong T. N.. Theoretical study on mechanisms of the epoxy-amine curing reaction. Macromolecules,2007,40:4370-4377.
    [47]Musto P.,Abbate M.,Ragosta G. and Scarinzi G.. A study by Reman, near-infrared and dynamic-mechanical spectroscopies on the curing behaviour, molecular structure and viscoelastic properties of epoxy/anhydride networks. Polymer,2007,48:3703-3716.
    [48]Vyazovkin S.,Mititelu A.,and Sbirrazzuoli N..Kinetics of epoxy-amine curing accompanied by the formation of liquid crystalline structure. Macromol. Rapid Commun.,2003,24:1060-1065.
    [49]Jubsilp C.,Damrongsakkul S.,Takeichi T.,and Rimdusit S.. Curing kinetics of arylamine-based polyfunctional benzoxazine resins by dynamic differential scanning calorimetry. Thermochim.Acta, 2006,447:131-140.
    [50]Xu G.,Shi W.,and Shen S..Curing kinetics of epoxy resins with hyperbranched polyesters as toughening agents. J. Polym. Sci.,Part B:Polym. Phys.,2004,42(14):2649-2656.
    [51]Rosu D.,Cascaval C.N.,Mustata F.and Ciobanu C.Cure kinetics of epoxy resins studied by non-isothermal DSC data. Thermochim. Acta,2002,383:119-127.
    [52]Malek J..The kinetic analysis of non-isothermal data. Thermochim. Acta.1992,200:257-269.
    [53]Rosu D.,Mititelu A.,and Cascaval C.N.. Cure kinetics of a liquid-crystalline epoxy resin studied by non-isothermal data. Polym.Test.,2004,23:209-215.
    [54]Sestak J. and Berggren G.. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim. Acta,1971,3:1-12.
    [55]Venditti R. A. and Gillham J. K.. A relationship between the glass transition temperature (Tg) and fractional conversion for thermosetting systems.J.Appl.Polym. Sci.,1997,64:3-14.
    [56]Zhang Z.,Gu A.,Liang G.,Ren P.,Xie J.,Wang X.. Thermo-oxygen degradation mechanisms of POSS/epoxy nanocomposites.Polym.Degrad. Stab.,2007:1-8.
    [57]Choi J.,Harcup J.,Yee A. F.,Zhu Q.,Laine R. M..Organic/inorganic hybrid composites from cubic silsesquioxanes [J].Am.Chem.Soc.2001,123:11420-11430.
    [58]Chen W. Y,Wang Y. Z.,Kuo S. W.,Huang C.F.,Tung P. H.,Chang F. C.Thermal and dielectric properties and curing kinetics of nanomaterials formed from poss-epoxy and meta-phenylenediamine [J].Polymer.2004,45:6897-6908.
    [59]Teo J K. H.,Teo K. C.,Pan B.H.,Xiao Y,Lu X. H..Epoxy/polyhedral oligomeric silsesquioxane (POSS) hybrid networks cured with an anhydride:Cure kinetics and thermal properties [J].Polymer.-2007,48:5671-5680.
    [60]Gao J G.,Jiang C J, Zhang X J. Kinetics of Curing and Thermal Degradation of POSS Epoxy Resin/DDS System [J].Int. J. Polymer. Mater..2007,56:65-77.
    [61]Braun D.,Cherdron H.,Kern W. Ed.,Huang B.Thecniques of Polyme Syntheses and Characterization. China Sci. Publishing. Co.,Beijing,1981,pp.294. (in translation).
    [62]Gidden J.,Kemper P. R.,Shammel E.,Fee D.P.,Anderson S. and Bowers M. T. Application of ion mobility to the gas-phase conformational analysis of polyhedral oligomeric silsesquioxane (POSS). [J].Int. J.Mass Spectrom.,2003,222:63-73.
    [63]Trappe V.,Burchard W, Steinmann B..Anhydride-cured epoxies via chain reaction.1.The phenyl glycidyl ether/phthalic acid anhydride system.Macromolecules.1991,24(17):4738-4744.
    [64]易长海,尹业高.环氧树脂潜伏性体系固化反应动力学研究[J].热固性树脂.2000,15(1):13-15.
    [65]Gillham J. K.. The TBA torsion pendulum:a technique for characterizing the cure and properties of thermosetting systems [J].Polym.Int.,1997,44:262-276.
    [66]P15,P25,P48;刘振海.热分析导论[M].北京:化学工业出版社,1991,第一版,P100.
    [67]Zheng L.,Farris R. J.,Coughlin E. B..Novel polyolefin nanocomposites:synthesis and characterizations of metallocene-catalyzed polyolefin polyhedral oligomeric silsesquioxane copolymers. Macromolecules,2001;34:8034-8039.
    [68]Chang Y. W.,Wang E.,Shin G.,Han J.E.,Mather P. T.. Poly(vinyl alcohol) (PVA)/sulfonated polyhedral oligosilsesquioxane (sPOSS) hybrid membranes for direct methanol fuel cell applications. Polym. Adv. Tech.,2007;18:535-543,
    [69]Choi J.,Yee A. F.,and Laine R. M.. Organic/inorganic hybrid composites silsesquioxanes. Epoxy resins of octa(dimethylsiloxyethylcyclohexylepoxide) silsesquioxane. Macromolecules,2003;36: 5666-5682.
    [70]Huang J.,He C.,Liu X.,Xu J.,Tay C.S. S.,Chow S. Y..Organic-inorganic nanocomposites from cubic silsesquioxane epoxides:direct characterization of interphase, and thermomechanical properties. Polymer,2005;46:7018-7027.
    [71]Zeng K. and Zheng S..Nanostructures and surface dewettability of epoxy thermosets containing hepta (3,3,3-trifluoropropyl) polyhedral oligomeric silsesquioxane-capped poly(ethylene oxide).J. Phys. Chem. B,2007;111:13919-13928.
    [72]Asuncion M Z and Laine R M.Silsesquioxane barrier materials. Macromolecules,2007;40:555-562.
    [73]Huang J., He C.Xiao Y.,Mya K.Y.,Dai J.,Siow Y. P..Polyimide/POSS nanocomposites:interfacial interaction, thermal properties and mechanical properties. Polymer,2003;44:4491-4499.
    [74]Zhang Z.,Liu S.,Wang J.,Liao H.,Pu J.,and Yang L.. Research progress of o-crosel novolac epoxy resin. Chinese New chemical materials,2003;31:1-5.
    [75]Haraguchi K.,Usami Y,Yamamura K.,Matsumoto S.. Morphological investigation of hybrid materials composed of phenolic resin and silica prepared by in situ polymerization. Polymer,1998; 39:6243-6250.
    [76]Lin J. M.,Ma C. C.M.,Wang F. Y,Wu D.H.,Kuang S. C..Thermal, mechanical, and morphological properties of phenolic resin/silica hybrid ceramers.J. Polym. Sci.,Part B:Polym. Phys.,2000; 38: 1699-1706.
    [77]赵敏,高俊刚,李刚.纳米SiO2/邻甲酚醛环氧树脂复合材料的性能与固化特性.塑料工业,2004,9(32):11-13.
    [78]姚海松,刘伟区,候孟华,中德妍.改性有机硅/邻甲酚醛环氧树脂复合体系研究.材料工程,2005,12:8-13.
    [79]Lin H.C.,Kuo S. W.,Huang C. F.,Chang F. C.Thermal and surface properties of phenolic nanocomposites containing octaphenol polyhedral oligomeric silsesquioxane. Macromol. Rapid. Commun.,2006;27:537-541.
    [80]Lee Y. J.,Kuo S. W.,Huang W. J.,Lee H. Y,Chang F. C.Miscibility, specific interactions, and self-assembly behavior of phenolic/polyhedral oligomeric silsesquioxane hybrids. J.Polym.Sci.,Part B:Polym.Phys.,2004; 42:1127-1136.
    [81]Zhang X.,Gao J..Organic/Inorganic Hybrid Epoxy Nanocomposites from Octaaminopropyl- silsesquioxanes and BPFER (I)[J].Chemical Research In Chin.Univ.2005,21(Supplement):131-132
    [82]任六波.邻甲酚醛环氧树脂的合成[J].热固性树脂.1998,13(2):17-21.
    [83]李宝芳,董耿蛟.低氯高纯度邻甲酚醛环氧树脂的合成工艺.热固性树脂,1998,1:22-26.
    [84]Ehlers J. E.,Rondan N. G,Huynh L. K.,Pham H.,Marks M.,Truong T. N.. Theroretical Study on Mechanisms of the Epoxy-Amine Curing Reaction[J].Macromolecules,2007,40:4370-4377.
    [85]Mititelu A.,Hamaide T.,Novat C.,Dupuy J.,Cascaval C.N.,Simionescu B.C.,Navard P.. Curing kinetics of liquid-crystalline epoxy resins with inverse reactivity ratios. Macromol.Chem. Phys.,2000; 201:1209-1213.
    [86]Catalani A.,Bonicelli M. G.. Kinetics of the curing reaction of diglycidyl ether of bisphenol A with a modified polyamine.Thermochim. Acta,2005;438:126-129.
    [87]Park S.J., Kim H. C.,Lee H.. Thermal stability of imidized epoxy blends initiated by N-benzylpyrazinium hexafluoroantimonate salt. Macromolecules (communication to the editor),2001; 34:7573-7575.
    [88]Wang Q. F.,Shi W. F..Kinetics study of thermal decomposition of epoxy resins containing flame retardant components. Polym.Degrad. Stab.,2006; 91:1747-1754.
    [89]Rapid Screening Method of the Thermal Endurance of Insulation Materials by Cut-Line (CL) Method; Standard Method of First Ministry of Machine Building JB2624-79;Technique Standard: Beijing, China 1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700