燃煤汞氧化脱除及其对NO、SO_2影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤燃烧过程中污染物的排放已成为全球关注的热点问题,特别是燃烧过程中排放的汞、NO和SO_2对人类的健康带来了巨大的危害。有关煤燃烧汞排放控制的研究是当今国际前沿课题,为了减少煤燃烧过程中污染物的排放,寻求一种同时脱除汞、NO和SO_2的方法具有重要的意义。
     煤燃烧过程中汞的不同形态对于其脱除具有重要的影响。为了促进燃烧过程中单质汞的氧化及减少NO和SO_2的排放,本文选取六枝煤、六盘水煤和高平煤,添加溴化物在实验室小型管式炉台架上进行了混烧实验。研究了溴化物种类、添加比例、温度和煤种对煤燃烧过程汞形态转化的影响。此外,考察了这些因素对NO、SO_2排放的影响,以揭示添加溴化物对多污染物联合脱除的影响规律。
     实验结果表明,添加溴化物对各种燃煤烟气中的汞有一定的氧化作用,煤种不同氧化效果不一样。总体看来,溴化钙的氧化效果比溴化钠好。反应温度是影响汞挥发和形态分布的重要因素。较大的添加比例在较低的温度下效果较好,因为低温下生成的HgX2分解的量较少。
     从三种溴化物对烟气中NO还原来看,三种添加剂均有利于NO的还原,且NO的生成过程和生成总量都发生了变化。反应温度是影响NO还原的重要因素,相同的煤种在不同的温度下NO的排放特性不一样。在相同的实验温度下,溴化物的添加都取得比单独的煤粉燃烧更好的脱硝效果,在较低温度(800-900℃)下其效果更为明显。
     从三种溴化物对抑制SO_2排放的影响来看,效果最好的是溴化铵,其次是溴化钙,最后是溴化钠。高温下的抑制效果比低温要好,较大添加比例有利于减少SO_2的排放。
     此外,还研究了基于汞吸附管的烟气汞的取样分析方法。从汞吸附管达到最大吸附量来考虑,烟气温度为120℃和烟气中SO_2的浓度低于1000 ppm时有利于汞吸附管对烟气中汞的吸附。
The emission of pollutants during coal combustion process has become a hot issue of global interest, especially the emission of mercury, NO and SO_2 have caused great harm to human’s health. And the relative researches about the emission and control of the mercury during coal combustion is recently an active topic. In order to reduce the emisson of the pollutants, it is necessary to find a method that can remove mercury, NO and SO_2 at the same time.
     The bromine compounds additives were chosen to promote mercury oxidation and decrease the emission of NO and SO_2. The experiments were carried on laboratory horizontal tube furnace, Liuzhi, Liupanshui and Gaoping coal were chosen to investigate mercury species transformations and NO, SO_2 reduction in coal flue gas when co-combusting bromine compounds with three kinds of coal. We considered four factors such as, combustion temperature, different bromine compound, the mass of bromine compound and the type of the coal to study mercury species transformations and NO, SO_2 emissions during the combustion process. So we can get the results that how bromine compounds effect mercury species transformations and NO, SO_2 emissions.
     The experimental results show that bromine compounds additives can partly enhance mercury oxidation during coal combustion. Different type of coal has different oxidantion effect. Overall, the oxidation of calcium brominate is better than brominate sodium. The combustion temperture is an important factor that can affect mercury volatile and species. Under low temperature the oxidation effect is better at larger addition proportion, because HgX2 decompose under high temperture. But at higher additive ratio, it will cause some degree of corrosion.
     Adding three kinds of bromine compounds are conducive to the reduction of nitric oxide (NO), and both NO generative process and the total amount of NO have changed. NO reduction was influenced by the combustion temperture. The same kind of coal under different temperture, NO emission characteristics were different. Cofiring coal with bromine compounds at the same temperture all resulted a better denitrification effect compared to firing the coal alone, and the effect is better when cofiring at lower temperture.
     Considering adding bromine compounds to restrain the emission of SO_2, ammonium brominate is the best, and then calcium brominate, sodium brominate comes last. Inhibition effect is better at high temperature, larger adding ratio also helped to reduce SO_2 emissions.
     In addition,We also studied a method based on mercury adsorption tube in flue gas. To make the sorbent trap achieving maximum adsorption capacity, the temperature of the flue gas should be 120℃and SO_2 concentration should below 1000 ppm.
引文
[1]岑可法.洁净燃烧技术会议发电技术报告.中国煤炭学会第二次洁净煤技术研讨会.杭州, 2001
    [2]刘晶.燃烧过程中痕量元素释放反应机理及动力学模拟的研究: [博士学位论文].武汉:华中科技大学, 2007
    [3] Horne R A. The chemistry of our environment. John Wiley & Sons, New York. 1978
    [4]郑楚光主编.燃煤痕量元素的排放与控制.湖北科学技术出版社, 2002.9-14
    [5] U.S. Environment Protection Agency. Mercury Study Report to Congress: Volume I:Executive Summary, Office of Air Quality Planning and Standards and Office of Research and Development, EPA-452/R-97-003, December 1997
    [6]徐旭常,陈昌和,祁海鹰等.我国燃煤污染控制技术与对策的研究.苏州科技学院学报,工程技术版. 2003,16(1): 8-15
    [7] Toole-o’Neil B. Tewalt S J. Finkelman R B. et al. Mercury concentration in coal-unraveling the puzzle. Fuel. 1999, 78: 47-54
    [8]王起超,沈文国,麻壮伟.中国燃煤汞排放量估算.中国环境科学, 1999,19(4): 318-321
    [9]任建莉,周劲松,骆仲泱等.燃煤电站汞排放量的预期模型.动力工程, 2005, 25(4): 57-592
    [10] Schroeder W H, Munthe J. Atmospheric mercury: an overview. Atmospheric Environment, 1998, 32: 809-822
    [11]国家环保总局.2006年中国环境状况公报.国家环保总局网站: http://www.zhb.gov.cn/plan/zkgb/06hjgb/
    [12]朱法华,王圣等.火电厂NOx排放现状与预测及控制对策.能源环境保护, 2004, 25(1): 1-5
    [13]魏学好,周浩.中国火力发电行业减排污染物的环境价值标准估算.环境科学研究, 2003, 16(1): 53-56
    [14]赵海红,谢国勇.燃煤烟气SOx/NOx污染控制技术.化学工业与工程技术, 2004,25(1): 26~29
    [15]姚强主编.洁净煤技术.北京:化学工业出版社, 2005, 1: 13~21
    [16]马垠.中国燃煤电厂烟气脱硝工艺的选择: [硕士学位论文].河北保定:华北电力大学, 2006
    [17]王志轩,朱法华等编著.火电二氧化硫环境影响与控制对策.中国环境科学出版社, 2002. 33-45
    [18]王欣.活性炭纤维低温吸附脱除汞的试验研究:[硕士学位论文].武汉:华中科技大学, 2006
    [19]郑楚光,张军营,赵永椿等.煤燃烧汞的排放及控制.北京:科学出版社, 2010. 210-211
    [20] Ye Zhuang, Jeffrey S. Thompson,et al. Impact of calcium chloride addition on mercury transformations and control in coal flue gas. Fuel 2007, 86: 2351-2359
    [21] Zan Qu,NaiQiong Yan,Ping Liu,Yao Chi and Jinping Jia. Bromine Chloride as an Oxidant to Improve Elemental Mercury Removal From Coal-Fired Flue Gas. Environ. Sci. Technology. 2009, 43: 8610-8615
    [22] Yan Cao, Zhengyang Gao, et al. Impacts of Halogen Additions on Mercury Oxidation, in A Slipstream Selective Catalyst Reduction (SCR), Reactor When Burning Sub-Bituminous Coal. Environ. Sci. Technology. 2008, 42(1): 256-261
    [23] Bernhard W. Vosteen, et al. Bromine-enhanced Mercury Abatement from Combustion Flue Gases-Recent Industrial Applications and Laboratory Research. 2006, 86(3): 70-75
    [24] Berry, M. et al. Mercury Control Evaluation of Calcium Bromide Injection into a PRB Fired Furnace with an SCR. Air Quality VI, Arlington, VA, September 2007
    [25] Katherine Dombrowski, Sara McSowell et al. The Balance-of-Plant Impacts of Calcium Bromine Injection as a Mercury Oxidation Technology in Power Plants. August 2008
    [26] Michael J. Rini, Bernhard W. Vosteen. Full-scale Test Results From a 600 MW PRB-fired Unit Using Alstom’s KNXTM Technology for Mercury Emission Control. 2008
    [27] Yan Cao, Quanhai Wang, et al. Enhancement of Mercury Capture by the Simultaneous Addition of Hydrogen Bromide (HBr) and Fly Ashes in a Slipstream Facility. Environ. Sci. Technology. 2009, 43: 2812-2817
    [28] Yan Cao,Quanhai Wang,et al. Investigation of Mercury Transformation by HBr Addition in a Slipstream Facility with Real Flue Gas Atmosphere of Bituminous Coal and Powder River Basin Coal. Energy and Fuels. 2007, 21: 2719-2730
    [29] Stephen Niksa, Chitralkumar V. Naik, et al. Interpreting enhanced Hg oxidation with Br addition at Plant Miller. Fuel Process. Technol. 2009, 90,1372-1377
    [30] Stephen Niksa, Bihter Padak, et al. Process Chemistry of Br Addition to Utility Flue Gas for Hg Emissions Control. Energy Fuels. 2010, 24, 1020-1029
    [31] Ye Zhuang, Chuanmin Chen, Ron Timpe, et al. Investigation on bromine corrosion associated with mercury control technologies in coal flue gas. Fuel 2009, 88: 1692-1697
    [32] Nick D. Huston, Shawn P. Ryan, et al. Assessment of PCDD/F and PBDD/F emission from coal-fired power plants during injection of brominated activated carbon for mercury control. Atmospheric Enviroment(2009), doi:10.1016/j. atmosenv. 2009.05.026
    [33]刘昕,蒋勇.美国燃煤火力发电厂汞控制技术的发展及现状.技术. 2009, 3, 92-95
    [34]郭瑞莉.活性半焦用于烟气脱硫脱硝的研究: [硕士学位论文].大连:中国海洋大学, 2009
    [35]易红宏,宁平,陈亚雄.氮氧化物废气的治理技术.环境科学动态. 1998, 4: 17-20
    [36] Blumrich S, Engler B. DESONOX/REDOX-process for Flue Gas Cleaning: A Flue Gas Purifieation Process for the Simultaneous Removal of NO and SO_2 resp. CO and UHC. Catalysis Today, 1993, 17(1-2): 301-310
    [37] Nozawa Shigeru, Morita Isato, Mizoguchi Tadaaki. Latest SOx and NOx Removal Technologies to Answer the Various Needs of Industry. Hitachi Review, 1993, 42(1): 43-48
    [38]邱鸿恩,吴丹,王睿.烟气同时脱硫脱硝技术进展.化学工业与工程技术, 2004, 6: l-5
    [39]中华人民共和国国家标准.化妆品卫生化学标准检测方法汞. GB 7917.1-87
    [40]中华人民共和国国家标准.食品中总汞及有机汞的测定. GB/T 5009.17- 2003
    [41] Eric P, Julie C, Robert B, Marc P. Mercury speciation measurements in the flue gas and plume of two Maryland combustion sources: montgomery county resource recovery facility (RRF) and PEPCO Dickerson Generating Station (DGS). Seattle, Washington., PPRP-121. August, 2000
    [42] EPA Method 29, Determination of metals emissions from stationary sources , 40 CFR Part 61, Appendix B, U.S. Government Printing Office, Washington, DC, February, 2000: 1461-1531
    [43] EPA Method 101 A, Determination of particulate and gaseous mercury emissions from sewagesludge incinerators, 40 CFR Part 61,Appendix B, U.S. Government Printing Office,Washington, DC, February, 2000, 1731-1754
    [44] Standard test method for mercury from coal-fired stationary sources (Ontario Hydro Method). EPA USA, July 1999
    [45] Larjava K, Laitinen T, Kiviranta T, et al. Application of the diffusion screen technique to the determination of gaseous mercury and mercury(II) chloride in flue gases. Anal. Chem. 52, 65 (1993)
    [46] Fahlke J, Bursik A. Impact of .the state-of-the-art of flue gas cleaning on mercury species emissions from coal-fired steam generators. Water, Air and Soil Pollution, 1995, 80: 1-4
    [47] Jockel W. A present situation of CEM systems for mercury. The air & waste management association's 89th annual meeting & exibition, June, 1996
    [48] Heidt M K, Laudal D L, Brown T D. A evaluation of continuous monitors for mercury measurements in pilot-scale tests. Presented at the air & waste management association's 91st annual meeting & exhibition, June 1998
    [49]任建莉.燃煤过程汞析出及模拟烟气中汞吸附脱除试验和机理研究: [博士学位论文].杭州:浙江大学, 2003
    [50] Rizep R G, Hansell D W, Seeker W R. Predictions of metals emissions and partitioning in coal-fired combustion systems. Fuel Processing Technology, 1994, 39: 219-236.
    [51] Lissianski V V, Zamansky V M, Maly P M. Effect of metal-containing additives on NOx reduction in combustion and reburning. Combustion and Flame, 2001, 125(3): 1118-1127
    [52] Weijuan Yang, Junhu Zhou, et al. Characteristic of sodium compounds on NO reduction at high temperture in NOx control technologies. Fuel Processing Technology. 2008. 89: 1317-1323
    [53] Matsuoka K, Rosyadi E, Tomita A. Fuel 2002;81: 1443
    [54] Tsubouchi N, Ohtsuka Y. Fuel 2002;81: 1423
    [55] Tsubouchi N, Ohtsuka Y. Fuel 2002;81: 2335
    [56] Schafer S, Bonn B. Fuel 2002;81: 1641
    [57] Zongbin Zhao, Wen Li, Jieshan Qiu, et al. Influence of Na and Ca on the emission of NOx during coal combustion. Fuel 2006(85): 601-606
    [58]潘卫国,吴江,王文欢等.添加NH4Cl对煤燃烧生成Hg和NO影响的研究.中国电机工程学报, 2009, 29(29): 41-46.
    [59] W. Nimmo, A.A. Patsias, et al. Simultaneous reduction of NOx and SO_2 emissions from coal combustion by calcium magnesium acetate. Fuel 2004(83): 149-155
    [60] Method 30A-Determination of Total Vapor Phase Mercury Emissions from Stationary Sources(Instrumental Analyzer Procedure). http://www.epa.gov/ttn/emc/prelim.html
    [61]郑剑铭,周劲松,郑新志等.基于固体吸附剂的燃煤烟气形态汞测试装置.山东轻工业学报, 2009,23(4): 82-86
    [62] Prestbo E. M. , Bloom N. S. . Mercury speciation adsorption(MESA) method for combustion flue gas: methodology, artifacts, intercomparison, and atmospheric imp lications. Water, Air, and Soil Pollution, 1995, 80: 145-158
    [63] Mercury vapor monitor VM 3000 operating manual. Version 1.1, Mercury Instruments Analytical Technologies
    [64]张安超,改性壳聚糖吸附剂脱除烟气中汞的实验与机理研究: [博士学位论文].武汉:华中科技大学, 2010
    [65] EPA Method 30B, Determination of total vapor phase mercury emission from coal-fired combustion sources using carbon sorbent traps, at www.epa.gov/ttn/emc/ promgate/Meth30B.pdf, accessed May 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700