SIPR-SBBR垃圾渗滤液处理工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市化进程加快和经济快速发展,垃圾处理问题日益突出。卫生填埋作为我国主要的垃圾处理技术,产生的垃圾渗滤液对环境危害日益严重。由于垃圾渗滤液具有水量、水质变化大,CODCr、氨氮浓度高,可生物降解性差,有毒有害物质浓度高的特点,使垃圾渗滤液处理成为国际上公认的难点。
     目前,国内外垃圾渗滤液污染及其防治的相关研究逐渐增多,出于对运行费用的考虑,绝大部分研究者将渗滤液处理研究重点集中在生物处理技术研究上。以往工程实践和研究结果表明,渗滤液不经过预处理,很难达到排放标准。《生活垃圾填埋场污染控制标准》(GB16889—2008)的颁布实施,为渗滤液处理提出更高的要求。进行垃圾渗滤液处理工艺研究,提高渗滤液处理效能,满足新的排放标准,成为课题面临的和必须解决的重点难题。
     本论文总结了国内外垃圾渗滤液处理技术的研究成果及经验教训,在试验研究基础上,通过对黑石子垃圾渗滤液处理工艺运行模式和处理效果的分析,应用生物处理技术和反应工程学原理,提出了“序批式强化预处理反应器SIPR+序批式生物膜反应器SBBR”的生物处理组合工艺构想,并进行了SIPR-SBBR工艺处理效能、模型验证和理论计量研究。通过水解反应和硝化反硝化在SIPR的共同实现,同步提高了预处理出水的可生化性和预处理反应器的脱氮效能,使预处理出水营养配比良好,为后续好氧生物处理创造了有利条件。同时后续好氧生物处理工艺——SBBR工艺在低能耗条件下,具有高效的污染物去除效能,抗冲击负荷能力强,出水水质稳定。
     通过SIPR和SBBR处理效能影响因素试验研究,探索较优的运行工况,以高效节能的处理方式,因地制宜地提高渗滤液生物处理效果。试验证明,采用SIPR+SBBR的工艺组合技术路线,能得到了较好的渗滤液脱碳脱氮效果,并且常温下,SIPR-SBBR出水平均CODCr、BOD5、TOC、氨氮、TN、TP、SS和色度低达179mg/L、26.8mg/L、95.8mg/L、35.2mg/L、134.9mg/L、2.75mg/L、27.3mg/L和35倍。
     以高效、低能耗、保证处理水量为目标,分别进行常温、较高温度、较低温度条件下SIPR-SBBR处理效能正交试验研究,SIPR、一阶SBBR、二阶SBBR最佳处理工艺条件是:HRT分别为2d、4d、2d,DO浓度分别为0.75mg/L、2.0mg/L、2.5mg/L,序批周期为6h(常温);HRT分别为1.5d、3d、1.5d,DO浓度分别为1.0mg/L、2.5mg/L、3.0mg/L,序批周期为6h(较高温度);HRT分别为3d、6d、3d,DO浓度分别为0.7mg/L、2.0mg/L、2.5mg/L,序批周期为8h(较低温度)。根据新颁布实施的《生活垃圾填埋场污染控制标准》(GB16889—2008),常温下SIPR-SBBR出水BOD5、TP、色度、SS、总汞、总砷、总镉、总铬、六价铬能满足直接排放标准。
     通过对SIPR+SBBR垃圾渗滤液处理工艺的生物降解机理分析,认为SIPR对颗粒态、粗胶体、难降解有机物的去除是高效的,同时SBBR对溶解性有机物的降解具有高效性。渗滤液在经过SIPR处理后,出水中难化学氧化有机物比率大幅度下降,而经过SBBR处理,出水中难化学氧化有机物比率上升,为后续深度生化工艺处理增加难度。经SIPR-SBBR处理,渗滤液的氮磷比进一步减小,缓解了缺磷问题;同时出水碳氮比逐渐提高,这为后续深度处理提供了较好的营养配比。
     为保证最终出水满足《生活垃圾填埋场污染控制标准》(GB16889—2008),设计了“混凝沉淀+SBBR”的后续深度生化处理工艺,混凝沉淀对难于生物降解的污染物具有较好的去除效果,SBBR具有较高的脱氮效能。SIPR+SBBR+混凝沉淀+SBBR生化组合工艺最终出水达到新颁布的《生活垃圾填埋场污染控制标准》(GB16889—2008)规定的直接排放标准。
     结合生物筛选理论和混合菌群脱氮动力学研究结果,建立了SIPR的脱氮动力学模型,并进行模型拟合,动力学理论计算值与实际去除效果拟合较好。通过进行生物膜降解机理研究,得出二阶段SBBR有机物降解动力学模型,以此指导生产性试验。这为今后SIPR-SBBR成功地运用到渗滤液生物处理工程实践中去,奠定了理论基础,提供了技术支撑。
The environmental problem caused by municipal solid waste has deteriorated environment more and more seriously along with domestic urbanization and economic development. As the main technology of municipal solid waste treatment in China, landfill product leachate which can endanger the environment seriously. Leachate is characterized by broad changing rang of water quantity and quality、high CODCr and ammonia nitrogen、low BOD5/CODCr value meaning、poor biological degradation ability、high density of poisonous and harmful substance. As for this, leachate treatment acknowledged as world problem which is difficult to solved.
     Because more and more attention has been drew to leachate pollution, relevant research increase gradually. Researchers concentrate on biological treatment technology especially because of considering the operating expenses as research on leachate treatment. Present project in practice and research verify that it is difficult to meet the requirement of discharging standard only by anaerobic or aerobic biological process without pretreatment. The issuing and implementation of“Pollution control standard of living solid waste landfill”(GB16889-2008), put forward newer and higher demand for leachate treatment. Developing new biological disposal craft and meeting the new standard, become a difficult subject that must be faced and solved.
     This thesis has summarized experience and lessons of biological technology of leachate treatment, relied on the experimental study of Heishizi landfill leachate treatment and its treatment performance, aimed at its insufficiency, and also basised on biological treatment technology and engineering principle, put forward the treatment craft idea of“Sequencing Batch Intensified Pretreatment Reactor (SIPR) and Sequencing Batch Biofilm Reactor (SBBR)”, researched on its treatment efficiency、model proving and measures. Through the realization of nitrify and hydrolysis in SIPR, degrade substance with macromolecule or difficult to dissolve, to dissolvable substance with microorganism, which is easy to degrad and absorb with biological methold, improve the biological degraded ability by a relatively large margin. At the same time, SIPR has better denitrification performance, and can optimize carbon and nitrogen rate of outflow water, which can benefit the follow-up aerobic biological treatment. The follow-up aerobic biological treatment craft—SBBR has high removal performance of organic matter and nutrition salt, and has high ability of anti-shork and loading of water quantity and quality, and its out flow water quality is better and stable.
     Trough studying on SIPR and SBBR’s influencing factor experiment, explore the more excellent operating mode、treatment way of the energy-efficient, improve the treatment performance to guarantee outflow water quantity. Practice has proved that though adopting the craft of“SIPR + SBBR”, better removal performance of carbon and nitrification has been got. Density of outflow water’s average CODCr、BOD5、ammonia nitrogen、TN、TP、SS、colority are lower than 179mg/L、26.8mg/L、95.8mg/L、35.2mg/L、134.9mg/L、2.75mg/L、27.3 mg/L、35 degree.
     Aiming at pursuing high efficiency、low energy consumption and better water quality, orthogonal experiment has been carried on in different temperature condition (normal temperature、lower temperature、higher temperature), the best operation parameter of SIPR/ first step SBBR/ second step SBBR is: HRT=2/4/2d、DO =0.75/2.0/2.5mg/L、Sequencing batch cycle is 6h ( normal temperature ) ; HRT=1.5/3/1.5d、DO=1.0/2.5/3.0mg/L、Sequencing batch cycle is 6h ( higher temperature); HRT=3d/6d/3d、DO=0.7/2.0/2.5mg/L、Sequencing batch cycle is 8h (lower temperature).
     Based on“Pollution control standard of living solid waste landfill”(GB16889-2008), average BOD5、TP、SS、colority、Hg、As、Cd、Cr、Cr6+ of SIPR-SBBR’s outflow water can satisfiy the new discharging standard. Through researching on degradation mechanism of SIPR and SBBR, conclusion can be drew that SIPR has high removal performance of granule、colloidal particle and the organic matter which is difficult to degrade, SBBR has high efficiency of dissolvable organic substance’s degradation. After SIPR’s treatment, the ratio of organic matter difficult to be oxidized droped. While through SBBR, ratio of organic matter difficult to be oxidized rised by a large margin, increase the degree of difficulty for follow-up profundity chemistry treatment. Through treatment of SIPR-SBBR,TN/TP of leachate decrease, and ease the shortage of TP in leachate;CODCr/NH4+-N increase greadually,all of this can produce better nutration rate for proceed advanced treatment.
     Following-up craft of congealed deposition+ SBBR is designed to guarantee the outflow water quality of the discharging standard of“Pollution control standard of living solid waste landfill”(GB16889-2008). Congealed deposition has high removal performance to the contamination which has bad biological degradation, and SBBR has high quality of removing TN. SIPR+SBBR+congealed deposition+SBBR can satisfy the new discharging standard of“Pollution control standard of living solid waste landfill” (GB16889-2008).
     Combine with the biological filtration theory and studying of mixing bacterial denitrification dynamics, set up denitrification theory model of SIPR, carry on the analyzing and assimilating of model and the experimental data, the model calculating value fits better with the actual result. Two step SBBR’s organic degrading dynamics model was set up too. Acorrding to this, guidance can be given to production experiment,for the sake of SIPR-SBBR’s application into leachate treatment.
引文
[1]沈东升,何若,刘宏远.生活垃圾填埋生物处理技术[M].化学工业出版社. 2003: 1-5.
    [2]张东翔,李东.国内外城市垃圾处理方法对重庆市的借鉴[J].重庆大学学报, 2000, 23(4): 53-57.
    [3] Theison G N, Vigil S A. Integrated solid waste management, engineering principles and management issues[J]. New York: McGraw-Jill, 1993, 23(4): 381-417.
    [4]兰嗣国.城市生活垃圾理化特性研究[J].中国环境监测. 1997, 23(2): 15-17.
    [5]王里奥,李东.垃圾卫生填埋场污染控制探讨[J].矿山安全与环保. 2000, 23(4). 35-40.
    [6]清华大学环境工程设计研究院.重庆长生桥卫生填埋场环境影响评价报告书. 1998.
    [7] Lisk D J. Environmental Effects of landfills[J]. The Science of the Total Environment. 1991, 100(2): 415-468.
    [8] Reinhart D R, Townsend T G. Landfill Bioreactor Design and Operation[M]. Florida: CRC Press, 1997.
    [9] Botkin D B , keller E A. Environment Studies: Earth as a Living Plant[M]. Second Edition, Ohio: Merrill Publishing Company, 1987, 23(4): 484-486.
    [10]张峥,李得翔.试论适合我国国情的城市垃圾处理技术[J].污染防治技术, 1997, 10(3): 161-163.
    [11] Goldstein N. the State of Garbage in America[J]. BioCycle, 1997, 23(4): 60-67.
    [12]赵由才,朱青山主编.城市生活垃圾卫生填埋场技术与管理手册.北京:化学工业出版社, 1999.
    [13]国家环境保护总局,建设部,科技部.城市生活垃圾处理及污染防治技术政策.建城[2000]120号.
    [14]李威,王智华.国内几家垃圾填埋场渗滤液处理工艺简介及比较[J].西南给排水. 2005, 27 (l): 127-131.
    [15]徐壮.我国城市垃圾性质及污染状况的综合分析[J].环境科学, 1987, 9(5):80-84.
    [16]郑铣鑫.城市垃圾处理场对地下水的污染.环境科学, 1989, 19(3): 89-92.
    [17] Roche D. Landfill Filure Survey: a Technical Note. In: Bentley, S. P. (ed. ), Engineering Geology of Waste Disposal[M]. London: Geological Society Publishing House, 1995: 379-380.
    [18]张国政.垃圾渗滤液的处理[J].环境卫生工程, 1997, 23(4): 19-20.
    [19]沈耀良,王宝贞.垃圾填埋场渗滤液的水质特征及其变化规律分析[J].污染防治技术, 1999, 12(1): 10-13.
    [20] James O. John G. Landfill management with moisture control[J]. Journal of the environmentengineering division, 1997, 105(EE2): 339-350.
    [21]沈耀良.城市垃圾填埋场处理技术的研究[D]:博士论文.哈尔滨:哈尔滨建筑大学, 1998.
    [22] Stegman R, Ehrig H J. Leachate production and quality-results of landfill process and operation[J]. Sardinia International landfill Symposium, 1989,ⅩⅩⅦ: 1-16.
    [23]沈耀良,王宝贞.城市垃圾填埋场渗滤液处理方案及其分析[J].给水排水, 1999, 25(8): 18-22.
    [24] Harris, J. M. Landfill Leachate Recirculation from an Owner/Operator's Perspective[C]. In: Seminar Publication: Landfill Bioreactor Design and Operation, Wilmington DE, Washington: US Environmental Protection Agency, 1995, 185-193.
    [25] EPA. Part 258-Criterion for Municipal Solid Waste Landfill. U. S[J]. Environmental Protection Agency, 1999, 23(6): 12-19.
    [26] Gourdon R. Fraction of the organic matter of a landfill leachate before and after aerobic or anaerobic biological treatment[J], Water Res, 1989, 23(2): 168-172.
    [27] George Tchobanoglous, Hilary Theisen. Integrated Solid Waste Management Engineering Principles and Management Issues[J]. Mc Graw Hill, 1993, 23(6): 111-113.
    [28]郑曼英,黎丽桃.垃圾渗滤液中有机污染物初探[J].重庆环境科学, 1996, 18 (4): 41-42.
    [29] Cecilia Oman. Identification of organic compounds in municipal landfill leachate[J]. Environmental Pollution, 1993, 80(1): 265-271.
    [30] Harmson J. Idenitificatam of organic compounds in leachate from a waste tip[J]. Water Res, 1983, 17(6): 700-702.
    [31] Artiola-Fortuny J. et. al. Humic substances in landfill leachates, humic acid extraction and identification[J]. Jour. Environ. Qual, 1982, 11(4): 663-666.
    [32] Chian E. S. K. Characterz sation of soluble organic matter in leachate[J]. Environ. Sci. and Technol. 1997, 11(2): 158-163.
    [33] Imai A. Biodegradation and adsorption in refractory leachate biological activated carbon fluidized bed process[J]. Water Res, 1995, 29 (2): 687-694.
    [34]周北海,松藤康司.中国垃圾填埋场的问题与改善方法.环境科学研究, 1998, 11(3): 22-26.
    [35]北京市环境科学院.国外城市废弃物处理[M].中国环境科学出版社, 1989.
    [36] Shiskowski D. M, Mavinic D. S. Pre-denitrification and post-denitrification treatment of high-ammonia landfill leachate[J]. Canadian Journal of Engineering, 1998, 25: 854-863.
    [37]刘疆鹰,徐迪民.大型垃圾填埋场渗滤水氨氮衰减规律[J].环境科学学报. 2001, 21(3): 323-327.
    [38]杨健.城市生活垃圾土地填埋主要环境影响的识别[J].城市环境与城市生态, 1991, 12(2):11-42.
    [39]范家明,周少奇.广州大田山垃圾填埋场渗滤液污染现状调查[J].环境卫生工程, 2001, 9(4): 160-162.
    [40]陈长太,曾扬.城市垃圾填埋场渗滤液水质特性及其处理[J].环境保护, 2001(9): 19-21.
    [41]沈耀良,赵丹.厌氧、好氧法处理渗滤液与城市污水混合废水的可行性[J].污染防治技术, 2000, 13(2): 63-67.
    [42]姜必亮,林里. N/P比调节对小球藻净化渗滤液效能的影响[J].中山大学学报, 2001, 4(02): 101-103.
    [43]周北海,王琪,董路.垃圾填埋场构造对渗滤液成分的影响研究[J],环境科学研究, 2002, 13(3): 6-8.
    [44]胡勤海,俞凯觎.吹脱-SBR-吸附混凝法处理垃圾填埋场渗滤液[J].环境污染与防治, 2000, 22(3): 21-29.
    [45]卢成洪,徐迪民.垃圾填埋场渗滤液水质影响因素的研究[J].给水排水, 1999, 25(2): 20-23.
    [46]王丹,赵朝成,彭丞.垃圾填埋场渗滤液处理工艺研究进展[J].污染防治技术, 2006, 19(2): 41-45.
    [47]周乃杰,秦昌英.垃圾填埋场渗滤水处理技术探讨[J].环境卫生工程, 2000, 10 (1): 25~33
    [48]曹占峰,何品晶,邵立明. SBR法处理垃圾填埋场新鲜渗滤液的试验研究[J].环境污染治理技术与设备, 2005, 6(2): 33-37.
    [49]李伟东,梅成效,赵东风等.垃圾渗滤液处理技术的研究进展[J].浙江化工, 2006, 37(8): 16-20.
    [50]蒋乐平.城市垃圾渗滤液厌氧处理的工艺分析[J].污染防治技术, 2006, 19(3): 9-23.
    [51] Borzacconi L. Denitrification in a carbon and nitrogen removal system for leachate treatment performance of a upflow sludge blanket (USB) reactor[J]. Water Sci Technol, 1999, 40(8)145-151.
    [52] Loukiou M X, Zouboulis A I. Comparison of two biological treatment processes using attached growth biomass for sanitary landfill leachate treatment[J]. Environmental Pollution. 2001, 111(2): 272-281.
    [53]陈现明,原培胜,白振光.城市垃圾填埋场渗滤液的处理技术[J].舰船防化, 2005, 4(4): 1-4.
    [54] D. Alkalay. Review: Anaerobic treatment of muniipal sanitary landfill leaachates: the problem of refractory and toxic components[J]. World Journal of Microbiology & Biotechnology, 1998, 14(2): 309-320.
    [55]庞会从,冯素敏,黄群贤.物化法去除垃圾渗滤液中氨氮综述[J]. 2006, 23(2): 127-130.
    [56] Uvan Dongene, M S M Jettey, M C M van Loosdrecht. The BFIABON(r)-Anammox Process forTreatment of Ammnium Rich Wastewater[J]. Water Science and Technology, 2001, 44 (1): 153-160.
    [57] Schulze Rettmer. The simultaneous chemical precipalation of ammonium and phosphate in the form of magnesium ammonium phosphate[J]. Water Science and Technology, 1991, 23(2): 659-667.
    [58]陶美君,吴晓辉,陆晓华.垃圾渗滤液中氨氮的超声处理[J].华中科技大学学报, 2005, 22(1): 71-75.
    [59] HoigneJ, Bader H. The Role of Hydroxyl Radical Reactions in Ozonation Processes in Aqueous Solutions[J]. Water Research, 1976, 10(2): 377-386.
    [60] Glaze W H, Kang J W, Chapin D H. The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxideand Utraviolet Radiation [J]. Ozone: Science and Engineering, 1987, 9(4): 335-352.
    [61] Bergendahl J, O. Shaughnessy J. Advanced oxidation processes for waste water treatment[J]. JournalofNew England Water Environment Association, 2004, 38(2): 179-189.
    [62] Pera Titus Marc, Garcia Molina Veronica, Banos MiguelA, etal. Degradation of chlorophenols by means of advanced oxidation processes: Ageneral review[J]. Applied Catalysis B: Environmental, 2004, 47(4): 219-256.
    [63] Suty Herve, De Traversay C, Cost M. Applications of advanced oxidation processes: Present and future [J]. Water Science and Technology, 2004, 49(4): 227-233.
    [64] Hurd S, Kennedy K, Droste J. Low pressure Reverse Osmosis Treatment of Landfill Leachate[J]. Journal of Soild Waste Tethnology and Management, 2001, 27(1): 1-14.
    [65] Buchhoiz B, Landsberge A S. TreeMetal Analysis of Sinz-Fraction Municipal Solid Waste Incinerator Fly Ash and Its Leachates [J] Ebviron SciHeak, 1993, 28(2): 423-443.
    [66] Evelyne Gonze, Nadine Commenges, Yves Gonthier, et al. High frequency ultrasound asapre orapost oxidation for papermill waste waters and landfill leachate treatment [J] . Chemical Engineering Journal, 2003, 92(1~3): 215-225.
    [67] H J H Fenton. J Chem Soc, 1894, 65(1): 899.
    [68] Fraser J A L. Hydrogen peroxide in municipal, landfill and industrial effluent treatment. Effluent [J]. Water Treatment, 1984, 24 (5): 184-188.
    [69] D F Bishop. Hydrogen peroxide catalytic oxidation of refractory organics in municipal wastewater[J]. I&EC Process Design and Development, 1968, 7(1): 110-117.
    [70] C Walling. The ferricion catalyzed decomposition of hydrogen peroxide in perchloric acidsolution[J]. Int J Chem Kim, 1974, 6(1): 507-516.
    [71] H R Eisenhauer. Oxidation of phenolic wastes[J]. Journal WPCF, 1964, 36(11): 16-28.
    [72] H R Eisenhauer. Chemical removal of ABS from wastewater effluents[J]. Journal WPCF, 1965, 37(12): 1567-1577.
    [73] Andrews Catherine C. Photooxide treatment of TNT contaminated wastewater[P]. AD-A 084, 1980, 684.
    [74] M Malaiyandi. Removal of organics in water using hydrogen peroxide in presence of ultraviolet light [J]. Water Research, 1980, 14(1): 1131.
    [75]刘勇弟,徐寿昌.紫外-Fenton试剂的作用机理及在废水处理中的应用[J].环境化学, 1991, 13(4): 302-306.
    [76] Klibanov A M. Enzymatic removal of toxic phenols and anilines from waste waters[J]. Journal of Applied Biochemistry, 1980, 14(2): 414-421.
    [77]刘勇弟,王华星,朱亚新. Fenton试剂氧化偶合混凝法处理含酚废水的机理研究[J].中国环境科学. l994, 19(5): 341-345.
    [78]黄晓东,徐寿昌.用芬顿试剂预氧化提高硝基苯废水的可生化性[J].江汉石油学院学报, 1994, 16(3): 75-79.
    [79]陈石,王克虹.城市生活垃圾填埋场渗滤液处理中试研究[J].给水排水, 2000, 26(10): 15-18.
    [80]孙召强,杨宏毅等. CASS工艺处理垃圾渗滤液工程设计实例[J].给水排水, 2002, 28(1): 20.
    [81]赵宗升,刘鸿亮等. A2O与混凝沉淀法处理垃圾渗滤液研究[J].中国给排水, 2001, 17(11): 13-16.
    [82]金永麒.阿苏卫垃圾填埋场渗滤液处理中活性污泥的驯化与调试[J].环境科学与技术, 2001, 14(2): 35-36.
    [83]马慧,马荣建,姜云.超声气浮+SBR工艺在小城镇垃圾场渗滤液处理中的应用[J].江苏环境科技, 2002, 15(3): 16-18.
    [84]陈增丰,俞觊觎,倪娜等. ATM技术对垃圾渗沥液可生化性的影响[J].环境卫生工程. 2005, 13(4): 48-52.
    [85] Robert L Irvlie, Peter A Wilderer, Hans-Curt Flemming. Controlled unsteady state processes and technologies an overview[J]. Wat Sci Tech, 1997, 35(1): l-10.
    [86] Peter A Wilderer. Membrane biofilm reactors operated under periodically changing process condition [J]. Wat Sci Tech, 1995, 31(1): 173-183.
    [87] Goszales S, Wilierer. P. A. Phosphatc removal in a biofilm reactor [J]. Water Scicncc Technology, 1990, ( 23) 9: 1405- 1416.
    [88] Irvlie R L, Wilderer, Flivivil G H. Controlled unsteadly state processes and technologic-an overview [J]. Wat. Sci. Tech, 1997, 35(1): l-10.
    [89] Falisestuft C. M, Harrlivioes, Viosbeis H. The significance of aonation in denitrifying, phosphorus removing biofilm [J]. Wat. Sci. Tech. , 1999, 33 (15): 3303- 3310.
    [90] Geseppe P, Roberto C. Phosphorus and nitrogen removal in movingbed sequencing batch biofilm reactors [J]. Wat. Sci. Tech, 1999, 40(4): 169-176.
    [91] Fang H. Removal of COD and nitrogen in wastewater using sequencing batch reactor with filbrous packing [J]. Wat. Sci. Tech, 1993, 28 (7): 125-131.
    [92] Tilierer P A. Activated carbon sequencing batch bioflim rcactor to treat industryal wastewater [J]. Wat. Sci. Tech. , 1997, 35(1): 169- 176.
    [93] Garzos Zlsiga, Marco A. Biological phosphorus and nitrogen removal in a biofilm sequencing batch reactor[C]. Proceedings of the 1996 18th biennial Conference of the International Association on water quality. Part I.
    [94]荣宏伟,吕炳南,贾名准.序批式生物膜反应器脱氮除磷技术[J].哈尔滨商业大学学报(自然科学版), 2002, 18(5): 534-538.
    [95]王亚宜,李探微,彭永臻.序批式生物膜(SBBR)法和SBR法的对比研究[J].工业用水与废水, 2002, 33(6): 4-8.
    [96]张俊,张道斌,陈曦. SBBR处理垃圾渗滤液初探[J].四川环境. 2006, 25(2): 9-12.
    [97] Oman C. Identification of organic compounds in municipal landfill leachates[J]. Enuinom. Pollut, 1993. 80(I): 265-271.
    [98]孟了,熊向勋,马箭.我国垃圾渗滤液处理现状及存在的问题[J].给水排水, 2003, 29(10): 26-29
    [99]杨善.为什么生物接触氧化法处理城市污水只需一小时左右[J].给水排水, 1999, 25(2): 35.
    [100]许泽美.生物膜法在市政污水处理中的应用前景[J].中国给水排, 1999, 15(8): 24-26.
    [101] Zolten N G. Leachate treatment in landfill [J]. Water Environment &Technology, 1991, 13 (5): 63-66. [99]减荣春,夏凤毅.微生物动力学模型[M].北京:化学工业出版社, 2004.
    [102] W W Eckenfelder. Industrial Water Pollution Control [M]. NewYork: McGraw-Hill Book Company, 1989, 11-36.
    [103] P. Sauvegrain. Anaerobic biofiltration versus aerobic membran filtraion comparison on a difficult substrate[J]. Wat. Sci. Tech, 1992, 25 (10): 211-218.
    [104] Glent Draigger et al. Enbancced secondary Treatment Incorpovating Biological Nutrient Removal[J]. J. WPCF, 60(10): 1833-1988.
    [105]江大晕等.水处理新技术及工程设计[M].北京:化学工业出版社, 2001.
    [106]康冠军.活性污泥膨胀上浮的原因分析与对策[J].石油化工环境保护, 2005, 28 (2): 19.
    [107]白晓慧,陈英旭,王宝贞.活性污泥法低温硝化及其运行控制条件研究[J].环境科学学报, 2001, 21(5): 569-572.
    [108]吴成强,杨金翠,杨敏.运行温度对活性污泥特性的影响[J].中国给水排水, 2003, 19(9): 5-7.
    [109] Knoop S. and Kunst S. Influence of Temperature and Sludge Loading on Activated Sludge Settling, Especially on Mierothrix Parvieella[J]. Wat. Sci. Teeh, 1998, 37(4~5): 27-35.
    [110]彭永臻,张树军.城市生活垃圾填埋场渗滤液生化处理过程中重金属离子问题[J].环境污染治理技术与设备, 2007, 7(1): 1-4.
    [111]张金梅.生物絮凝吸附/生物接触氧化处理城市污水试验研究[D].重庆:重庆大学博士学位论文, 2007: 73-74.
    [112] C. P. Lesline Grady. Jr, Glen T. Daigger, Henry C. Lim.废水生物处理[M].北京:化学工业出版社, 2003, 29-369.
    [113] Catherine Galindo, Patrice Jacques, AndréKalt. Photochemical and photo-catalytic degradation of an indigoid dye: a case study of acid blue 74(AB74) [J]. Journal of Photochemistry and Photobiology A. Chemistry, 2001, 141(3): 47-5.
    [114]范洪波.水解酸化-SBR法-混凝沉淀工艺处理垃圾渗滤液的研究.环境工程, 2003, 21(4): 10-12.
    [115] Dinopoulou G. Anaerobic acido genesis of a complex wastewater. I. The influence of operation parameters on reactor performance[J]. Biotechnol. Bioeng, 1988, 31(9): 958-968.
    [116]赵健良,童昶,沈耀良.厌氧(水解酸化)—好氧生物处理工艺及其在我国难降解有机废水处理中的应用[J]. 2002, 22(2): 84-88.
    [117]郑元景,沈永明,沈光范.污水厌氧生物处理[M].北京:中国建筑工业出版社, 1988, 301-302.
    [118]杨期勇.水解酸化-颗粒填料复合式膜生物反应器涤纶减碱量废水处理研究[D].东华大学博士论文, 2006: 50-61.
    [119]郎咸明.水解酸化-UNITANK-BAF工艺处理制药废水的研究[D].东华大学博士论文. 2006: 50-61.
    [120]减荣春,夏凤毅.微生物动力学模型[M].北京:化学工业出版社, 2004.
    [121] McCarty PL. Thermodynamics of biological synthesis and growth[C]. Proceedings of the l lth Int. conf. on Water Pollut Res. Tokyo, Japan, 1964, 169-199.
    [122]秦麟源.废水生物处理[M].上海:同济大学出版社, 1989.
    [123]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社, 2004.
    [124] Mulder J W, Van Kempen R. N-removal by Sharon[J]. Water Quality international, 1997, 14(2): 30-31
    [125] Hellinga C, Van Loosdnecht M C M, Heijnen J J. The Sharon process for nitrogen removal in ammonium rich wastewater[J]. Universiteit Gent, 1997, 62(40): 1743-1750.
    [126] Hellinga C, Schellen A. A. J. C, Mulder JW, et. al. The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water[J]. Water Science and Technology, 1998, 37(9): 135-142.
    [127] Mulder JW. Full scale application of the Sharon process for treatment of rejection water of digested sludge dewatering[C]. Proc, First IWA Conference, London, 2000, 267-274.
    [128] Bock E, Schmidt I, Stuven R, et al. Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor[J]. Arch. Microbiol, 1995, 163(3): 16-20.
    [129] Ingo Schmidt, Olav S, et al. Aerobic and anaerobic ammonia oxidizing bacteria-competitors or natural partners[J]. FEMS Microbiology Ecology, 2002, 39(3): 175-181.
    [130] Kuenen J G, Robertson L A. Combined nitrification-denitrification process[J]. FEMS Microbiol Rev, 1994, 15(3): 109-117.
    [131] Helmer C, Kunst S, Juretschko S, et al. Nitrogen loss in a nitrifying biofilm system. Water[J] Science and Technology, 1999, 39(7): 13-21.
    [132] Hippen A; Rosenwinkel, Karl H. Aerobic demagnification: a new experience in the treatment of wastewaters[J]. Water Science and Technology, 1997, 35(10): 111-120.
    [133] Synergist Ii; Reithaar S, Lais P. Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon[J]. Water science and Technology, 1998, 37(5): 589-591.
    [134] Kuai L, Verstraete W. Ammonium removal by the oxygen limited autotrophic nitrification denitrification (OLAND) system[J]. Appl. and Environ. Microbiology, 1998, 64(11): 4500-4506.
    [135] Broda E. Two kinds linhotrophs missing in nature[J]. Z allg Mickrobiol. 1977, 17(1): 491-493.
    [136] Gmaf A A, et a1. Anaerobic Oxidation of Ammonium is a Bioloically Mediated Process[J]. Appl Environ Microbiol, 1995, 61(4): 1246-1251.
    [137] Mulder A, Roverson LA: Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiol Ecol, 1995, 16(1): 1177-184.
    [138] Kuenen J: G, etten. M;S. M. Extraordinary anaerobic ammonium-oxidizing bacteria[J]. ASM News, 2001, 67(9): 456-463.
    [139] Van de Graaf A A, de Bruin P; Robertson L A, et al. Metabolic pathway of anaerobicammonium oxidation on basis of 15N-studies in a fluidized bed reactor[J]. Microbiology (UK). 1997, 143(3): 2415-2421.
    [140] Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Appl Microbiol Biotechnol, 1998, 54(3): 589-596.
    [141] A. Olav Slickers, K. A. Third, W. et al. CANON and Anammox in a gas-lift reactor. FEMS[J] Microbiology Letters, 2003, 218(2): 339-344.
    [142] Sen, Priyali, Bentel, Steven K. Simultaneous nitrification-denitrification in a fluidized bed reactor[J]. Water Science and Technology, 1998, 38(1): 247-254.
    [143] Boaventura, Rui A. R;, Rodrigues, Alfio E. Denitrification kinetics in a rotating disk biofilm reactor[J]: Chemical Engineering Journal, 1997, 65(3): 227-235.
    [144] Guo Haiyan; Zhou Jiti; Su Jiang, et al. Integration of nitrification and denitrification in airlift bioreactor. Biochemical Engineering Journal, 2005, 23 (1): 57-62.
    [145] Halling-S, Bent, Nielsen, et al. A model of nitrogen removal from waste water in a fixed bed reactor using simultaneous nitrification and denitrification (SND) [J]. Ecological Modelling, 1996, 87(1-3): 131-141.
    [146] Keller. J, Subramaniam. K, Gosswein. J, Greenfield. P. F. Nutrient removal from industrial wastewater using single tank sequencing batch reactors [J]. Water Science and Technology, 1997, 35(6): 137-144.
    [147] M. Fuerhacker, H. Bauer, R. Ellinger, et al. Approach for a novel control strategy for simultaneous nitrification/denitrification in activated sludge reactors[J]. Water Research, 2001, 34(9): 2499-2506.
    [148] Kornaros M, Lyberatos, G. Kinetic. Modeing of pseudomonas denitrificans growth and denitrification under aerobic, anoxic and transient operating conditions [J]. Water Research, 1998, 32(6): 1912-1922.
    [149] Veratraete W, Philips S. Nitrification-denitrification processes and technologies in new contexts [J]. Environmental Pollution, 1998, 102(1): 717-716.
    [150] Voet J. P. Removal of nitrogen from highly nitrogenous wastewater[J]. JWPCF, 1975, 47 (47): 394-398.
    [151] Sauter L. J, Alleman J. E. A streamlined approach to biological nitrogen removal [C]. ASCE special conference in Environ. Eng. New York, 1980, 296-306.
    [152] Sutherson S. Inhibition of nitrite oxidation during nitrification: some observations[J], Water Pollution. res. J can. 1986, 21(3): 257-266.
    [153] Alleman J. E. Elevated nitrite occurrence in biological wastewater treatment system[J]. Wat.Sci. Tech, 1984, 17(1): 409-419.
    [154] Anthonisen A. C, Laoehr R. C. Inhibition of nitrification ammonia and nitrous acid [J]. JWPCF, 1976, 48 (2): 835-750.
    [155] Turk O, Mavinic DC, Maintaining nitrite build-up in a system activated to free ammonia[J]. Water Research, 1989, 23(22): 1383-1388.
    [156] Joanna surmacz-Gorska, Andrej Cichon, Korneliusz Miksch. Nitrogen removal from wastewater with high ammonia nitrogen concentration shorter nitrification and denitrification[J]. Wat. Sci. Tech, 1997, 36(10) : 73-78.
    [157] Fdz-Polanc O F, Villaverde S. P, A. Garcia. Temperature Effect on Bacteria Activity in v1an Biofilters: Activation and Free Ammonia Inhibition[J]. Wat. Sci. Tech, 1994, 30(11): 121-130.
    [158] Rods J. L, Mauret M, Rahmani H, Nguyen K. M, Capadeville B. Population dynamics and nitrite build-up in activated sludge and biofilm process for nitrogen removal[J]. Wat. Sci. Tech, 1998, 29(7): 43-51.
    [159] Garrido J. M, Van Benthum W. A. J, Van Loosdretch M. C. M. Heijnen Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor[J]. Biotechnol. Bioeng, 2001, 53(2): 168-178.
    [160] C. Hellinga, A. A. J. C. Schellen, J. W. Mulder. The SHARON Process: An innovative method for nitrogen removal from ammonium-rich wastewater[J]. Wat. Sci. Tech, 1998, 37(9): 135-142.
    [161] J. W. Mulder, M. C. M. van Loosdrecht, C. Hellinga, et al. Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering[J]. Wat. Sci. Tech, 2001, 43(11): 127-134.
    [162] Van Kempen R, Mulder J. W, Uijterlinde C. A, et al. Overview: Full scale Experience of the SHARON Process for Treatment of Rejection Water of Digested Sludge Dewatering[J]. Wat. Sci. Tech, 2001, 44 (1): 145-152.
    [163]王淑莹,曾薇,董文艺,杜红,陈韬. SBR法短程硝化及过程控制研究[J].中国给水排水, 2002, 18 (10) : 1-5.
    [164]高景峰,彭永臻,王淑莹.温度对亚硝酸型硝化/反硝化的影响[J].高技术通讯, 2002, 12 (12): 88 -93.
    [165]曾薇,王淑莹,彭永臻,陈韬.供氧方式对SBR法硝化过程控制的影响[J].环境化学, 2002, 21(6) : 571-575.
    [166]蒙爱红,左剑恶,杨洋.高浓度氨氮废水的短程硝化研究[J].中国给水排水, 2002, 18 (11) : 43-45.
    [167] Verstraete W, Philips S. Nitrification-Denitrification processes and technologies in new contexts. Environmental Pollution [J]. 1998, 37(9): 135-142.
    [168] Hanaki K, Wantawin C, Ohgaki. S. Nitrification at Low Level of dissolved oxygen with and without Loading in a Suspended Growth Reactor [J]. Wat. Res, 1990, 24 (3): 297-302.
    [169] Laanbroek H. J, Gerards S. Competition for Limiting amounts of oxygen between nitrosomanas europaea and Nitrobacteria Winogradskyi Grown in Mixed Continuous Cultures [J]. Arch. Microbiology, 1993, 159: 453-459.
    [170] Ruiz G, Jeison D, Chamy R. Nitrification with high nitrite accumulation for treatment of wastewater with high ammonia concentration[J]. Wat. Res, 2003, 37(6): 1371-1377.
    [171]马勇,王淑莹,曾薇等. A/O生物脱氮工艺处理生活污水中试短程硝化反硝化的研究[J].环境科学学报, 2006, 26 (5): 703-709.
    [172]张小玲,李斌,杨永哲等.低DO浓度下的短程硝化及同步硝化反硝化[J].中国给水排水, 2004, 20(5): 13-16.
    [173]鲁南.孙锐.普红平. MBR中影响短程硝化反硝化的生态因子[J].山东轻工业学院学报, 2005, 19(4): 18-22.
    [174]支霞辉,王红武,丁峰等.常温条件下短程硝化反硝化生物脱氮研究[J].环境科学研究, 2006, 19(1) : 26- 29.
    [175]王春荣,王宝贞,王琳.两段曝气生物滤池的同步硝化反硝化特性[J].中国环境科学, 2005, 25(1) : 70- 74.
    [176]王少坡,彭永臻,李军等. CAST工艺处理低碳氮比废水中的DO浓度对N积累的影响[J].哈尔滨工业大学学报, 2005, 37(3): 344-347.
    [177]郑平.生物脱氮技术的研究进展[J].环境污染与防治, 1997, 19(4): 25-28.
    [178]吕锡武.同时硝化和反硝化的理论和实践[J].环境化学, 2002, 21 (6): 564-570.
    [179]邓黛青.城市垃圾焚烧厂垃圾储坑渗滤液生物处理技术研究[D].上海;同济大学博士学位论文, 2006.
    [180] Michael W, Alexander L. Bacterial community composition and function in sewage treatment systems[J]. Current Opinion in Biotechnology, 2002, 13(3): 218-227.
    [181] Woolard. C. R. The Advantages of Highly Variable Wastewater[J]. Wat. Sci. &Tech, 1997, 35(1): 199-206.
    [182] Irvine. R. L, Moe. W. M. Period Biofilter Operation for Enhanced Performance during Unsteady-state Loading Conditions [J]. Wat. Sci. &Tech, 2001, 43(3): 231-239.
    [183] Chudoba. J, Grau. P, Ottova. V. Control of Activated Sludge Bulking. II. Selection of Microorganisms by Means of a Selector [J]. Wat. Res, 1973, 25(7): 1389-1406.
    [184] Tomlinson. E. J, Chambers. B. Methods for Preventing of Bulking in Activated Sludge [J]. Wat.Pollut. Control, 1979, 78(2): 524.
    [185] Chiesa. S. C, Irvine. R. L. Growth and Control of Filamentous Microbes in Activated Sludge: an Integrated Hypothesis [J]. Wat. Res, 1985, 19(3): 471-479.
    [186] Wilderer. P. A, Irvine. R. L, Goronsry. M. C. Sequencing Batch Reactor Technology [M]. London, UK: IVJA publishing, 2001, 1-13.
    [187] Bishop, P. L, Zhang, T. C, Fu, Y. Effects of Biofilm Structure, Microbial Distributions and Mass Transport on Biodegradation Processes[J]. Wat. Sci&Tech, 1995, 31(1): 143-152.
    [188]沈耀良,王宝贞.废水生物处理新技术理论与应用[M].北京:中国环境科学出版社, 1999. 9-16.
    [189]徐亚同.废水的硝化作用[J].环境科学进展. 1994, 2(3): 44-49.
    [190]高淑民.新型填料生物接触氧化法硝化反应影响因索的研究[D].上海:同济大学博士学位论文, 1997. 42-48.
    [191]顾夏声.废水生物处理数学模式[M].北京:清华大学出版社, 1993.
    [192] Choi E, Rhu D, Zuwhan Y, et a1. Temperature Effects on Biological Nutrient Removal System With Weak Municipal Wastewater[J]. Wat. Sci. Tech, 1998, 37(9): 219-226.
    [193] Antonious. P, Hamilton J, Koopman B, et al. Effect of temperature and pH on theeffective maximum specific growth rate of nitrifying bacteria[J]. Wat. Res, 1990, 24(1): 97-101.
    [194] Xiaodi Hao, Josep. H. J, Mark C M, et al. Model-based evaluation of temperature and inflow variations on a partial nitrification ANAMMOX biofilm process[J]. Water Research, 2002, 36(19): 4839-4849.
    [195]张晶莉.反硝化除磷脱氮工艺的影响因素探讨[J].安全与环境工程, 2007, 14(4): 67-70.
    [196]施水生.亚硝酸型生物脱氮技术[J].给水排水. 2000. 26(11): 21-24.
    [197] Bernet N, Dangcong P, Delgenes J P, et al. Nitrification at low oxygen concentration in biofilm rector[J]. J Env Eng, 2001, 127 (3): 266- 271.
    [198] Barnes D, Bliss P J. Biological control of nitrogen in wastewater treatment [C]. 1at Edition, E. &F. N. Spon, Ltd: ISBN;0-41-9123504, 1983. 135-157.
    [199] Ortiz C P, Steyer J P, Bories A. Carbon and nitrogen removal from wastewater by candida utilis: kinetics aspects and mathematical modeling[J]. Process Biochemistry, 1997, 32 (3) : 179-189.
    [200] Rods J. L, Mauret M, Rahmani H, Nguyen K. M, Capadeville B. Population dynamics and nitrite build-up in activated sludge and biofilm process for nitrogen removal[J]. Wat. Sci. Tech, 29(7): 43-51.
    [201]陈际达,陈志胜,张光辉.含氮废水亚硝化型硝化的[J].重庆人学学报, 2000, 23(3): 74-76.
    [202] SeungYeon Weon, ChanWon Lee, SangIi Lee, et al. Nitrite inhibition of aerobic growth of Acinetobacter [J]. Water Research, 2002, 36(8): 4471-4476.
    [203]陈胜.悬浮填料生物膜特性及其处理高浓度有机废水效能研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 2006, 32-38.
    [204] L. Kuai. Ammoniunm Removal Nitrification Denitrification by the Oxygen Limited Autotrophic System[J]. Environ. Microbiol, 1998, 64(11): 1-6.
    [205] H. J. Yun, D. J. Kim. Nitrite Accumulation Characteristics Of High Strength Ammonia Wastewater in an Autotrophic Nitrifying Biofilm Reactor. J. Chem[J]. Technol. Biotechnol, 2003, 78(2): 377-383.
    [206] J. J. Heijnen, M. C. M. Van loosdrecht, A. Minder. Formation of Biofilms in a Biofilm Air Lift Suspension Reactor [J]. Wat Sci. Tech, 1992, 26(5): 647-654
    [207]王欲鹏,陈坚,华兆哲等.硝化菌群在不同条件下的增殖速率和硝化活性[J].应用与环境生物学报, 1999, 5(1): 64-68.
    [208] Wendy M. Rostron, David C. Stuckey, Andrew A. Young. Nitrification of high strength ammonia wastewaters: comparative study of immobilization media [J]. Wat. Res, 001, 35(5): 1169-1178.
    [209] RE.斯皮思.工业废水的厌氧生物技术[M].北京:中国建筑工业出版社, 2001.
    [210] Amokrane A. Landfill leachates pretreatment by coagulation-flocculation[J]. Water Research, 1997, 31(11): 2775-2782.
    [211] Vogel F, Harf J, Hug A, et al. The mean oxidation number of carbon(MOC)-a useful concept for describing oxidation processes[J]. Water Res, 2000, 34: 2689-2702.
    [212]王开演,汪晓军.混凝- Fenton法深度处理垃圾渗滤液.净水技术, 2008, 27( 3) : 35-38.
    [213]汪晓军,简磊,李景达,邓小利,陈思莉.混凝/化学氧化/曝气生物滤池深度处理垃圾渗滤液.中国给水排水, 2008, 24(6):72-78.
    [214]杨健,王晓云.化学混凝+CSBR处理垃圾渗滤液废水试验研究.能源与环境. 2008, 36(2):36-40.
    [215]李英华1 , 2 ,余仁焕1 ,李海波.混凝—气浮预处理垃圾渗滤液的模拟试验研究.安全与环境学报. 2008, 8(2):48-51.
    [216]吴根义,刘桂初,杨仁斌等.水解酸化一接触氧化一混凝沉淀法处理漂染废水研究.工业水处理[J]. 2008(5):87-90.
    [217]张宏丽.吹脱-混凝-SBR法处理垃圾渗滤液工艺研究[D].成都:四川大学硕士论文, 2003, 10-59.
    [218]张自杰,顾夏声,林荣忱等.排水工程[M].中国建筑工业出版社. 2000:100-110.
    [219]中华人民共和国住房与城乡建设部.室外排水设计规范(GB50014-2006). 2006:. 58-62
    [220] ALi R. D, Fikret K. Kinetics of sequential nitrification and denitrification processes[J]. Enzyme and Mierohial Technology, 2000, 27(1): 37-42.
    [221] Neufeld R D. J . WPCF, 1980, 52(9): 2367-2377.
    [222] Antonious. P, Hamilton. J, Koopman. B, et al. Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria[J]. Wat. Res, 1990, 24(1): 97-101.
    [223] Martienseen J. Modelling and simulation of anaerobic ammonium oxidation[D] . MSc Thesis, Ghent University, Faculty of Agricultural and Allied biological Sciences, 2003.
    [224] Capdeville B, Nguyen K. M, Rose J. L. Biofilm modeling: Structural, reactional and diffusional aspects[M]. In: Biofilms-Science and Technology, Ed. By Melo L. F, Bott T. R, Fletcher M. And Capdeville B, Kluwer Academic publishers, 1992, 251-276.
    [225] Hoehn R. C, Ray A. D. Effects of thickness an bacterial film[J], J. Wat. Pollut. Control Fed, 1973, 45(1): 2302-2320.
    [226] Atkinson B. An Daoud I. S. The analogy between microbiological reactions and heterogeneous catalysis[J]. Trans Instn Chem Eng, 1968, 46(3): 19.
    [227] Lamotta E. J. Kinetics of growth and substrate uptake in a biological film system[J]. Appl Environmental Microbiol, 1976, 31(2): 286-293.
    [228]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].中国建筑工业出版社, 2000, 31(2): 12-35.
    [229]周群英,高廷耀.环境工程微生物学(第二版) [M].北京:高等教育出版社, 2001: 331-332.
    [230]俞毓馨,吴国庆,孟宪庭.环境工程微生物检验手册[M].北京:中国环境科学出版社, 1990: 129-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700