机械能助渗铝机制和渗铝层组织结构与性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用自行研制的机械能助渗装置,对机械能助渗铝的渗剂配方、温度、时间、滚筒转速、渗剂装入量、滚筒直径、渗剂粒度、冲击粒子等工艺因素对机械能助渗铝速度的影响进行了试验研究。
     应用金相分析、电子探针、X射线衍射仪、透射电镜等现代分析方法,研究和分析了机械能助渗铝层的组织结构、形貌、化学成分分布;分析了机械能对试样基体微观缺陷的影响。
     利用化学反应的热力学函数,研究分析了机械能助渗铝化学反应过程的方式、步骤;考察了机械能助渗铝过程中渗剂反应、活性原子吸附、扩散三个主要环节的热力学和动力学机制,从而确定了整个助渗过程的控制环节和非控制环节;在此基础上,建立了机械能助渗铝机制的理论模型。
     分析测试了机械能助渗铝层的显微硬度、耐腐蚀性、抗高温氧化性等性能以及机械能助渗铝层对基体抗拉强度、延伸率等力学性能的影响。
     结论表明:
     1、选择适宜的供铝剂、催渗剂和填充剂,机械能助渗可以在500-650℃的低温下得到厚度均匀、组织致密的渗铝层,渗铝层厚度可以达到250μm;渗速可以达到,甚至超过粉末高温渗铝(900℃以上)的速度。但渗层中形成疏松孔洞的倾向较大。
     2、渗铝温度越高,渗速越快。如果填充剂颗粒较细,当渗铝温度大于650℃时,铝粉熔化,渗剂流动性差,渗铝速度反而下降。因此机械能助渗铝温度应控制在500-650℃。如果填充剂颗粒较粗,铝粉熔化基本不影响渗剂流动性。在700℃机械能助渗铝渗速很快,08F钢渗铝层厚度达到500μm,但渗剂中的铝粉粘结成很大的铝球,浪费铝粉。渗层厚度与保温时间基本成抛物线关系。滚筒转速在8r/min、滚筒内空隙达到1O%时,渗速最快。
     3、渗铝层内部组织主要是由Fe_2Al_5相构成,Fe_2Al_5相呈柱齿状向基体内生长。渗铝层中还存在少量FeAl、Fe_3Al等铁铝化合物及非晶态合金相,在Fe_2Al_5相和基体之间没有FeAl、Fe_3Al等独立成层的低铝相区,没有形成晶粒粗大的含铝α-Fe相过渡区。
     4、渗铝层表面组织是在Fe_2Al_5相表面断续分布着Al_2O_3、FeO以及(FeO)_n·(Al_2O_3)_m等氧化物颗粒;这些氧化物颗粒先于Fe_2Al_5相生成。
     5、随着碳含量的增加,渗铝层厚度下降;1Cr18Ni9不锈钢、金属钛、镍表面机械能助渗铝也能得到渗铝层,渗铝速度远低于低碳钢;在铜表面机械能助渗铝未能得到渗铝层;在镁表面机械能助渗铝得到的渗铝层很脆,容易剥落。
     6、在500-700℃,粉末渗铝过程在热力学上是自发过程;在反应、吸附、扩散三个过程中,渗铝剂中反应产生活性铝原子的过程是反应控制的主要过程。
     7、机械能助渗的机制是由于渗剂颗粒之间相互冲击、摩擦提高了供铝剂的化学活性,增加了渗剂各组分之间、供铝剂与渗件表面之间的接触机会,加速了渗剂反应,使活性铝原子浓度大大提高。渗剂和渗件之间的相互冲击、摩擦使表面氧化膜变得不连续,净化了渗件表面,有利于活性原子吸附,也有提高渗速的作用。
     8、催渗剂NH_4Cl产生的HCl并不能完全清除试样表面的氧化铁薄膜,活性铝原子首先进入Fe_2O_3薄膜中夺取氧原子生成Al_2O_3,铁元素被还原,但铁原子并没有与铝结合为铁铝化合物,而是以FeO的形式存在,在渗层表面形成了(FeO)_n(Al_2O_3)_m氧化物颗粒。
     9、机械能渗铝层的显微硬度达到980HV_(0.1);具有良好的耐NaCl、H_2S、H_2SO_3、HNO_3等腐蚀介质腐蚀的性能和高的抗高温氧化性。材料经过机械能助渗铝后,基体仍然可以保持良好的机械性能;工件变形小,可以应用于形状复杂的工件。因此机械能助渗铝工艺具有良好的应用前景。
The effects of agent formulation, temperature, time, speed of the cylinder, proportion of the permeability agent, diameter of the cylinder, particles size of permeability agent, impact particles on the mechanical aided aluminized speed are studied. The metallographic analysis, microhardness tester, electron probe and TEM are used to investigate the structure, morphology and chemical composition distribution of the aluminized layer, and the influence of mechanical energy on the microscopic flaw of the sample substrate are studied.
     By using the chemical reaction thermodynamic functions, the process and steps of mechanical energy aided chemical reaction are analyzed. The thermodynamics and kinetics mechanism of infiltration agent reaction, the adsorption and diffusion of active atomic in the mechanical energy aided aluminized process are studied. So we can ascertain the control step and the non-control step of the aided process. On this basis, a mechanical energy aided aluminized theoretical model is established.
     We test the microhardness, corrosion resistance, high temperature oxidation resistance, and the influences of the aluminized layer on the substrate tensile strength, elongation and other mechanical properties. Then we obtain the follow conclusions:
     1. Choosing suitable aluminum provider, catalytic agent and stuffing, uniform and compact alumimzed layer with the thickness more than 250μrn would be obtained at the low temperature of 500-650℃. By this method, the aluminized speed could reach the speed of the high temperature powder aluminizing (above 900℃). Loosen structure is apt to be formed in the layer.
     2. The higher the aluminized temperature, the faster the aluminized speed. If the stuffing particles are small, the Al powder will dissolve when the aluminized temperature is higher than 650℃, because the fluid of the permeability agent is poor, the thickness of aluminized layer will decrease. So the temperature of mechanical energy aided aluminizing should be controlled between 500℃and 650℃. If the stuffing particles is coarser, the fluid of permeability agent will be finer, mechanical energy aided aluminized speed is fast at 700℃, 08F steel with the aluminized thickness 250μm can be obtained. However, Al powder of permeability agent bonds into big balls, so it is caused waste. The thickness of aluminized layer related to holding time is in a parabola form. The aluminized speed is the fastest when the rotational speed of cylinder is 8r/min and the performed gap of cylinder is 10%.
     3. The internal organization of aluminized layer is mainly composed phase, which grow in columnar form into the substrate. A little of FeAl, compound and amorphous alloy phase are formed in alumimzed layer. The low Al phase region of FeAl, Fe_3Al are not formed between Fe_2Al_5 and substrate, the transition phase ofα-Fe containing Al do not form coarse grain size.
     4. The gains of Al_2O_3, Fe_2O_3 and FeO·Al_2O_3 oxide are discontinuously distributed on the surface of Fe_2Al_5 phase in the surface texture of aluminized layer. The oxides is formed earlier than Fe_2Al_5 phase.
     5. The thickness of aluminized layer decreases along with the increase of carbon content. By mechanical energy aided aluminizing, the aluminized layer can be also obtained on the surface of 1Cr18Ni9 stainless steel, Ti and Ni, but the permeability speed is much slower than low carbon steel. The aluminized layer can not be obtained on the Cu surface by mechanical energy aided aluminizing. The aluminized layer obtained on Mg surface is crisp and easily flaking.
     6. At the temperature of 500℃to 700℃, the powder aluminized process is a thermodynamic spontaneous process. The agents produced active atomic is the control step during the process of reaction, adsorption and diffusion.
     7. Mechanical energy aided alumimzed mechanism is mainly because of agents vibration and friction, which can enhance internal defect density and the surface activity of the permeability agents, increase the contact chance of different component of agents, permeability agents and samples surface, so the aluminized reaction is accelerated, the concentration of active aluminum atoms is increased remarkably. The relative shift between agents and samples and mutual friction make the surface oxide film of samples become discontinuous, so the samples surface are purified, which would be benefit to adsorb active atom and enhance the aluminized speed too.
     8. HCl generated from catalystic agent NH_4Cl can not remove all the FeO film on the surface of samples. The active Al atoms come into Fe_2O_3 film firstly, and grab the oxygen atoms and generate Al_2O_3, the Fe element is deacidized, but Fe and Al atoms do not combine into Fe-Al compounds, Fe is existed in the form of FeO. The oxide particles of (FeO)_n(Al_2O_3)_m are formed on the surface of aluminized layer.
     9. The microhardness of aluminized layer reach 980HV_(0.1) by mechanical energy aided aluminizing. Mechanical aided aluminized layer has excellent corrosion resistance to NaCl, H_2S, H_2SO_3, HNO_3 and high temperature oxidation resistance. The substrate could maintain high mechanical properties after mechanical energy aided aluminizing, and this method could be applied to the workpieces with complex shapes, so the mechanical energy aided process has a good prospect.
引文
[1]艾桃桃,王芬,陈平.金属间化合物的制备方法及应用[J].稀有金属快报,2006,25(1):5-11.
    [2]何业东.纳米铝金属间化合物涂层的研究进展[J].纳米科技,2003,3(4):3-7.
    [3]何业东,詹肇麟,王德仁.一种加速制备合金涂层的方法[P].申请号:200410009189.7,2004.6.9.
    [4]Zhaolin Zhan,Yedong He,Deren Wang,et al.Nano-erystalline-aluminium Coatings at an Elevated Temperature[A].Asia Conference on Nanoscience and Nanotechnology,Abstract Book[C],Nov.24-27,2004,Beijing,China,p183.
    [7]孙希泰,等.机械能助渗铝的研究[J].金属热处理,2000,25(7):21-23.
    [8]徐英,孙希泰,等.机械能助锌铝共渗的研究[J].金属热处理,2001,26(2):13-14.
    [9]庄光山,孙希泰,等.机械能助渗硅的研究[J].金属热处理,2000,25(9):12-14.
    [10]庄光山,孙希泰,等.机械能助渗锰的研究[J].金属热处理,2000,25(12):25-27.
    [11]徐英,孙希泰,等.机械能助渗铜的研究[J].金属热处理,2000,25(11):13-15.
    [12]陈鹭滨,孙希泰.机械能助渗的基本规律及其发展前景[J].金属热处理,2004,29(2):25-28.
    [13]叶国庭.滚动渗锌工艺试验研究与应用[J].电子工艺技术,1989,(1):5-7.
    [14]王国佐.钢的化学热处理[M].北京:中国铁道出版社,1980:369-375.
    [15]曹晓明、温鸣、杜安,现代金属表面合金化技术,化学工业出版社,2007,3:84
    [16]马贵成.离子氮化技术及应用[J].煤矿机械,2004,7:69-69.
    [17]李凤照,等.离子轰击渗氮层的精细结构和界面结构[C].第五届全国化学热处理会论文集,1996,10:97-106.
    [18]王修春.流动粒子炉及其在热处理中的应用[J].山东科学,1992,5(3):45-49.
    [19]新井透.流动粒子炉渗硼和碳化物涂覆工艺的研究[J].热处理,1992,(1) :37-38.
    [20]程树红,张一公,谢丹雄,等.高频感应加热渗铝的研究[J].新技术新工艺,1987,(6):12.14.
    [21]Tao N R,et al.Surface nanocrystallization of iron induced by ultrasonic shot peening[J].Nanostructural Materials,1999,11(4):433-440.
    [22]Liu G,et al.Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening[J].Materials Science and Engineering,2000,(4):90
    [23]冯淦.低碳钢表面钠米化处理及渗氮特性研究[D].南京理工大学硕士论文,2000.
    [24]Lu Ke,et al.Surface nanocrystallization(SNC)metallic material-presentation of the concept behind a now approach[J].J Mater Sci Technol,1999,15(3):193-197.
    [25]詹肇麟,喷丸加速制备纳米结构铝化物涂层的研究[D],北京科技大学博士学位论文,2005:5-6.
    [26]卑多慧,吕坚,顾剑锋.表面纳米化预处理对低碳钢气体渗氮行为的影响[J]材料热处理学报,2002,23(1):19-24.
    [27]张亨金,卫英慧,杜华云.Q235钢表面纳米化处理对离子注入的影响.太原理工大学学报,2007,38(1):8-11.
    [28]戴达煌,周克松,袁镇海,等.现代材料表面技术科学[M],北京:冶金工业出版社,2004:303.
    [29]Vargas J R,Goto T,Zhang Wet al.Applied Physics Let-ters,1994,65(9):1094.
    [30]Goto T,Vargas J R,Hirai T.Materials Science and Engineering,1996,A217/218:223
    [31]Goto T,Vargas J R,Hirai T.Journal De PhysiqueⅣ,1993,3:297
    [32]Gerfin T,Halg W J,Atamny F et al.Thin Solid Films,1993,241:352
    [33]Tung Y L,Tseng W G Lee C Yet al.Organometallics,1999,18(5):864
    [34]Hierso J C,Satto C,Feurer R et al.Chem.Mater.,1996,8(10):2481
    [35]马胜利,马大衍,王昕,等.脉冲直流等离子体辅助化学气相沉积TiN和TiCN薄膜摩擦磨损特性研究[J].摩擦学学报,2003,23(3):179-182.
    [36]潘永强.射频等离子体增强化学气相沉积SiNx薄膜的研究.[J]光子学报, 2007,36(6):1097-1101.
    [37]刘燕燕,E.Bauer-Grosse,张庆瑜.微波等离子体化学气相沉积合成掺氮金刚石薄膜的缺陷和结构特征及其生长行为[J]物理学报,2007,56(4):2359-2367.
    [38]Jiangnan Dai,Hechu Liu,Wenqing Fang et al.Atmospheric pressure MOCVD growth of high-quality ZnO films on GaN/Al2O3 templates[J].Crystal Growth,2005,283(12):93-99.
    [39]Li Wang,Yong Pu,Wenqing Fang et al.High-quality ZnO films grown by atompheric pressure metal-organic chemical vapor deposition[J].Crystal Growth,2005,283(12):87-92.
    [40]李瑶,王立,戴江南,等.常压化学气相沉积技术生长ZnO:H薄膜的光学性质[J].光学学报,2006,26(10):1585-1588.
    [41]王豫.激光化学气相沉积(LCVD)制取TiN薄膜[J].热处理,2004,19(2):33.36
    [42]张迎光,白雪峰,张洪林,等.化学气相沉积技术的进展[J].中国科技信息,2005,(12):82.
    [43]SpearKE.The Electochemical Socitey,Inc,Pennington,Nj,1984:81-97.
    [44]曹晓明,温鸣,杜安.现代金属表面合金化技术[M].北京:化学工业出版社,2007,12:255.
    [45]Munz W D.Properties of niobium-based weal and corrosion resistant hard PVD coating deposition on various steels[J].Metall Ital,2002,94(11-12):25
    [46]Kubo Ryuichi.Adjustement of membrane stress using alu-minum oxide and silicon dioxide multilayer structure[J].Mater Res Soc Symposium-Processdings,2001,657:531
    [47]Yang T S.Deposition of carbon-containing cubic boron ni-tride films by pulsed-DC magnetron sputtering[J].Thin Solid Films,2001,398-399:285
    [48]Seino T.Aluminum oxide films deposited in low pressure conditions by reactive pulsed do magnetron sputtering[J].J Vac Sci Technol,2002,A20(3):634
    [49]张继东,李才巨,朱心昆.不同基体真空蒸镀铝膜的附着力研究[J].昆明理工大学学报(理工版),2006,31(6):25-27.
    [50]汤智慧,宇波,高玉魁.后处理对离子镀铝涂层腐蚀性能的影响研究[J].装备环境工程,2007,4(4):27-31.
    [51]张继成,吴卫东,许华,等.磁控溅射技术新进展及应用[J],.材料导报,2004,18(4):56-59
    [52]王振林,杨惠.AZ31镁合金磁控溅射镀铝膜的性能研究[M].轻合金加工技术,2007,35(5):32-34.
    [53]杜莉娟,姚玉元,陈文兴.粘合剂涂层对磁控溅射镀铝织物牢度的影响.[J]浙江理工大学学报,2007,24(2):122-124.
    [54]佟洪波,巴德纯,闻立时.中频反应磁控溅射制备AIN薄膜的工艺研究[J].真空科学与技术学报,2007,27(4):332-335.
    [55]祝新发,陈顺民,许辉.物理气相沉积(Ti,Al)涂层刀具的切削性能[J].热处理,2006,21(2):28-30.
    [52]艾桃桃,王芬,陈平.金属间化合物的制备方法及应用[J].稀有金属快报,2006,25(1):5-12.
    [53]范润华,孙康宁,尹衍升,等.Fe3Al金属间化合物的机械合金化[J].机械工程学报,2000,36(8):55-58.
    [56]刘耀东,张学秋.机械合金化法合成金属间化合物NiAl粉末[M].中国粉体技术,2006,(1):15-16.
    [57]李宁,耿刚强,张海宝,等.机械合金化-退火法制备铁硅金属间化合物[J].热加工工艺,2005,(8):21-23.
    [58]马妍,范群成,顾美转,等.Ni3Al金属间化合物自蔓延高温合成中的显微组织演变[J].稀有金属材料与工程,2006,35(4):567-572.
    [59]陈爱华,李安湘,刘心宇.自蔓延高温合成法制备Mo-Al系金属间化合物[J].中南工业大学学报,1998,29(4):361-363.
    [60]Urn Tae Young,Abe Toshihiko,Sumi Shinichi.Fabrication of Iintermetallic Compounds by Spark Plasma Sintering[J].J Mater Synth Pro,1999,7(5):303-309.
    [61]Oginuma H,Kondoh K,Yamaguchi T,et al.Fabrication of Mg-Si System Intermetallic Compounds by Spark Plasma Sintering[J].Journal of the Japan Society of Powder and Powder Metallurgy,2005,52(2):79-83.
    [62]刘耀东,连建设.脉冲放电等离子烧结NiAl金属间化合物的组织与性能[J].金属热处理,2005,30(4):46-48.
    [63]徐颖,徐东,王征,等.金属间化合物材料的熔炼和铸造[M].兵器材料科学与工程,1996,19(5):43-47.
    [64]Verin A S,Verin M A.Intermetallids Ni3Al and Fe3Al with Directional Structure as Future Materials[J].Anti-Corrosion Methods and Materials,2001,48(5):298-303.
    [65]楼白杨、刘茂森、毛志远.Fe-AI金属间化合物的组织结构和力学性能[J].材料科学与工程,1995,13(2):19-23.
    [66]钟太彬,林均品,陈国良.Fe3Si基合金的制备及应用研究进展[J].功能材料,1999,30(4):337.
    [67]耿刚强,官磊,李宁,等.铁硅金属间化合物耐熔铝腐蚀性研究[J].热加工工艺,2006,35(12):14-16.
    [68]臧树俊,周琦,马勤.金属间化合物Mg2Si研究进展[J].铸造技术2006,27(8):866-870.
    [69]Seung-Wan Song,Kathryn A.Striebel,Xiangyun Song et al.Amorphous and nanocrystalline Mg2Si thin-filmelectrodes[J].Journal of Power Sources,2003,(119-121):110-112.
    [70]H Tatsuokaa,N Takagia,S Okayaa,et al.Microstructures of semiconducting silicide layers grown by novel growthtechniques[J].Thin Solid Films.2004,(461):57-62.
    [71]孙守功.高温合金K417气体渗铝[J].金属热处理,1998,(11):40-41.
    [72]郝少祥,谭萍.20钢固体渗铝的试验研究[J].河南科学,2004,22(6):783-785
    [73]黄志荣,李培宁,徐宏.可控固体粉末渗铝新工艺[M].新技术新工艺,2004,(10):59-61.
    [74]李远睿.20G无缝钢管的热浸渗铝工艺[J].钢铁研究学报,2000,12(5):61-65.
    [75]刘邦津.钢材的热浸镀铝[M].北京:冶金工业出版社,1995.94-96.
    [76]魏无际,丁毅,石焕荣.Q235钢热浸渗铝层的组织分析和性能[J].南京化工大学学报,2000,22(6):10-13.
    [77]王豫,马玉明,赵明琦.含碳量对渗铝层组织和性能的影响[J].金属热处理,1997(10):17-20.
    [78]Roy S,Sivan V,Balasubramanyan.The interface in Al-Zn alloy coating over mild steel[J].Surface Technology,1978,7(5):361-365.
    [79]Liang D.Hot dip galvanized steel[J].Scripta Metallurgicaet Materialia,1997,34(10):1513-1516.
    [80]Behadur A,Mohanty O N.Structural studies of hot dip alumi-nized coating on mild steel[J].Materials Transaction JIM,1991,32(11):1053-1061.
    [81]夏原,姚枚,张瑞平.A3钢热浸铝镀层生长规律的影响因素[J].中国有色金属学报,1996,6(1):74-77.
    [82]夏原,董延,李东风.热浸铝过程中表面层厚度动态控制模型[J].中国有色金属学报,2003,13(5):1202-1205
    [83]张伟,范志康,郭献军.热浸镀铝钢渗铝层的微观组织及其形成机理研究现状[J].机械工程材料,2006,30(1):9-12.
    [84]蒋鸣,李国喜,刘常升.石油管热浸镀铝工艺及性能的研究[J].材料保护,2006,39(4):48-51.
    [85]文九巴,李全安,张荥渊.稀土对热浸渗铝组织和耐腐蚀性影响的研究[J].材料热处理学报,2002,23(3):69-71.
    [86]文九巴,李全安,张荥渊.稀土铝合金热浸镀工艺研究[J].热加工工艺,2002,(5):24-25.
    [87]李全安,文九巴,张荥渊.镧镨铈混合稀土对热浸渗铝的影响[J].材料保护,2002,35(9):20-21
    [88]王杰敏,文九巴,张伟.热浸镀渗铝技术的研究现状及进展[J].表面技术2004,33(5):4-7.
    [89]夏原,彭丹阳.超声波热镀铝技术评述[J].材料热处理学报,2001,22(4):25-30.
    [90]Schacfer R J,Glicksman M B.Direct observation of dendrite remeltingin metal alloys[J].Trans.AIME,1967,239:257-260.
    [91]Southgate P D.Action of vibration on solidifying aluminu alloys[J].Met,April 1957,514-517
    [92]Slvamov O V.Processing and properties of aluminum alloys solidification[J].Hutink,1970,37(6):276-283.
    [93]http://springchina.bokee.com/
    [94]杨勇,王铀,闫牧夫.热喷涂NiAl金属间化合物涂层的稀土改性[P].第六届全国表面工程学术会议论文,兰州,2006,8:706-709.
    [95]Y.Wang and W.Chen,Surface and Coatings Technology[M],2004,183:18-28.
    [96]Y.Wang,W.Chen and L.Wang,Wear[M],2003,254:350-355.
    [97]Y.Wang and W.Chen.Journal of Materials Science Letters,2003,22:845-848.
    [98]王华仁,刘雯.用HVOF热喷涂制备的镍铝金属间化合物涂层的抗氧化性[J].国外金属热处理,2001,22(1):36-40.
    [99]王灿明,孙宏飞,宋强,等.Fe_3Al金属间化合物及其复合涂层的组织结构与性能[J].机械工程材料,2005,29(7):27-29.
    [100]徐滨士,朱子新,刘燕.高速电弧喷涂Fe-Al金属间化合物涂层[J].中国有色金属学报,2004,14(S1):154-158.
    [101]Skopp A,Woydt M,Habig K H.Unlubricated sliding friction and wear of various Si3N4pairs between 22-1000℃[J].Tribology International,1980,12(3):153-158.
    [102]Childs T H C,Mimaroglu A.Sliding friction and wear up to 600℃ of high speed steels and silicon nitrides for gas turbine bearings[J].Wear,1993,162 164:890-896.
    [103]刘东雨,熊建,侯世香,等.电热爆炸法原位合成Fe-Al系金属间化合物涂层的研究[J].金属热处理,2007,32(6):54-56.
    [104]张金玲,崔洪芝,袁建军.等离子原位合成Ni-Al金属间化合物涂层的组织与性能研究[J].热加工工艺,2006,35(4):46-48.
    [105]裴新军,黄继华.反应钎涂钛镍金属问化合物涂层研究[J].有色金属(冶炼部分),2005,(3):44-46.
    [106]单际国,任家烈,钟军斌.光束合金化合成Fe-Al系金属间化合物涂层的微观特征[J].清华大学学报(自然科学版),2004,44(5):585-588.
    [107]张来启,陈光南,林均品,等.激光合成FeAl金属间化合物涂层[J].金属 热处理,2006,31(8):1-3。
    [108]刘锐,王勇,韩彬,等.激光控制反应合成Ni/Al金属间化合物涂层的研究[J].中国表面工程,2007,20(1):15-21。
    [109]孙耀宁,樊丁,戴景杰.激光熔覆在金属间化合物涂层材料制备中的应用[J].电焊机,2007,37(3):17-19。
    [110]Aruna Bahadur,Mohanty O N.Structural Studies of Hot Dip Aluminized Coatings on Mild Steel[J].JIM,1991,32(11):1053-1061.
    [111]祝汉良,郭景杰,贾均等.硅对压铸模与铝合金相互作用的影响[J].特种铸造及有色合金,2002,S1:134.137。
    [112]王兴庆,隋永江,吕海波.铁铝原子在金属间化合物形成中的扩散[J].上海大学学报,1998,6(4):661-667。
    [113]蒋鸣,李国喜,刘常升,等.石油管热浸镀铝工艺及性能的研究[J].材料保护,2006,9(4):48-51。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700