Er~(3+),Na~+:CaF_2透明陶瓷的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对单晶和玻璃作为固体激光介质材料的一些缺点,本文拟制备一种新型的激光工作物质—多晶透明陶瓷。随着纳米粉体制备技术和高真空热压烧结工艺的发展,Re:CaF2透明陶瓷因具有优异的光学性能、热机械性能和稳定的物化性质,有望取代Re:CaF2单晶,引起了广大专家学者的极大关注。相对于其他稀土离子,Er3+离子具有丰富的能级结构,其某些激光波段,在高浓度掺杂下存在交叉驰豫现象,特别适合激光泵浦,是一种具有广阔应用前景的上转换材料;另外,Er3+掺杂的激光材料在处于人眼安全范围的1.5μm和2.9μm两个波段均具有发光通道,该波段的激光可以非常广泛地应用于光通信、医疗、激光探测和测距等领域。Er3+:CaF2透明陶瓷中Er3+离子较易形成团簇结构,团簇结构中的Er3+离子对会产生强烈的荧光猝灭效应,本文拟在Er3+:CaF2透明陶瓷中掺入Na+离子阻止Er3+离子的团簇结构形成,提高荧光量子效率。
     本论文首先采用直接沉淀法制备掺铒氟化钙纳米粉体,通过X射线衍射仪、场发射扫描电镜、透射电镜、分光光度计和电感耦合等离子发射光谱仪等分析手段研究不同的反应溶液浓度对Er3+:CaF2纳米粉体结构、形貌、粒径和稀土真实掺入量的影响。结果表明,随着反应溶液浓度的增大,粉体晶粒尺寸逐渐减小,团聚程度加剧,稀土离子的真实掺入量逐渐减少。反应溶液浓度为C1时合成粉体分散性最好,颗粒平均尺寸约为32nm,有利于制备性能优异的Er3+:CaF2透明陶瓷。在978nm LD泵浦下,该粉体实现了绿色(530-550nm)和红色(650-660nm)两种上转换发光,与之对应的Er3+辐射跃迁分别属于2H11/2,4S3/2→4I15/2和4F9/2→4I15/2,相对绿光而言红光发射强度较强。
     将合成的Er3+:CaF2纳米粉体和NaF粉末于酒精中充分混合均匀、干燥后,采用真空热压烧结技术制备Er3+, Na+:CaF2透明陶瓷,研究不同的烧结温度、保温时间、压力等对陶瓷致密化过程和微观结构的影响。结果表明,烧结温度T4、压力P2、保温时间t3制备的陶瓷在紫外-近红外波段的最大透过率为85.096%。
     系统研究Na+离子对透明陶瓷微观结构、化学组成及光学性能的影响。结果表明,共掺Na+离子减少了杂质CaO和Er2O3的含量;Na+离子有效阻止Er3+离子团簇,增加荧光量子效率,提高荧光寿命,同时引入了一种新的对称格位Er3+-Na+离子对,导致吸收峰和发射峰强度逐渐降低,峰型变窄;Na+离子过量时Er3+主要以Er3+-Na+形式存在,Er3+-Na+的跃迁振子强度低于Er3+-Fi-,从而减小Er3+离子跃迁概率,荧光寿命降低。
Based on some shortcomings of single crystal and glasses as a solid laser medium material, transparent polycrystalline ceramic were synthesized to provide a novel laser material, with using nano-crystal technology and hot-press vacuum sintering method. The transparent CaF2ceramic co-doped with Re ions have attracted great intresent and have become a research focus, which is a promising material as a great substitute to CaF2single crystal because of its good optical properties, thermo-mechanical performance, stable physical and chemical nature. As one of the most popular and efficient rare-earth ions, erbium ion (Er3+) has attracted great interests because it emit in1.5um and2.9um optical communication windows. These lasers have been widely used in the field of optical communications, medical and laser detection. Besides, the Er3+ion can efficiently emit photons in the blue, green, and red regions of the spectrum and has the ability to convert infrared light to visible. However, clusters structure of Er3+can form easily and result in fluorescence quenching when with high concentration of Er3+in CaF2matrix. Thus, in this paper, Na+was co-doped with Er3+as a charge compensator in CaF2transparent ceramic in order to decrease the amount of clusters structures of Er3+and increase the fluorescence lifetime.
     The erbium doped calcium fluoride nanopowders were prepared by direct precipitation method. The influence of solution concentration on morphology, particle size and rare earth ions doping amounts actually of Er3+:CaF2nanopowders were investigated by XRD, FE-SEM, TEM, ICP and spectrophotometer methods. The results show that along with the increase of the solution concentration, powder particles size decreases, and reunion aggravates, rare earth ions doping amounts actually reduce. When the concentration of solution is C1, the powder is well dispersed, particle size is32nm on average, which is favorable for good sinterability of Er3+:CaF2ceramics. Upconversion luminescence of green(530-550nm) and red(650-660nm) was observed under the excitation of978nm, which is due to the transition of2H11/2,4S3/2→4I15/2,4F9/2→4I15/2, respectively, and the intensity of green emission at550nm is relative weaker than that of the red emission at660nm.
     Er3+, Na+:CaF2transparent ceramics were fabricated by HP method, The mixture of Er3+:CaF2nanopowder and NaF powder were used as starting materials. Effects of sintering temperature, pressure and holding time on the properties of the ceramics have been discussed. The results showed that the transmittance of Er3+, Na+:CaF2transparent ceramics was sintered at T4, P2for t3under a vacuum was85.096%from the VUV to the IR.
     Effects of Na+ion on structure, chemical composition and optical properties of transparent ceramic were investigated. The results showed that co-doped Na+ion reduce the impurities of CaO and of Er2O3and prevent the Er3+ion clusters effectively, improve the fluorescence lifetime. One certain site of Er3+ions (Er3+-Na+) should form in Er3+, Na+:CaF2transparent ceramic, and it should be predominant with increasing Na+concentration, leading to the narrowed and deformed absorption and emission bands. Transition oscillator strength of Er3+-Na+is weaker than that of Er3+-F-, leading to decreased absorption and infrared emission and up conversion emission intensity.
引文
[1]朴贤卿RE:YAG透明陶瓷的制备和光学性能研究[D].吉林:长春理工大学,2004.
    [2]Nakamura S, Yoshioka H, Matsubara Y, et al. Efficient tunable Yb:YAG ceramic laser [J]. Opt Commun, 2008,281(17):4411-4414.
    [3]Li J, Wu Y, Pan Y, et al. Densification and microstructure evolution of Cr4+, Nd3+:YAG transparent ceramics for self-Q-switched laser [J]. Ceram Int,2008,34(7):1675-1679.
    [4]李先学,邱国彪,罗小铭,等.国内外透明激光陶瓷的研究现状[J].山东陶瓷,2009,32(001):26-29.
    [5]邹志伟Nd: YAG透明陶瓷的制备和光学性能研究[D].吉林:长春理工大学,2005.
    [6]霍玉晶,黄哲林,周炳琨.LD泵浦的整体式CW ND:YAG单晶光纤激光器[J].中国激光,1990,103-105.
    [7]陈军,蒋汝忠.带受激布里渊散射相位共轭镜的Nd:YAG激光器[J].光学学报,2007,11(8):715.
    [8]吕蓬,郭亨群,王加贤,等.纳米Si/SiNx薄膜的制备及对Nd:YAG激光器的被动调Q[J].激光技术,2008,32(2):163-165.
    [9]Nicoara I, Stef M, Pruna A. Growth of YbF3-doped CaF2 crystals and characterization of Yb3+/Yb2+ conversion [J]. J Cryst Growth,2008,310(7-9):1470-1475.
    [10]Nicoara I, Munteanu M, Preda E, et al. Some dielectric and optical properties of ErF3-doped CaF2 crystals [J]. J Cryst Growth,2008,310(7-9):2020-2025.
    [11]Sun H, Zhang L, Yu C, et al. Effect of oxygen substitution by halide ions on structure, thermal stability and upconversion fluorescence in Er3+/Yb3+-codoped germanium-bismuth glasses [J]. Solid State Commun,2005,134(7):449-453.
    [12]Chen D, Wang Y, Yu Y, et al. Spectroscopic properties of Er3+ ions in transparent oxyfluoride glass ceramics containing CaF2 nano-crystals [J]. J Phys-Condens Mat,2005,17:6545-6557.
    [13]马红萍,徐时清,姜中宏.Er3+掺杂氧氟锗硅酸盐玻璃的频率上转换研究[J].硅酸盐学报,2004,32(011):1433-1436.
    [14]Lin H, Jiang S, Wu J, et al. Er3+ doped Na2O-Nb2O5-TeO2 glasses for optical waveguide laser and amplifier [J]. J Phys D:Appl Phys,2003,36:812-817.
    [15]Qin X, Yang H, Zhou G, et al. Fabrication and properties of highly transparent Er: YAG ceramics [J]. Opt Mater,2011,1-4
    [16]Zhou J, Zhang W, Li J, et al. Upconversion luminescence of high content Er-doped YAG transparent ceramics [J]. Ceram Int,2010,36(1):193-197.
    [17]Choi J H, Shi F G, Margaryan A, et al. Novel alkaline-free Er3+-doped fluorophosphate glasses for broadband optical fiber lasers and amplifiers [J]. J Alloy Compd,2008,450(1-2): 540-545.
    [18]丁君,杨秋红,唐在峰,等Er3+/Yb3+共掺的氧化镧钇透明陶瓷的光谱性能研究[J].物理学报,2007,(04):2207-2211.
    [19]Chen D, Wang Y, Ma E, et al. Partition, luminescence and energy transfer of Er3+/Yb3+ ions in oxyfluoride glass ceramic containing CaF2 nano-crystals [J]. Opt Mater,2007,29(12): 1693-1699.
    [20]Hu Z, Wang Y, Ma E, et al. Crystallization and spectroscopic properties investigations of Er3+ doped transparent glass ceramics containing CaF2 [J]. Mater Res Bull,2006,41(1):217-224.
    [21]Chen D, Wang Y, Yu Y, et al. Influences of Er3+ content on structure and upconversion emission of oxyfluoride glass ceramics containing CaF2 nanocrystals [J]. Mater Chem Phys, 2006,95(2-3):264-269.
    [22]Zhaoa S, Wangb X, Xua S, et al. FREQUENCY UPCONVERSION FLUORESCENCE OF Er3+-DOPED TeO2CWO3 GLASS [J]. Chalcogenide Letters,2005,2(10):99-102.
    [23]Qin G, Lu J, Bission J, et al. Upconversion luminescence of Er3+ in highly transparent YAG ceramics [J]. Solid State Commun,2004,132(2):103-106.
    [24]Nishi M, Tanabe S, Inoue M, et al. Optical-telecommunication-band fluorescence properties of Er3+-doped YAG nanocrystals synthesized by glycothermal method [J]. Opt Mater,2005, 27(4):655-662.
    [25]Suemune Y, Ikawa H. Thermal conductivity of KMnF3, KCoF3, KNiF3, and KZnF3 single crystals [J]. Journal of The Physical Society of Japan,1964,19:1686-1690.
    [26]Coble R. Transparent alumina and method of preparation [J]. US Pat,1962, (3):20-23.
    [27]丁君,杨秋红,唐在峰,等Er3+/Yb3+共掺的氧化镧钇透明陶瓷的光谱性能研究[J].物理学报,2007,56(4):2207-2211.
    [28]Balakrishnaiaha R, Kima D W, Yia S S, et al. Fluorescence properties of Er3+-doped YPO4 phosphors [J].1999,1.
    [29]Patra A, Friend C S, Kapoor R, et al. Upconversion in Er3+:ZrO2 nanocrystals [J]. J Phys Chem B,2002,106(8):1909-1912.
    [30]Patra A, Friend C S, Kapoor R, et al. Fluorescence upconversion properties of Er3+-Doped TiO2 and BaTiO3 nanocrystallites [J]. Chem Mater,2003,15(19):3650-3655.
    [31]Vetrone F, Boyer J C, Capobianco J A, et al. Concentration-dependent near-infrared to visible upconversion in nanocrystalline and bulk Y2O3:Er3+[J]. Chem Mater,2003,15(14): 2737-2743.
    [32]Patra A. Effect of crystal structure and concentration on luminescence in Er3+:ZrO2 nanocrystals [J]. Chem Phys Lett,2004,387(1-3):35-39.
    [33]杨秋红.激光透明陶瓷研究的历史与最新进展[J].硅酸盐学报,2009,3:446-484.
    [34]李卫东,曹瑛,房明浩,等.透明陶瓷的研究进展[J].人工晶体学报,2007,36(1):102-105.
    [35]刘颂豪.透明陶瓷激光器的研究进展[J].光学与光电技术,2006,4(2):1-8.
    [36]Ikesue A, Kinoshita T, Kamata K, et al. Fabrication and Optical Properties of High -Performance Polycrystalline Nd:YAG Ceramics for Solid - State Lasers [J]. J Am Ceram Soc,1995,78(4):1033-1040.
    [37]Lu J, Prabhu M, Xu J, et al. Highly efficient 2% Nd:yttrium aluminum garnet ceramic laser [J]. Appl Phys Lett,2000,77(23):3707-3709.
    [38]Aubry P, Bensalah A, Gredin P, et al. Synthesis and optical characterizations of Yb-doped CaF2 ceramics [J]. Opt Mater,2009,31(5):750-753.
    [39]苏良碧,徐军,杨卫桥,等.氟化钙晶体的生长和应用研究[J].硅酸盐学报,2003,31(012):1202-1207.
    [40]刘维良.先进陶瓷工艺学[M].武汉:武汉理工大学出版社,2004.
    [41]吕灼菲,李轶,张学建,等.溶胶-凝胶燃烧法合成Er3+:YAG纳米粉体(英文)[J].硅酸盐学报,2008,10:1454-1457.
    [42]Bensalah A, Mortier M, Patriarche G, et al. Synthesis and optical characterizations of undoped and rare-earth-doped CaF2 nanoparticles [J]. J Solid State Chem,2006,179(8): 2636-2644.
    [43]吕燕飞,吴希俊,吴大雄.乙醇/水复合溶剂中纳米CaF2的沉淀制备及表征[J].功能材料,2006,07:1108-1113.
    [44]张延,梅炳初,汪思,等.CaF2纳米粉体的制备与CaF2/Er3+纳粉体的荧光性能[J].合成化学,2011,02:225-228.
    [45]汪思,智广林,梅炳初,等.溶液pH值对直接沉淀法制备CaF2纳米粉体的影响[J].纳米科技,2010,04:32-39.
    [46]Zhi G, Song J, Mei B, et al. Synthesis and characterization of Er3+ doped CaF2 nanoparticles [J]. J Alloy Compd,2011,9133-9137.
    [47]汪思,梅炳初,周卫兵,等.直接沉淀法制备CaF2纳米粉体[J].西南科技大学学报,2009,04:13-16.
    [48]陆佩文.无机材料科学基础:硅酸盐物理化学[M].武汉:武汉理工大学出版社,2006.
    [49]果世驹.粉末烧结理论[M].北京:冶金工业出版社,1998.
    [50]Lyberis A, Patriarche G, Gredin P, et al. Origin of light scattering in ytterbium doped calcium fluoride transparent ceramic for high power lasers [J]. J Eur Ceram Soc,2011,31:1619-1630.
    [51]Bensalah A, Ito M, Guyot Y, et al. Spectroscopic properties and quenching processes of Yb3+ in Fluoride single crystals for laser applications [J]. J Lumin,2007,122:444-446.
    [52]张希艳,卢利平,柏朝晖,等.稀土发光材料[M].北京:国防工业出版社,2005.
    [53]Sorokin P P, Stevenson M. Stimulated infrared emission from trivalent uranium [J]. Phys Rev Lett,1960,5(12):557-559.
    [54]Tallant D R, Wright J C. Selective laser excitation of charge compensated sites in CaF2:Er [J]. The Journal of Chemical Physics,1975,63:2074.
    [55]Su L, Xu J, Li H, et al. Codoping Na+ to modulate the spectroscopy and photoluminescence properties of Yb3+ in CaF2 laser crystal [J]. Opt Lett,2005,30(9):1003-1005.
    [56]吕燕飞.不同粒径纳米碱土氟化物粉体的制备及热稳定性研究[D].浙江:浙江大学,2006.
    [57]李江,邱发贵,孙兴伟,等.真空烧结Nd:YAG透明陶瓷的研究[J].功能材料,2004,35(z1):367-371.
    [58]Cai H, Zhou J, Feng T, et al. Dual-wavelength competitive output in Nd:Y3Sc1.5A13.5O12 ceramic disk laser [J]. Opt Commun,2008,281(17):4401-4405.
    [59]Fu J, Parker J, Flower P, et al. Eu2+ ions and CaF2 containing transparent glass-ceramics [J]. Mater Res Bull,2002,37(11):1843-1849.
    [60]李长青,张明福,左洪波,等.影响透明陶瓷透光性能的因素[J].兵器材料科学与工程,2006,29(002):26-30.
    [61]Du P, Xia Z, Liao L. Tunable upconversion luminescence and energy transfer process between Yb3+ and Er3+ in the CaY4F14 [J]. J Lumin,2011,09(057):1-4.
    [62]Sobolev B, Golubev A, Herrero P. Fluorite M1-x RxF 2+x phases (M= Ca, Sr, Ba; R= rare earth elements) as nanostructured materials [J]. Crystallogr Rep,2003,48(1):148-169.
    [63]殷庆瑞,祝炳和.功能陶瓷的显微结构,性能与制备技术[M].北京:冶金工业出版社,2005.
    [64]吴振宇,杨银堂,汪家友.低介电常数aC:F薄膜结构和热稳定性研究[J].真空科学与技术学报,2006,25(5):355-357.
    [65]徐崇泉,张洪喜Er: LiNbO3晶体表面的XPS研究[J].哈尔滨工业大学学报,1991,002:87-89.
    [66]张滨,孙玉珍,王文皓.XPS数据处理中的峰形和背景扣除[J].物理测试,2011,1:18-23.
    [67]胡亚华,张勇.共溅射磁控溅射法制备AlN: Er薄膜的XPS和PL研究[J].嘉兴学院学报,2010,22(006):49-52.
    [68]柴路,颜石,薛迎红,等.共掺Na+的Yb3+:CaF2晶体的荧光分析与低阈值激光运转[J].物理学报,2007,06):3553-3558.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700