用户名: 密码: 验证码:
胸主动脉腔内修复术中血压对截瘫并发症的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:建立多参数脊髓缺血监测和评价系统,利用支架型血管制作胸主动脉EVR模型,探讨术中不同血压对截瘫并发症的影响。
     方法:(1)造影测量犬胸主动脉的长度和近远端的内径,根据结果设计制造支架型血管,并利用改造的输送器,以髂动脉为入路,将支架型血管释放于胸主动脉;(2)将20只犬随机分为高血压组、低血压组、正常血压组和空白对照组;(3)分别在术前、术后15、30、60、90分钟进行SEP,脑脊液和动脉血的PH值、pCO2、葡萄糖、乳酸、NSE定量检验,术后24、48、72小时分别进行神经系统评分,术后1个月处死后行脊髓病理观察;(4)将实验数据进行统计学分析(p<0.05)。
     结果:
     (1)适合体重为23-25kg成年家犬胸主动脉使用的支架型血管的平均型号为近端直径20mm,远端直径12mm,长度250mm,髂动脉能够容纳的输送器的最大外径为18F。
     (2)各手术组,脑脊液中的乳酸含量术后均多于术前,同一时间不同实验组乳酸含量无统计学差异。
     (3)各实验组,脑脊液中的葡萄糖含量术后与术前无统计学差异,同一时间不同实验组葡萄糖含量无统计学差异。
     (4)各手术组,脑脊液中的NSE含量术后60、90分钟多于术前。术后30分钟,低血压组含量多于正常血压组;术后60、90分钟,高血压组含量少于低血压组,而高血压组和正常血压组以及正常血压组和低血压组间无统计学差异。
     (5)各手术组,脑脊液中的pCO2值术后60、90分钟高于术前。术后60、90分钟,高血压组的值低于低血压组。术后60分钟,正常血压组的值低于低血压组。
     (6)高血压组术后60分钟脑脊液中的PH值低于术前。同一时间不同实验组间无统计学差异。
     (7)神经系统评分:各组内不同时间无统计学差异;术后24小时,低血压组与空白对照组有统计学差异。
     (8)诱发电位结果:高血压组内除术后15分钟,均与术前有统计学差异;正常血压组和低血压组内术后均与术前有统计学差异。同一时间段不同实验组间均有统计学差异,波幅峰值空白对照组>高血压组>正常血压组>低血压组,潜伏期空白对照组<高血压组<正常血压组<低血压组。
     (9)病理检查结果:各手术组脊髓出现不同程度的缺血坏死。高血压组与低血压组和正常血压组有统计学差异。
     结论:脑脊液中乳酸和NSE的升高以及pCO2值的下降表示脊髓发生缺血,而葡萄糖、PH值对脊髓缺血不敏感;pCO2值和NSE对机体血压变化引起的脊髓血供改变敏感,但乳酸不敏感。SEP对脊髓缺血非常敏感,机体血压变化会引起SEP的相应改变;病理结果符合SEP的变化趋势。综合各指标得出结论,胸主动脉腔内修复术中高血压对脊髓血供有保护作用,低血压可加重脊髓缺血损伤。
Objective: Set up a multi-factors system for monitoring and evaluating spinal cord ischemia and make a canine EVR model with stent-graft. Probe the effect of blood pressure on paraplegia during endovascular TA repair with the model.
    Methods: (1) To design and manufacture the stent-grafts which are fit for the ascending aorta in canine through measuring the radiography result. Using a special delivery, we release the stent-graft to TA from iliac artery. (2) 20 canines were used, which were randomly divided into group A (Hypertension), B (Hypotension), C (Normal) and D (Vacant control group). (3) Arterial blood and CSF samples were carried out to determine PH, pCO2, glucose, lactate and NSE at preoperation and postoperation 15, 30, 60 and 90 mins. SEP was measured at the same intervals. All animals were evaluated neurologically at postoperation 24, 48 and 72 hours. At last canines were sacrificed for spinal cord pathologic assessment at postoperation 1 month. (4) Statistical analysis (p ≤ 0.05).
    Results:
    (1) The average size of stent-graft fitting for 23-25kg dogs are that proximal diameter is 20mm, distal diameter is 12mm, length is 250mm. The biggest diameter is 18F that could pass through the iliac artery.
    (2) In operation groups, the level of lactate in CSF at postoperation is higher than preoperation. And in different groups p > 0.05 at the same time.
    (3) In all groups, the level of glucose in CSF has no singnificantly difference which is similar with in multigroups at same time.
    (4) In operation groups, the level of NSE in CSF at postoperation 60, 90 mins are higher than preoperation. At 30mins, NSE in B group is more than in C group. At 60, 90 mins, NSE in A group is less than B. However, between A and C group
    p > 0.05 similar with C and B group.
    (5) In operation groups, the level of pCO2 in CSF at postoperation 60, 90 mins are higher than preoperation. At 60, 90mins, pCO2 in A group is less than in B group. At 60mins, pCO2 in C group is less than B.
    (6) In A group, the level of pCO2 in CSF 60 mins is lower than preoperation. In different groups p > 0.05 at the same time.
    (7) Neurologic assessment: In every group, p > 0.05 at different times. At 24 hours, there is singnificantly difference between B and D group.
    (8) SEP: In operation groups, there are singnificantly differences at different times similar. At same time, between different groups there are singnificantly differences: the ratio of amplitude is D > A > C> B, the incubation period is D < A    (9) Pathologic assessment: In operation groups, the spinal cord have different degree cellular necrosis. There is singnificantly difference between B and A similar with A and C.
    Conclusions: Increased levels of lactate and NSE as well as decreasing level of pCO2 in CSF predict spinal ischemia, but the change of glucose and PH in CSF isn't sensitive to spinal ischemia. SEP seems to be a useful and efficient monitoring that could forcast spinal ischemia and effect of different blood pressure on the risk of paraplegia which is similar with pCO2 and NSE in CSF, yet lactate isn't a good predictor to blood pressure. Pathology results are consistent with SEP outcome. From our observation we conclude that during endovascular thoracic aorta repair hypertension can lower the risk of paraplegia, however hypotension worsen spinal ischemia injury.
引文
1. Toumpoulis IK, Anagnostopoulos CE, Drossos GE, et al. Does ischemic preconditioning reduce spinal cord injury because of descending thoracic aortic occlusion. J Vase Surg. 2003, 37(2): 426-432.
    2. Conrad MF, Crawford RS, Davison JK, et al. Thoracoabdominal aneurysm repair: a 20-year perspective. Ann Thorac Surg. 2007, 83(2): 856-861.
    3. Neumar RW. Molecular mechanisms of ischemic neuronal injury. Ann E merg Med. 2000, 36: 483-506.
    4. Elefteriades JA. Natural history of thoracic aortic aneurysms: indications for surgery, and surgical versus nonsurgical risks. Ann Thorac Surg. 2002, 74: 1877-1880.
    5. Jacobs MJ, Mess W, Mochtar B, et al. The value of motor evoked potentials in reducing paraplegia during thoracoabdominal aneurysm repair. J Vase Surg. 2006, 43: 239-246.
    6. Khoynezhad A, Donayre CE, Bui H, et al. Risk factors of neurologic deficit after thoracic aortic endografting. Ann Thorac Surg. 2007, 83(2): 882-889.
    7.郭伟,盖鲁粤,刘小平等.主动脉夹层腔内修复术178例术后早期疗效分析.中华外科杂志.2005,43:921-925.
    8. Cina CS, Lagana A, Bruin G, et al. Thoracoabdominal aortic aneurysm repair: a prospective cohort study of 121 cases. Ann Vasc Surg. 2002, 16: 631-638.
    9. Coselli JS, LeMaire SA, Koksoy C, et al. Cerebrospinal fluid drainage reduces paraplegia following thoracobadominal aortic aneurusm repair: results of a prospective randomised trial. J Vasc Surg. 2002, 35:631-639.
    10. Kazama S, Miyoshi Y, Nie M, et al. Protection of the spinal cord with pentobarbital and hypothermia. Ann Thorac Surg, 2001, 71(5): 1591-1595.
    11. Zurita M, Vaquero J, Oya S, et al. Effects of dexamethasone on apoptosis-related cell death after spinal cord injury. J Neurosurg. 2002, 96(1 Suppl): 83-89.
    12. Schurink GW, Nijenhuis RJ, Backes WH, et al. Assessment of spinal cord circulation and function monitoring in endovascular treatment of thoracic descending aortic aneurysms. Ann Thorac Surg. 2007, 83(2): 877-881.
    13. Toung TJ, Chang Y, Williams M, et al. Experimental spinal cord ischemia: model characterization and improved outcome with arterial hypertension. Cri Care Med. 2004, 32: 1346-1351.
    1. Lang-Lazdunski L, Matsushita K, Hirt L, et al. Spinal cord ischemia. Development of a model in the mouse. Stroke. 2000, 31(1): 208-213.
    
    2. Lu J, Ebraheim NA, Biyani A, et al. Vulnerability of great medullary artery. Spine. 1996,21(16): 1852-1855.
    
    3. Orihashi K, Kumagai H, Isaka M, et al. Echo-guided identification of key lumbar arteries supplying the spinal cord in a canine model. Hiroshima J Med Sci. 2005, 54(4): 101-107.
    
    4. Malikov S, Rosset E, Paraskevas N, et al. Extraanatomical revascularization of the artery of Adamkiewicz: anatomical study. Ann Vasc Surg. 2002, 16(6): 723-729.
    
    5. Ueda Y, Kawahara N, Tomita K, et al. Influence on spinal cord blood flow and function by interruption of bilateral segmental arteries at up to three levels: experimental study in dogs. Spine. 2005, 30(20): 2239-2243.
    
    6. Fujimaki Y, Kawahara N, Tomita K, et al. How many ligations of bilateral segmental arteries cause ischemic spinal cord dysfunction? An experimental study using a dog model. Spine. 2006, 31(21): E781-789.
    
    7. Coselli JS, Bozinovski J, LeMaire SA., et al. Open surgical repair of 2286 thoracoabdominal aortic aneurysms. Ann Thorac Surg. 2007, 83(2): 862-864.
    
    8. Tsirikos AI, Aderinto J, Tucker SK, et al. Spinal cord monitoring using intra- operative somatosensory evoked potentials for spinal trauma. J Spinal Disord Tech. 2004, 17(5): 385-394.
    
    9. Costa P, Bruno A, Bonzanino M, et al. Somatosensory- and motor-evoked potential monitoring during spine and spinal cord surgery. Spinal Cord. 2007,45(1): 86-91.
    
    10. Galla JD, Ergin MA, Lansman SL, et al. Use of somatosensory evoked potentials for thoracic and thoracoabdominal aortic resections. Ann Thorac Surg. 1999,67: 1947-1952.
    
    
    11. Weigang E, Hartert M, Siegenthaler MP, et al. Perioperative management to improve neurologic outcome in thoracic or thoracoabdominal aortic stent-grafting. Ann Thorac Surg. 2006, 82(5):1679-1687.
    
    12. Noguchi Y, Nishio S, Kawauchi M, et al. A new method of inducing selective brain hypothermia with saline perfusion into the subdural space: effects on transient cerebral ischemia in cats. Acta Med Okayama. 2002, 56(6): 279-286.
    
    13. Robertazzi RR, Cunningham JN Jr. Monitoring of somatosensory evoked potentials: a primer on the intraoperative detection of spinal cord ischemia during aortic reconstructive surgery. Semin Thorac Cardiovasc Surg. 1998,10(1): 11-17.
    
    14. Crone, Sorensen. The permeability of blood-brain to lactate and pyruvate. Acta Physiol Scand. 1970, 80: 47-A.
    
    15. Geha AS, Salaymeh MT, Abe T, et al. Effect of pulsatile cardiopulmonary bypass on cerebral metabolism. J Surg Res. 1972, 12: 381-387.
    
    16. Nagy G, Dzsinich C, Selmeci L, et al. Biochemical alterations in cerebrospinal fluid during thoracoabdominal aortic cross-clamping in dogs. Ann Vasc Surg.2002, 16(4): 436-441.
    
    17. Anderson RE, Winnerkvist A, Hansson LO, et al. Biochemical markers of cerebrospinal ischemia after repair of aneurysms of the descending and thoraco- abdominal aorta. J Cardiothorac Vasc Anesth. 2003, 17(5): 598-603.
    
    18. Van Dongen EP, Ter Beek HT, Schepens MA, et al. The relationship between evoked potentials and measurements of S-100 protein in cerebrospinal fluid during and after thoracoabdominal aortic aneurysm surgery. J Vasc Surg. 1999,30(2): 293-300.
    
    19. Lases EC, Schepens MA, Haas FJ, et al. Clinical prospective study of biochemical markers and evoked potentials for identifying adverse neurological outcome after thoracic and thoracoabdominal aortic aneurysm surgery. Br J Anaesth. 2005, 95(5): 651-661.
    
    20. Tarlov IM. Acute spinal cord compression paraplysis. J Neurosurg. 1972, 36: 10-20.
    21. Seibel PS, Theodore P, Kron IL, et al. Regional adenosine attenuates postischemic spinal cord injury. J Vasc Surg. 1993, 18:153-158.
    22.李培健,胥少汀.脊髓损伤实验研究观察方法.中华外科杂志.1997,35:254-256.
    23. Johnson SH, Kraimer JM, Graeber GM. Effect of flunarizine on neurological recovery and spinal cord blood flow in experimental spinal cord ischemia in rabbits. Stroke. 1993, 24(10): 1547-1533. ischemic insult in rabbits. Jpn J Thorac Cardiovasc Surg. 2004, 52(9): 411-418.
    
    11. Strauch JT, Lauten A, Spielvogel D, et al. Mild hypothermia protects the spinal cord from ischemic injury in a chronic porcine model. Eur J Cardiothorac Surg. 2004, 25(5): 708-715.
    
    12. Murakami H, Tsukube T, Kawanishi Y, et al. Transcranial myogenic motor-evoked potentials after transient spinal cord ischemia predicts neurologic outcome in rabbits. J Vasc Surg. 2004, 39(1): 207-213.
    1.郭伟,盖鲁粤,刘小平等.主动脉夹层腔内修复术178例术后早期疗效分析.中华外科杂志.2005,43:921-925.
    2. Khoynezhad A, Donayre CE, Bui H, et al. Risk factors of neurologic deficit after thoracic aortic endografting. Ann Thorac Surg. 2007, 83(2): 882-889.
    3. Svensson LG, Grawford ES, Hess KR, et al. Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vase Surg. 1993, 17: 357-370.
    4. Coselli JS, Bozinovski J, LeMaire SA., et al. Open surgical repair of 2286 thoracoabdominal aortic aneurysms. Ann Thorac Surg. 2007, 83(2): 862-864.
    5. Neumar RW. Molecular mechanisms of ischemic neuronal injury. Ann E merg Med, 2000,36: 483-506.
    6. Ioannis K, Constantine E, et al. Does ischemic preconditioning reduce spinal cord injury because of descending thoracic aortic occlusion. J Vase Surg, 2003, 37: 426-432.
    7. Conrad MF, Crawford RS, Davison JK, et al. Thoraco-abdominal aneurysm repair: a 20-year perspective. Ann Thorac Surg. 2007, 83(2): 856-861.
    8. Cina CS, Lagana A, Bruin G, et al. Thoracoabdominal aortic aneurysm repair: a prospective cohort study of 121 cases. Ann Vasc Surg. 2002, 16:631-638.
    9. Lazorthes G. Arterial vascularization of the spinal cord. Recent studies of the anastomotic substitution pathways. J Neurosurg. 1971, 35: 253-262.
    10. Cina CS, Abouzahr L, Arena GO, et al. Cerebrospinal fluid frainage to prevent paraplegia during thoracic and thoracoabdominal aortic aneurysm surgery: A systematic review and meta-analysis. 2004, 40:36-44.
    11. Schurink GW, Nijenhuis RJ, Backes WH, et al. Assessment of spinal cord circulation and function in endovascular treatment of thoracic aortic aneurysms. Ann Thorac Surg. 2007, 83(2): 877-881.
    12. Jacobs M J, de Mol BA, Elenbaas T, et al. Spinal cord blood supply in patients with thoracoabdominal aortic aneurysms. J Vasc Surg. 2002, 35(1): 30-7.
    13. Griepp RB, Ergin MA, Galla JD, et al. Looking for the artery of Adamkiewicz: a quest to minimize paraplegia after operations for aneurysms of the descending thoracic and thoracoabdominal aorta. J Thorac Cardiovasc Surg. 1996,112:1202-1215.
    
    14. Simpson PB, Challiss RAJ, Nahorski ST, et al. Potentiation of NMDA-evoked elevation of intracellular calcium concentration by exogenous glycine in cerebellar granule cells. Eur J Pharmacol. 1994, 266: 309-315.
    
    15. Brock MV, Redmond JM, Ishiwa S, et al. Clinical markers in CSF for determining neurologic deficits after thoracoabdominal aortic aneurysm repairs. Ann Thorac Surg. 1997, 64: 999-1003.
    
    16. Murakami H, Tsukube T, Kawanishi Y, et al. Transcranial myogenic motor- evoked potentials after transient spinal cord ischemia predicts neurologic outcome in rabbits. J Vasc Surg. 2004, 39: 207-213.
    
    17. Nagy G, Dzsinich C, Selmeci L, et al. Biochemical alterations in cerebrospinal fluid during thoracoabdominal aortic cross-clamping in dogs. Ann Vasc Surg. 2002,16:436-441.
    
    18. Coselli JS, LeMaire SA, Miller CC 3rd, et al. Mortality and paraplegia after thoracoabdominal aortic aneurysm repair: a risk factor analysis. Ann Thorac Surg. 2000, 69(2): 409-414.
    
    19. Heinemann MK, Brassel F, Herzog T, et al. The role spinal angiography in operations on the thoracic aorta: myth or reality? Ann Thorac Surg. 1998, 64: 346-351.
    
    20. Elefteriades JA. Natural history of thoracic aortic aneurysms: indications for surgery, and surgical versus nonsurgical risks. Ann Thorac Surg. 2002, 74:1877-1880.
    
    21.Plestis KA, Nair DG, Russo M, et al. Left atrial femoral bypass and cerebrospinal fluid drainage decrease neurologic complications in repair of descending and thoraco- abdominal. Ann Vasc Surg. 2001, 15: 49-52.
    
    22. Galla JD, Ergin MA, Lansman SL, et al. Use of somatosensory evoked potentials for thoracic and thoracoabdominal aortic resections. Ann Thorac Surg. 1999, 67: 1947-1952.
    
    23. Berendes JN, Bredee JJ, Schipperheyn JJ, et al. Mechanism of spinal cord injury after cross clamping of the descending thoracic aorta. Circulation. 1982, 66: 1112-1115.
    
    24. Bower TC, Murray MJ, Gloviczki RA, et al. Effects of thoracic aortic occlusion and cerebrospinal fluid drainage on regional spinal cord blood flow in dogs: correlation with neurologic outcome. J Vasc Surg. 1989, 9: 135-144.
    
    25. Ling E, Arellano R. Systematic overview of the evidence supporting the use of cerebrospinal fluid drainage in thoracoabdominal aneurysm surgery for prevention of paraplegia. Anesthesiology. 2000, 93: 1115-1122.
    
    26. Azizzadeh A, Huynh TTT, Miller CC, et al. Reversal of twicedelayed neurologic deficits with cerebrospinal fluid drainage after thoracoabdominal aneurysm repair: a case report and plea for a national database collection. J Vasc Surg. 2000, 31: 592-598.
    
    27. Acikbas SC, Akyuz M, Kazan s, et al. Complications of closed continous lumbar drainage of cerebrospinal fluid. Acta Neurochir (Wien). 2002, 144: 475-480.
    
    28. Weaver KD, Wiseman DB, Farber M, et al. Complications of lumbar drainage after thoracoabdominal aortic aneurysm repair. J Vasc Surg. 2001, 34: 623-627.
    
    29. Coselli JS, LeMaire SA, Koksoy C, et al. Cerebrospinal fluid drainage reduces paraplegia following thoracobadominal aortic aneurusm repair: results of a prospective randomised trial. J Vasc Surg. 2002, 35: 631-639.
    
    30. Weigang E, Hartert M, Siegenthaler MP, et al. Perioperative management to improve neurologic outcome in thoracic or thoracoabdominal aortic stent- grafting. Ann Thorac Surg. 2006, 82(5):1679-1687.
    
    31. Coselli JS, LeMaire SA, Ledesma DF, et al. Initial experience with the Nikkiso centrifugal pump during thoracoabdominal aortic aneurysm repair. J Vasc Surg. 1998, 27(2): 378-383.
    
    32. Tsutsumi K, Ueda T, Shimizu H, et al. Effect of delayed induction of postischemic hypothermia on spinal cord damage induced by transient ischemic insult in rabbits. Jpn J Thorac Cardiovasc Surg. 2004, 52(9):411-418.
    
    33. Strauch JT, Lauten A, Spielvogel D, et al. Mild hypothermia protects the spinal cord from ischemic injury in a chronic porcine model. Eur J Cardiothorac Surg. 2004, 25(5): 708-715.
    
    34. Sugawara Y, Sueda T, Orihashi K, et al. Trans-vertebral regional cooling for spinal cord protection during thoracoabdominal aortic surgery: an experimental study. Hiroshima J Med Sci. 2003, 52(3): 35-41.
    
    35. Kazama S, Miyoshi Y, Nie M, et al. Protection of the spinal cord with pentobarbital and hypothermia . Ann Thorac Surg, 2001, 71(5): 1591-1595.
    
    36. Cambria RP, Davison JK, Carter C, et al. Epidural cooling for spinal cord protection during thoracoabdominal aneurysm repair: A five-year experience. J Vasc Surg. 2000, 31: 1093-1102.
    
    37. Yu QJ, Wang YL, Zhou QS, et al. Effect of repetitive ischemic preconditioning on spinal cord ischemia in a rabbit model. Life Sci. 2006, 79(15): 1479-1483.
    
    38. Contreras IS, Moreira LF, Ballester G, et al. Immediate ischemic preconditioning based on somatosensory evoked potentials seems to prevent spinal cord injury following descending thoracic aorta cross-clamping. Eur J Cardiothorac Surg. 2005, 28(2): 274-9.
    
    39. Abraham VS, Swain JA, Forgash AJ, et al. Ischemic preconditioning protects against paraplegia after transient aortic occlusion in the rat. Ann Thorac Surg. 2000, 69(2) :475-479.
    
    40. Sakurai M, Hayashi T, Abe K, et al. Enhancement of heat shock protein expression after transient ischemia in the preconditioned spinal cord of rabbits. J Vasc Surg. 1998, 27(4): 720-725.
    
    41. Ondrejcak T, Vanicky I, Galik J. Ischemic preconditioning does not improve neurological recovery after spinal cord compression injury in the rat. Brain Res. 2004, 995(2): 267-273.
    
    42. Kakimoto M, Kawaguchi M, Sakamoto T, et al. Evaluation of rapid ischemic preconditioning in a rabbit model of spinal cord ischemia.Anesthesiology. 2003,99(5): 1112-1117.
    
    43. Marini CP, Levison J, Caliendo F, et al. Control of proximal hypertension during aortic cross-clamping: its effect on cerebrospinal fluid dynamics and spinal cord perfusion pressure. Semin Thorac Cardiovasc Surg. 1998, 10(1): 51-56.
    
    44. Marini CP, Nathan IM, Efron J, et al. Effect of nitroglycerin and cerebrospinal fluid drainage on spinal cord perfusion pressure and paraplegia during aortic cross- clamping. J Surg Res. 1997, 70(1): 61-65.
    
    45. Simpson JI, Eide TR, Schiff GA, et al. Effect of nitroglycerin on spinal cord ischemia after thoracic aortic cross-clamping. Ann Thorac Surg. 1996, 61(1): 113-117.
    
    46. Zurita M, Vaquero J, Oya S, et al. Effects of dexamethasone on apoptosis- related cell death after spinal cord injury. J Neurosurg. 2002, 96: 83-89.
    
    47. Kyobu Geka. Spinal cord protection and operative results of the thoracoabdominal aortic aneurysm. 2004, 57(4): 307-312.
    
    48. Griepp RB, Ergin MA, Galla JD, et al. Natural history of descending thoracic and thoracoabdominal aneurysms. Ann Thorac Surg. 1999, 67:1927-1930.
    
    49. Jacobs MJ, Mommertz G, Koeppel TA, et al. Surgical repair of thoracoabdominal aortic aneurysms. J Cardiovasc Surg. 2007, 48(1): 49-58.
    
    50. Jacobs MJ, de Mol BA, Elenbaas, et al. Spinal cord blood supply in patients with thoracobdominal aortic aneurysms. J Vasc Surg. 2002,35: 30-37.
    
    51. Jacobs MJ, Mess W, Mochtar B, et al. The value of motor evoked potentials in reducing paraplegia during thoracoabdominal aneurysm repair. J Vasc Surg.2006,43:239-246.
    
    52. Cowan JA, Dimick JB, Henke PK, et al. Surgical treatment of intact thorcoabdominal aortic aneurysms in the United States: Hospital and surgeon volume-related outcomes. J Vasc Surg, 2003, 37:1169-1174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700