介质阻挡放电材料对放电特性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介质阻挡放电(Dielectric Barrier Discharge: DBD)产生的大面积均匀放电等离子体在工业上有着非常广阔的应用前景,但在大气压空气中还难以实现。介质阻挡材料对放电特性有着非常重要的影响,使用不同类型的阻挡材料所产生的放电形态有很大区别,因此研究不同类型介质阻挡材料影响放电特性的规律和机理,对于大气压下空气中实现大面积均匀放电具有重要的意义。
     本文研究了氧化铝、石英、聚丙烯、聚四氟乙烯和硅橡胶5种不同介质阻挡材料在低气压空气中介质阻挡放电的特性,提出了采用低气压下得到均匀放电的气压范围作为衡量介质阻挡材料对放电形态影响的标准,准确地评价了不同材料对均匀放电影响的好坏程度。研究结果表明,有机材料得到的均匀放电范围明显大于无机材料。
     研究了5种不同介质阻挡材料表面积累的电荷随时间变化的规律,比较了材料表面积累和保存电荷的能力与低气压下放电范围的关系,发现了材料表面积累电荷能力和保存电荷能力共同影响放电形态的规律,证实了材料表面电子解吸附作用对放电特性影响的推测。
     利用热刺激电流的研究方法深入研究了不同材料陷阱分布的规律和特性,首次发现了材料低能级陷阱的数量决定低气压均匀放电范围的规律。介质阻挡材料表层中能级低于1eV的陷阱数量越多,能够得到均匀放电的气压范围越大。
     根据材料陷阱分布的特性,深入分析了引起介质阻挡材料表面电子发生解吸附的机制,亚稳态分子可能是影响材料表面电子发生二次电子发射的主要机制。
     根据低能级陷阱数量决定均匀放电气压范围的规律,寻找到一种低能级陷阱数量更多的材料:电晕老化处理的硅橡胶,利用这种材料作为介质阻挡材料,在更宽的气压范围内(最高52kPa)得到了均匀放电,为进一步提高均匀放电的范围,最终在大气压空气中实现大面积均匀放电提供了一条可行的研究途径。
Dielectric barrier discharge (DBD) is regarded as an important way to get uniform discharge plasma in large area, which shows promising future in industrial applications and great benefit in economy and environment protection. But in atmospheric air, it is difficult to get uniform discharge. Because dielectric barrier material affect the characteristic of DBD greatly, it is very important to investigate the effect of barrier materials on discharge for getting uniform discharge in large areas.
     Alumina, quartz, polypropylene (PP), Polytetrafluoroethylene (PTFE) and silicone rubber (SIR) have been used as barrier material separately to study the property of DBD in low pressure air. By using the test devices and measurement system, the discharge form and the range of pressure to get uniform discharge have been investigated to estimate the influence of materials on DBD. The results show that, the pressure range of homogenous discharge obtained by the organic materials is much wider than that obtained by inorganic materials.
     The temporal quantities of surface charge on five different materials have been measured. According to the test data, both the properties of accumulating and keeping charge affect the characteristic of DBD. It is comfirmed that desorption of surface electrons influences the discharge greatly.
     The thermally stimulated current testing has been applied to measure the trapping distribution in different materials. The result shows that the density of trapping centers lower than 1 eV is a crucial fuction for the pressure range of uniform discharge. The higher the density of trapping centers less than 1 eV located in the material is, the wider the pressure range for getting uniform discharge is.
     Under the analysis of trapping data, the mechanisms related to the desorption of electrons on the surface of barrier material in DBD have been discussed. It could be metastables staying in the gas to create initial electrons secondary emission by escaping them from the materials.
     According to the fact of trapping distribution affecting DBD, the new barrier material of aging silicone rubber with more trapping lower than 1 eV has been found as dielectric barrier material. By using it, uniform discharge could be obtained in a wider pressure range. It shows a new available way to obtain homogenous discharge in a large area in atmospheric air.
引文
[1] J. Reeth Roth. Industrial Plasma Engineering, Vol 1. Institute of Physics Publishing, Bristol and Philadelphia, 1995.
    [2] W. Rakowski. Plasma modification of wool under industrial conditions. Melliand Textilberichte, Vol 70, 1989, Page 780-785.
    [3] E. Kunhardt. Generation of large-volume atmospheric pressure, nonequilibrium plasmas. IEEE Transaction Plasma Science, Vol 28, 2000, Page 189-200.
    [4] S. Okazaki, et al. Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source. Journal of Physics D: Appl. Phys., Vol.26, 1993, pp.889-892.
    [5] R. B. Gadri, et al. An overview of the physical processes, Phenomenology, and applications of one atmosphere uniform glow discharge plasma (OAUGDP). Symposium on Nonthermal Medical/Biological Treatments Using Electromagnetic Fields and Ionized Gases, April 12-14, 1999, Norfolk, VA. USA, G-5.
    [6]王新新,芦明泽,蒲以康.空气中大气压下辉光放电的可能性.物理学报, 51(2), 2002, 2778~2785.
    [7] Se Youn Moon, W. Choe, B. K. Kang. A uniform glow discharge plasma source at atmospheric pressure. Applied physics letters. 84(2), 2004, 188~190.
    [8] Graeme G Lister. Low-pressure gas discharge modeling. Journal of Physics D: Applied Physics, 1992, 25: 1649-1680.
    [9] F. Massines, P. Segur, N. Gherardi, C. Khamphan, A. Ricard. Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: diagnostics and modeling, Surface & Coatings Technology, Vol.174-175, 2003, pp.8-14.
    [10] N. Gherardi, F. Massines. Mechanisms Controlling the Transition from Glow Silent Discharge to Streamer Discharge in Nitrogen. IEEE Transactions on Plasma Science, June 2001, Vol. 29, pp.536-544.
    [11] N. Gherardi, G. Gouda, E. Gat, A. Ricard, et al. Transition from glow silent discharge to micro-discharge in nitrogen gas, Plasma Sources Science & Technology, Vol.9, 2000, pp.340-346.
    [12] H. Luo, Z. Liang, B. Lv, X. Wang, Z. Guan, and L. Wang. Observation of the transition from a Townsend discharge to a glow discharge in helium at atmospheric pressure. Applied Physics Letters, 91, 2007, 221504.
    [13] Mangolini L, Anderson C, Heberlein J, et al. Effect s of current limitation t hrough t he dielect ric in atmospheric pressure glows in helium. Journal of Physics D: Applied Physics, 2004 , 37(7) : 1021-1030.
    [14]杨芸,张冠军,杨国清,张源斌,张文元.空气条件下介质阻挡放电影响因素的研究.高电压技术,33(2),2007,37~41.
    [15] Y. B. Golubovskii, V. A. Maiorov, P. Li, M. Lindmayer, Effect of the barrier material in a Towns end barrier discharge in nitrogen at atmospheric pressure, Journal of Physics D: Applied Physics, v39, n8, Apr 21, 2006, p1574-1583.
    [16] I. Radu, R. Bartnikas, M. R. Wertheimer, Dielectric barrier discharges in helium at atmospheric pressure: experiments and model in the needle-plane geometry, Journal of Physics D: Applied Physics, v36, n11, 7 June 2003, p1284-1291.
    [17] I. Radu, R. Bartnikas, M. R. Wertheimer, Dielectric barrier discharges in atmospheric pressure helium in cylinder-plane geometry: experiments and model, Journal of Physics D: Applied Physics, v37, n3, 7 Feb. 2004, p449-462.
    [18] I. Radu, R. Bartnikas, M. R. Wertheimer, Positive and negative polarity current pulse characteristics of a helium glow discharge in a cylinder-plane electrode gap at atmospheric pressure, Journal of Applied Physics, v95, n11 I, Jun 1, 2004, p5994-6006
    [19] M. R. Wertheimer, I. Radu, R. Bartnikas, Dielectric barrier discharges (DBD) in gases at atmospheric pressure: effect of charge trapping, Electrets 2005 ISE-12. 2005 12th International Symposium on 11-14 Sept. 2005 p231-234.
    [20] Mangolini L, Orlov K, Kortshagen U, el al. Radial structure of a low-frequency atmospheric- pressure glow discharge in helium. Applied Physics Letters, 2002, 80(10): 1722-1724.
    [21] Y. B. Golubovskii, V A Maiorov, J Behnke, et al. Influence of interaction between charged particles and dielect ric surface over a homogeneous barrier discharge in nitrogen. Journal of Physics D: Applied Physics, 2002, 35 (8): 751-761.
    [22] Y. B. Golubvskii, V. A. Maiorov, J. Behnke, J. Tepper, et al. Study of the homogeneous glow-like discharge in nitrogen at atmosh0peric pressure. Journal of Physics D: Applied Physics. May 2004, Vol. 37, n 9, pp.1346-1356.
    [23] R. Brandenburg, V. A. Maiorov, Y. B. Golubovskii, H-E. Wagner, et al. Diffuse barrier discharges in nitrogen with small admixtures of oxygen discharge mechanism and transition to the filamentary regime. Journal of Physics D: Applied Physics, Vol.38, n13, 7 July 2005, pp.2187-2197.
    [24]方志.大气压辉光放电及其在材料表面改性中的应用:[博士学位论文].西安:西安交通大学电气工程学院,2005年.
    [25] Li Shou-Zhe, Uhm H S. Influence of dielectric surface charge on the discharge behavior in a coaxial dielectric-barrier discharge. Journal of Korean Physical Society, 2004, 45(2): 409-415.
    [26] Kato K, Ito S, Yamano Y, Hakamata Y, Okubo H. Investigation of 2-dimensional charge distribution on dielectric surface in vacuum by real-time measurement technique. Discharges and Electrical Insulation in Vacuum, 2000 Proceedings ISDEIV, XIXth International Symposium on Volume 1, 18-22 Sept 2000, vol.1 Page(s):94 - 97.
    [27] Yamano Y, Ito S, Kato K, Hakamata Y, Okubo H. Influence of electric field distribution on charging mechanism on alumina dielectrics by triple junction in vacuum. Discharges and Electrical Insulation in Vacuum, 2000, Proceedings. ISDEIV, XIXth International Symposium on Volume 1, 18-22 Sept. 2000 Page(s):135 - 138 vol.
    [28] Suzuki K, Kato K, Hakamata Y, Okubo H. Real-time and high-speed measurements of charging processes on dielectric surface in vacuum. Dielectrics and Electrical Insulation, IEEE Transactions on [see also Electrical Insulation, IEEE Transactions on] Volume 10, Issue 4, Aug. 2003 Page(s):563– 568.
    [29] Yongchang Zhu, Takada T., Inoue Y.,Demin Tu. Dynamic observation of needle-plane surface-discharge using the electro-optical Pockels effect,Dielectrics and Electrical Insulation. IEEE Transactions on [see also Electrical Insulation, IEEE Transactions on] Volume 3, Issue 3, June 1996 Page(s):460– 468.
    [30] Takada T. Acoustic and optical methods for measuring electric charge distributions in dielectrics,Electrical Insulation and Dielectric Phenomena. 1999 Annual Report Conference on 17-20 Oct. 1999 Page(s):1 - 14 vol.1.
    [31] Tanaka Y.,Usui Y.,Umemura K., Takada T., Watanabe R., Tomita N. Optical measurement techniques for surface and bulk charge distribution. Solid Dielectrics, 2004. ICSD 2004. Proceedings of the 2004 IEEE International Conference on Volume 2, 5-9 July 2004 Page(s):959 - 962 Vol.2.
    [32] Hidaka K. Progress in Japan of space charge field measurement in gaseous dielectrics using a Pockels sensor. Electrical Insulation Magazine, IEEE on Volume 12, Issue 1, Jan.-Feb. 1996 Page(s):17-28.
    [33] Lewin, P.L. Measurement of surface charge using the Pockels effect. IEE Colloquium on Surface Phenomena Affecting Insulator Performance (Ref. No.1998/235), 1998, p 8/1-3
    [34] Miyauchi, Yasuhisa; Yamano, Y.; Kobayashi, S.; Saito, Y. Measurement of surface charge distributions on insulating films under AC electric field in vacuum by pockels effect. International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV, 2002, p 660-663
    [35] Kumada, Akiko; Shimizu, Yasuhiro; Chiba, Masakuni; Hidaka, Kunihiko. Pockels surface potential probe and surface charge density measurement. Journal of Electrostatics, v 58, n 1-2, May, 2003, p 45-58.
    [36] Ping, Zhang; Kaixi, Zhang. Novel method for surface charge density measurement. Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Annual Report, v 1, 1996, p 113-116
    [37] Ping, Zhang; Kaixi, Zhang. Novel method for measuring dielectric surface charge density by means of Pockels effect and optical phase compensation. Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, v 1, 1997, p 102-105
    [38] Jeong, D.C.; Bae, H.S.; Whang, K.W. Measurement of the spatiotemporal surface charge distribution in an ac plasma display cell using Pockels effect. Journal of Applied Physics, v 97, n 1, 1 Jan. 2005, p 13304-1-8
    [39] R. A. Anderson, J. P. Brainard. Mechanism of Pulsed Surface Flashover Involving Electron-Stimulated Desorption. Journal of Applied Physics, 1980, Vol.51, p 292-300.
    [40] J. D. Cross, K. Srivastava. The Effect of DC Prestress on Impulse Flashover of Insulators in Vacuum. IEEE Transactions on Electrical Insulation, 1974, Vol.9, p97-102.
    [41] O. Milton. Pulsed Flashover of Insulators in Vacuum. IEEE Transactions on Electrical Insulation, 1972, Vol.7, p9-15.
    [42] N. C. Jaitly, T. S. Sudarshan. In-Situ Insulator Surface Charge Measurements in Dielectric Bridged Vacuum Gap Using an Electrostatic Probe. IEEE Transactions on Electrical Insulation, 1988, Vol.23, p 261-273.
    [43] F. Hegeler, G. Masten, H. Krompholz, L. Hatfield. Fast Electrical and Optical Diagnostics of the Early Phase of Dielectric Surface Flashover. Digest of Technical Papers: 8th IEEE International Pulsed Power Conference, 1991, p878-881.
    [44] Saraf, S.; Rosenwaks, Y. Local measurement of semiconductor band bending and surface charge using Kelvin probe force microscopy. Surface Science, v 574, n 2-3, Jan 10, 2005, p L35-L39
    [45] Nalbach, M.; Kliem, H. Contact charging and surface charge measurement using a scanning Kelvin technique. Physica Status Solidi A, v 178, n 2, 16 April 2000, p 715-19
    [46] Sieval, Alexander B.; Huisman, Carolien L.; Schonecker, Axel; Schuurmans, Frank M.; Van der Heide, Arvid S.H.; Goossens, Albert; Sinke, Wim C.; Zuilhof, Han; Sudholter, Ernst J.R. Silicon surface passivation by organic monolayers: Minority charge carrier lifetime measurements and Kelvin probe investigations. Journal of Physical Chemistry B, v 107, n 28, Jul 17, 2003, p 6846-6852
    [47] Bass, A.D.; Cloutier, P.; Sanche, L. Measurements of charge accumulation induced by monochromatic low-energy electrons at the surface of insulating samples. Journal of Applied Physics, v 84, n 5, 1 Sept. 1998, p 2740-8.
    [48] Hong, J.W.; Park, Sang-Il; Khim, Z.G. Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope. Review of Scientific Instruments, v 70, n 3, March, 1999, p 1735-1739
    [49] Bridger, P.M.; Bandic, Z.Z.; Piquette, E.C.; McGill, T.C. Measurement of induced surface charges, contact potentials, and surface states in GaN by electric force microscopy. Applied Physics Letters, v 74, n 23, Jun, 1999, p 3522
    [50] Gavoille, Joseph (Lab. de Microanalyse des Surfaces, Ecl Natl. Sup. Mecan. des Microtech.); Takadoum, Jamal. Surface charges and adhesion measured by atomic force microscope influence on friction force. Tribology International, v 36, n 11, November, 2003, p 865-871
    [51]夏钟福.驻极体.北京:科学出版社,2001年.
    [52]崔黎丽,江键,夏钟福,宋聚平,陈钢进,张冶文. PTFE多孔膜驻极体电荷储存稳定性的机理研究.应用科学学报,17(4),1999年12月,384-388
    [53]江键,夏钟福,崔黎丽,宋聚平. PTFE多孔膜和典型薄膜驻极体电荷贮存寿命的比较研究.高分子材料科学与工程,16(6),2000年11月,127-133
    [54] A. H.古勃金著.驻极体.北京:人民邮电出版社. 1964年.
    [55]美国Keithley公司. 6514型静电计使用手册. 1999.
    [56]王力衡.介质的热刺激理论及其应用.北京:科学出版社. 1988年。
    [57] R Chen, Y Kirsh. Analysis of Thermally Stimulated Processes. Pergamon Press, 1981.
    [58]梁英,丁立健,李成榕,杨堃,屠幼萍.基于热刺激电流的硅橡胶合成绝缘子老化诊断方法初探.中国电机工程学报,2007,27(21),7-12。
    [59]梁英,李成榕,丁立健,杨堃.硅橡胶热刺激电流试验参数的研究.高电压技术,2007,33(3),87-90。
    [60]李成榕,丁立健,吕金壮,梁英.氧化铝陶瓷绝缘子真空沿面闪络过程中的陷阱机制.中国电机工程学报,2007,27(9),1-5。
    [61]吕金壮.氧化铝陶瓷的陷阱分布对其真空中沿面闪络特性的影响:[博士学位论文].北京:华北电力大学,2003。
    [62]梁英,李成榕,丁立健,屠幼萍,等.合成绝缘子材料的TSC试验研究.电工技术学报,2006,21(2),13-16,26。
    [63] I. Radu, et al, Diagnostics of dielectric barrier discharges in noble gases: atmospheric pressure glow and pseudoglow discharge and spactio-temporal patterns, IEEE Trans. Plasma Science, Vol.31, 2003, pp.411-421
    [64]罗海云,毛婷,梁卓,王新新,关志诚,王黎明.用丝网薄膜电极实现大气压下空气中均匀放电的研究.中国电机工程学会高电压专委会学术年会论文集,2007年,深圳,pp:1257-1262。
    [65] Yuri P Raizer. Gas Discharge Physics. Springer-Verlag Berlin Heidellberg, 1991.
    [66] M. A.奥默尔著,贾明等译.固体物理学基础.北京:北京师范大学出版社. 1987年。
    [67]陈季丹,刘子玉.电介质物理学.北京:机械工业出版社. 1982年。
    [68]杨尚林,张宇,桂太龙.材料物理导论.哈尔滨:哈尔滨工业大学出版社. 1999年。
    [69]杨嘉祥,池晓春.电工电子材料物性理论.北京:机械工业出版社. 1996年。
    [70] Kwan C. Kao, Wei Hwang. Electrical Transport in Solids. Pergamon Press, 1981.
    [71]朱履冰.表面与界面物理.天津:天津大学出版社. 1992年。
    [72]恽正中,王恩信,王利祥.表面与表面物理.成都:电子科技大学出版社. 1993年。
    [73]张维国.高压力下无机纳米杂化聚酞亚胺薄膜的热激电流谱特性:[硕士学位论文].哈尔滨:哈尔滨理工大学,2004年.
    [74]彭桓武,徐锡申.理论物理基础.北京:北京大学出版社. 1998年。
    [75] G. K. J. Garlick, A. F. Gibson. The Electron Trap Mechanism of Luminescence in Sulphide and Silicate Phosphors. Process Physics Soc. 60, 574, 1948.
    [76]王暄.聚合物热发光与热激电流联合谱仪的研究:[博士学位论文].西安:西安交通大学,1999年.
    [77]刘付德,凌志远,熊茂仁.极性介质热刺激电流与偶极子分立激活能分布.应用科学学报, 15(3),1997年9月,291-298。
    [78]王暄,赵晓旭,雷清泉,徐传骧.复合热激电流曲线陷阱参数的计算.电工技术学报,15(4),2000年8月,84-87。
    [79] J E Hoogenboom. Computerized analysis of glow curves from thermally activated processes. Journal of Applied Physics, 1988 , 64 (6) : 3193~3200
    [80]王茂祥,吴宗汉,甘朝钦.生物驻极体极化弛豫特性的热刺激电流分析.应用科学学报,16(3),1998年,305-307。
    [81] R Chen, S. A. A. Winer. Effects of Various Heating Rates on Glow Curves. Journal of Applied Physics, 41, 5227, 1970.
    [82]杨百屯.测量固体介质中陷阱参数的等温电流理论及其应用:[博士学位论文].西安:西安交通大学,1989。
    [83]钱人元,周淑琴,金祥凤,等.α-酞菁铜蒸发膜中陷阱的研究—等温电流衰减谱.应用科学学报,5(1),1987,37-40。
    [84] J. G. Simmons, M.C. Tam. Theory of Isothermal Currents and the Direct Determination of Trap Parameters in Semiconductors and Insulators Containing Arbitrary Trap Distributions. Physical Review B, 1973, 7(8), 3706-3713.
    [85] Qing-quan Lei, Xuan Wang, Yong Fan. A New Method of Auto-separating Thermally Stimulated Current. Journal of Applied Physics, 72(9), 1992, p4254-4257.
    [86]王暄,雷清泉.一种自动分离TSC曲线的新方法.第六届全国电介质物理、第二届全国工程电介质学术会议,西安,1991年10月,272-276。
    [87] B. Henderson著,范印哲译.晶体缺陷.北京:高等教育出版社. 1983年。
    [88]林栋梁.晶体缺陷.上海:上海交通大学出版社. 1996年。
    [89]白玉章.石英玻璃的生产.北京:中国建筑工业出版社. 1985年。
    [90] R. M. Bailey. Towards a general kinetic model for optically and thermally stimulated luminescence of quartz. Radiation Measurements, 2001, Vol. 33, 17-45.
    [91]坂野久夫著,叶思武译.新陶瓷学.台南:复文书局. 1992年。
    [92] H.萨尔满,H.舒尔兹著,黄照柏译.陶瓷学(上册·基本理论及重要性质).北京:轻工业出版社. 1989年。
    [93] H.萨尔满,H.舒尔兹著,黄照柏译.陶瓷学(下册·陶瓷材料).北京:轻工业出版社. 1989年。
    [94]尹衍升,张景德.氧化铝陶瓷及其复合材料.北京:化学工业出版社. 2001年。
    [95]张克惠.塑料材料学.西安:西北工业大学出版社. 2000年。
    [96]杨国文.塑料材料.成都:成都科技大学出版社. 1987年。
    [97]常州轻工业学校,安徽轻工业学校合编.塑料材料学.北京:中国轻工业出版社. 1993年。
    [98]程子霞.填料对合成绝缘子用硅橡胶性能影响的研究:[博士学位论文].北京:清华大学,2005年。
    [99] H. Cochrane, C. S. Lin. The Influence of fumed Silica Properties on the Processing Curing and Reinforcement Properties of Silicone Rubber. Rubber Chemistry and Technology, 1993, 66(1), 48-60.
    [100]幸松民,王一璐.有机硅合成工艺及产品应用.北京:化学工业出版社. 2000年。
    [101] Timothy A. Okel, Walter H. Waddell. Effect of Precipitated Silica Physical Properties on Silicone Rubber Performance. Rubber Chemistry and Technology, 1995, 68(1), 59-75.
    [102] J. M. Breiner, J. E. Mark, G. Beaucage. Dependence of Silica Particle Sizes on Network Chain Lengths, Silica Contents, and Catalyst Concentrations In-situ Reinforced Polysiloxane Elastomers. Journal of Polymer Science: Part B: Polymer Physics, 1999, 37(13), 1421-1427.
    [103]武玉斌,石峰,邱晓刚.新型无定型白碳黑SiOaTM在HTV硅橡胶中的应用.有机硅材料,2005,19(1),14-18。
    [104]郭亚林,梁国政等.纳米改性室温硫化硅橡胶研究.弹性体,2003,13(1),19-22。
    [105]邹德荣.纳米碳酸钙对RTV硅橡胶性能的影响.有机硅材料,2002年,16(3),7-9。
    [106]高伟,汪倩,杨始燕,邓晓东,谢择民.碳酸钙与碳化硅对室温硫化硅橡胶的补强作用.高分子学报,2000年2月,第1期,1-4。
    [107]张芝涛,谷建龙,毛程奇,孙健,刘程.电荷沉积对大气压介质阻挡放电特性的影响.大连理工大学学报,2005年9月,第25卷增刊,11-15。
    [108]夏胜国,刘克富,何俊佳.介质阻挡放电中过零放电特性研究.高电压技术,2007年2月,33(2),14-18。
    [109]杨津基.气体放电.北京:科学出版社. 1983年。
    [110]徐学基,诸定昌.气体放电物理.上海:复旦大学出版社. 1996年。
    [111] Lijian Ding, Ying Liang, C.R. Li, Youping Tu, Linjie Zhao and Kun Yang. A Study on TSC of Aging Composite Insulators. 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2005, 245-248.
    [112]杨堃.硝酸因子在硅橡胶材料电晕老化中作用的研究:[硕士学位论文].北京:华北电力大学,2007年。
    [113]梁英. HIV硅橡胶电晕老化特性研究报告.华北电力大学,2006年6月。
    [114]吴立新,陈方玉.现代扫描电镜的发展及其在材料科学中的应用.武钢技术,2005,43(6),36-40。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700