非离子表面活性剂对DDT在胶州湾沉积物上吸附行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量的表面活性剂和有机污染物通过工业废水及生活污水的排放,农业径流等途径进入水体,由此造成水体的复合污染。DDT是世界公认的环境优先控制污染物,也是典型的持久性污染物。虽然我国于1983年禁止了DDT的生产及在农田中的使用,但由于它具有高残留、化学性质稳定和生物累积性等特点,至今仍大量的残留在环境中。而非离子表面活性剂在产量上是仅次于阴离子表面活性剂的重要表面活性剂,有良好的扩散、乳化和润湿等作用,广泛应用在食品、化工、洗涤、医药等工业中,排入海洋中的非离子表面活性剂会改变沉积物/水体的物理化学性质,从而对有机污染物的迁移转化产生影响。
     本论文以人工海水溶液为介质,以失水山梨醇聚氧乙烯(20)醚月桂酸酯(Tween20)和DDT为研究对象,探讨了两种污染物共存时在沉积物上的热力学行为和吸附动力学行为,并就吸附影响因素包括温度,盐度、沉积物性质对吸附的影响进行了研究,借用红外分析手段探讨DDT吸附机理。结论如下:
     (1)动力学研究表明,伪二级吸附速率方程可以很好的描述Tween20在沉积物上的吸附动力学过程,Tween20吸附速率随着其初始浓度的减小和温度的升高而增大。沉积物对Tween20的吸附活化能为17.75 kJ·mol~(-1),吸附过程是以物理吸附为主。DDT在沉积物上的吸附动力学曲线符合伪二级吸附速率方程,在实验浓度范围内,Tween20的加入能够加快DDT在沉积物上的吸附速率。
     (2)热力学研究表明,Freundlich等温式可以很好的描述DDT在沉积物上的吸附热力学过程;在Tween20和DDT的共存体系中,Tween20 (C0: 5 mg·L~(-1), 10 mg·L~(-1), 30 mg·L~(-1), 80 mg·L~(-1))的存在使DDT(C0: 0.1411 mg·L~(-1)~1.129 mg·L~(-1))在沉积物上的平衡吸附量增加,其吸附等温线趋于线性;当Tween20初始浓度为160 mg L~(-1)时,Tween20在溶液中形成胶束而对DDT产生增溶作用导致沉积物对DDT的吸附量较单一体系少。
     (3)吸附因素研究表明,在单一体系和复合体系中,随着温度的降低、溶液盐度的增加和粒径的减小,沉积物对DDT的吸附量均增加。此外DDT在不同处理方式的沉积物上的吸附规律如下:KF(HCl处理样)> KF(H2O处理样) > KF(H2O2处理样);而加入30 mg·L~(-1) Tween20后,在HCl处理的沉积物上,DDT的吸附量较未加Tween20的单一体系吸附量少;而在H2O2处理的沉积物上,DDT的吸附量则较未加Tween20的单一体系吸附量大。
     (4)热力学研究表明,在281K-308K范围,无论是单一体系还是复合体系,DDT在沉积物上的的吸附热力学函数均为ΔH(?)<0,ΔG(?)<0,ΔS(?)>0,即该吸附过程是一个放热、熵增的自发的物理吸附过程。Tween20的存在使p,p’-DDT和o,p’-DDT在吸附过程中的|ΔG(?)|和|ΔH(?)|的值更高,ΔS(?)更小。
     (5)对沉积物、DDT-沉积物作用物进行红外表征,对比谱图发现DDT在沉积物表面吸附时,可以和沉积物上的羰基、羟基、酚羟基发生了氢键作用。
Surfactants and other organic pollutants are transported into water system through the release of industrial and domestic wastewater, which results in an combined pollution. DDT is a kind of typical persistent organic pollutant. Although its use in agriculture has been banned in China in 1983, unfortunately, it,s still widely distributed in environment because of its persistence, chemical stability and bioaccumulation. Nonionic surfactants are used wildly in industries of food, chemical, and washing due to the characteristics of dispersion, emulsification and wetting effects. The existing of non-ionic surfactants in the ocean can change the physicochemical propertis of sediment/water interface, thus it has an effect upon the migration of organic pollutants.
     In this thesis, the sorption kinetics and thermodynamics of Tween20 and/or DDT were studied in the system of sediment-artificial seawater. Furthermore, the effects of temperature, salinity and the properties of sediment were also investigated. The main results are as follows:
     (1) The sorption kinetic process of Tween20 and/or DDT on the sediments was proven to follow the pesudo-second-order kinetic rate equation. The sorption rates were favorably influenced by the decreasing initial Tween20 concentration and increasing temperature. The sorption activation energy of Tween20 was 17.75 kJ·mol~(-1), which indicated that the sorption process was mainly a physics one. Tween20 could accelerate the sorption rate of DDT onto sediment in the experimental concentrations.
     (2) The sorption isotherms of DDT on sediment could be described by the Freundlich isotherm. The results showed that Tween20 with the initial concentrations of 5, 10, 30 and 80mg·L~(-1) could enhance the sorption capacity of DDT (C0: 0.1411 mg·L~(-1)~1.129 mg·L~(-1)) and linearized the isotherms of DDT onto sediment. When the initial concentration of Tween20 was 160 mg·L~(-1), the formation of micelles of Tween20 enhanced the aqueous-phase concentration of the DDT thereby decreasing its sorption on sediment compared to the single system.
     (3) Studies on impact factors of the sorption indicated that sediment enhanced its capacity to absorb DDT with decreasing temperature, increasing salinity and decreasing sediment particle sizes in both single and combined systems. For DDT sorption on the sediments with different treatments, KF(HCl treatment)> KF(H2O treatment) > KF(H2O2 treatment). In the presence of 30 mg·L-1 Tween20, the sorption capacity of DDT onto HCl treatment sediment was lower than that in the single system. While for the H2O2 treatment sediment, the sorption capacity of DDT was higher than that in the single system.
     (4) Estimation of thermodynamic parameters indicated that the sorption behavior of DDT was a spontaneous, exothermic and entropy-increasing physical one. The existence of Tween20 caused the∣ΔG(?)∣and∣ΔH(?)∣values higher andΔS(?) value smaller during the DDT sorption process.
     (5) The sediment and DDT-sediment complexes were characterized by FTIR spectra. It was confirmed that the sorption was resulted form hydrogen bonds formation between DDT molecules and the C=O, phenolic and alcoholic O–H groups of sediment.
引文
[1] APHA, AWWA, WEF. Standard methods for the examination of water and wastewater [M].Washington DC: ATHA, 1995.
    [2] Aronson K J, Miller A B, Wooleott C G, et al. Breast adipose tissue concentrations of polychlorinated biphenyls and other organochlorines and breast cancer risk [J]. Cancer Epidemiology Biomarkers and Prevention, 2000, 9 (1): 55-63.
    [3] Backhaus W K, Klumpp E, Narres H. D, et al. Adsorptionof 2, 4-Dichlorophenol on Montmorillonite and silica: Influence of nonionic surfactants [J]. Journal of colloid and interface science, 2001, 242(1): 6-13.
    [4] Celis R, Hermosin M C, Cox L, et al. Sorption of 2, 4-Dichlorophenoxyacetic acid by model particles simulating naturally occurring soil colloids [J]. Environmental Science & Technology. 1999, 33(8): 1200-1206.
    [5] Chen G C, Shan X Q, Zhou Y Q, et al. Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes [J]. Journal of Hazardous Materials, 2009, 169(1-3): 912–918.
    [6] Chen L, Gao X. Thermodynamic study of Th(IV) sorption on attapulgite [J]. Applied Radiation and Isotopes, 2009, 67(1): 1-6.
    [7] Chin Y P, Kimble K D, Swank C R. The sorption of 2-methylnaphthalene by Rossburg Soil in the absence and presence of a nonionic surfactant [J]. Journal of Contaminant Hydrology, 1996, 22(1-2): 83-94.
    [8] Chiou C T, Peters L J, Freed V H. A physical concept of soil-water equilibria for nonionic organic compounds [J]. Science, 1979, 206(16): 831-832.
    [9] Chiou C T, Shoup T D, Porter P E. Mechanistic roles of soil humus and minerals in the sorption of nonionic compounds from aqueous and organic solutions [J]. Organic Geochemistry, 1985, 8(1): 9-14.
    [10] Cornelissen G, Van Noort P C M, Parsons J R, et al. Temperature Dependence of Slow Adsorption and Desorption Kinetics of Organic Compounds in Sediments [J]. Environmental Science & Technology, 1997, 31(2): 454-460.
    [11] Edward D A, Luthy R G, Liu Z B. Solubilization of Polycyclic aromatic hydrocarbons in micellar nonionic surfactants solutions [J]. Environmental Science & Technology, 1991, 25 (1): 127–133.
    [12] Fowler S W. Critical review of selected heavy metal and chlorinated hydrocarbon concentrations in the marine environment [J]. Marine Environmental Research, 1990, 29(1): 1-64.
    [13] Fusi P, Arfaioli C, Calamai L, et al. Interactions of two acetanilide herbicides with clay surfaces modified with Fe(Ⅲ) oxyhydroxides and hexadecytrimethyl ammonium [J]. Chemosphere, 1993, 27(5): 765-771.
    [14] Galassi S, Vigano L, Sanna M. Bioconcentration of organochlorine pesticides in rainbow trout caged in the river Po [J]. Chemosphere, 1996, 32(9): 1729- 1739.
    [15] Hendy E, Peake B M. Organochlorine pesticides in a dated sediment core from Mapua, Waimea Inlet, New Zealand [J]. Marine Pollution Bulletin, 1996, 32(10): 751-754.
    [16] Ho Y S. Review of second-order models for adsorption systems [J]. Journal of Hazardous Materials B, 2006, 136(3): 681–689.
    [17] Ho Y S. Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods [J]. Water Research, 2006, 40(1): 119-125.
    [18] Hong H S, Chen W Q,Li X, et a1. Distribution and fate of organochlorine pollutants in the Pearl River Estuary [J]. Marine Pollution Bulletin, 1999, 39: 376-382.
    [19] Hua X M, Shan Z J. Production and application of pesticides and factor analysis for their pollution in environment in China [J]. Advanced Environmental Science, 1996, 2: 33-45.
    [20] Hubert J, Lis W J. Influence of pH and solution composition on the sorption of glyphosate and prochloraz to a sandy loam soil [J]. Chemosphere, 1999, 39(5): 753-763.
    [21] Jaycock M J, Parfitt G D. Chemistry of Interfaces [M]. England: Ellis Horwood Limited, 1981. pp: 12.
    [22] Jiunn F L, Pao M L, Chun C C et al. Influence of a nonionic surfactant (TrionX-100) on contaminant distribution between water and several soil solids [J]. Journal of Colloid and Interface Science, 2000, 229: 445-452.
    [23] Kannan K, Tanabe S, Tatsukawa R. Geographical distribution and accumulation features of organochlorine residues in fish tropical Asia and Oceania [J]. Environmental Science &Technology, 1995, 29(10): 2673-2683.
    [24] Kara M, Yuzer H, Sabah E, Celik M S. Adsorption of cobalt from aqueous solutions onto sepiolite [J]. Water Research, 2003, 37(1): 224–232.
    [25] Kile D E, Chiou C T. Water solubility enhancements of DDT and Trichlorobenzene by some surfactants below and above the critical micelle concentration [J]. Environmental Science & Technology, 1989, 23(7): 832-838.
    [26] Kim E S, Lee D H, Yum B W, et al. The effect of ionic strength and hardness of water on the non-ionic surfactant-enhanced remediation of perchloroethylene contamination [J]. Journal of Hazardous Materials, 2005, 119(1-3): 195-203.
    [27] Kumar K V. Pseudo-second order models for the adsorption of safranin onto activated carbon: Comparison of linear and non-linear regression methods [J]. Journal of Hazardous Materials, 2007, 142(1-2): 564-567.
    [28] Lee J F, Liao P M, Kuo C C, Yang H.T, Chiou C.T. Influence of a Nonionic Surfactant (Triton X-100) on Contaminant Distribution between Water and Several Soil Solids [J]. Journal of Colloid and Interface Science, 2000, 229(2): 445-452.
    [29] Leland H V. Bruce W N, Shimp N F. Chlorinated hydrocarbon insecticides in sediments if southern Lake Michigan [J]. Environmental Science & Technology, 1973, 7(9): 833-838.
    [30] Lin C H Mi, Pedersen J A, Suffet I H. Influence of aeration on hydrophobic organic contaminant distribution and diffusive flux in estuarine sediments [J]. Environmental Science & Technology, 2003, 37(16): 3547-3554.
    [31] Lu C, Chung Y L, Chang K F. Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes [J]. Journal of Hazardous Material, 2006, 138(2): 304-310.
    [32] Mai B X, Fu J M, Sheng G Y, et al. Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China [J]. Environmental Pollution, 2002, 117(3): 457-474.
    [33] Martin D F. Analytical methods. Marine Chemistry [M]. vol.1. New York: Marcel Dekker, Inc, 1972. pp: 143-158.
    [34] Means J C, Wood S G, Hassett J J, et al. Sorption of polynuclear aromatic hydrocarbons by sediments and soils [J]. Environmental Science & Technology, 1980, 14(12): 1524-1528.
    [35] Means J C. Influence of salinity upon sediment-water partition of aromatic hydrocarbons [J]. Marine Chemistry, 1995, 51(1): 3-16.
    [36] Nkedi-kizza P, Rao P S C, Homsby A G. Influence of organic cosolvents On leaching of hydrophobic organic chemicals through soils [J]. Environmental Science & Technology, 1987, 21: 1107-1114.
    [37] Nollet H., Roels M., Lutgen P., et al. Removal of PCBs from wastewater using fly ash [J]. Chemosphere, 2003, 53(6):655-665.
    [38] Oepen B V, K?rdel W, Klein W. Sorption of nonpolar and polar compounds to soils: processes,measurements and experience with the applicability of the modified OECD-Guideline 106 [J]. Chemosphere, 1991, 22(3-4): 285-304.
    [39] Piatt J J, Backhus D A, Capel P D, et al. Temperature-dependent sorption of Naphthalene, Phenanthrene, and Pyrene to low organic carbon aquifer sediments [J]. Environmental Science & Technology, 1996, 30(3): 751-760.
    [40] Senesi N, Brunetti G, La C P, et al. Adsorption of alachlor by humic acids from sewage sludge and amended and non-amended soils [J]. Soil Science, 1994, 157(3): 176-184.
    [41] Shen Y H. Sorption of nonionic surfactants to soil: The role of soil mineral composition [J]. Chemosphere, 2000, 41(5): 711-716.
    [42] Sheng G Y, Xu S H, Boyd S A. Mechanism(s)-controlling sorption of neutral organic contaminants by surfactant-derived and natural organic matter [J]. Environmental Science & Technology, 1996, 30(5): 1553-1557.
    [43] Sun S B, Inskeep W P, Boyd S A. Sorption of Nonionic Organic Compounds in Soil-Water Systems Containing a Micelle-Forming Surfactant [J]. Environmental Science & Technology, 1995, 29(4): 903-913.
    [44] Tao S, Lin B. Water soluble organic carbon and its mesurement in soil and sediment [J]. Water Research, 2000, 34(5):1751-1755.
    [45] Turner A, Rawling M C. The influence of salting out on the sorption of neutral organic compounds in estuaries [J]. Water Research, 2001, 35(18): 4379-4389.
    [46] von Oepen B, Kordel W, Klein W. Sorption of nonpolar and polar compounds to soils: Processes, measurement and experience with the applicability of the modified OECD-guideline [J]. Chemosphere, 1991, 22: 285-304.
    [47] Wang D C. A study of identifying the emulsion type of surfactant: volume balance value [J]. Journal of colloid and interface science, 2002, 247(2): 389-396.
    [48] Wang S R, Jin X C, Bu Q Y, et al. Effects of particle size, organic matter and ionic strength on the phosphate sorption in different trophic lake sediments [J]. Journal of Hazardous Materials, 2006, 128(2-3): 95-105.
    [49] Willett K L, Ulrich E M, Hites S A. Differential toxicity and environmental fates of hexachlorocyclohexane isomers [J]. Environmental Science & Technology, 1998, 32(15): 2197-2207.
    [50] Wu P, Yang G P, Zhao X K. Sorption behavior of 2, 4-dichlorophenol on marine sediment [J]. Journal of colloid and interface science, 2003, 265:251-256.
    [51] Xu D P, Xu Z H, Zhu S Q, et al. Adsorption behavior of herbicide butachlor on typical soils in China and humic acids from the soil samples [J]. Journal of colloid and interface science, 2005, 285(1): 27-32.
    [52] Xu X Q, Yang H H, Li Q L, et al. Residues of organochlorine pesticides in near shore waters of LaiZhou Bay and JiaoZhou Bay, Shandong Peninsula, China [J]. Chemosphere, 2007, 68: 126-139.
    [53] Yang G P, Chen Q, Li X X, et al. Study on the sorption behaviors of Tween-80 on marine sediments [J]. Cheosphere, 2010, 79: 1019-1025.
    [54] Yang G P, Zhang J W, Liu X T. Distribution of dibenzothiophene in the sediments of the South China Sea [J]. Environmetal Pollution, 1998, 101(3):405-414.
    [55] Yang G P, Zhang Z B. Adsorption of dibenzothiophene on marine sediments treated by a sequential procedure [J]. Journal of colloid and interface science, 1997, 192(2): 398-407.
    [56] Yang G P, Zhao Y H, Lu X L, et al. Adsorption of methomyl on marine sediments [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 264(1-3): 179-186.
    [57] Yang J, Zhang W J, Shen Y F, et al. Monitoring of organochlorine pesticides using PFU systems inYunnan lakes and rivers, China [J]. Chemosphere, 2007, 66(2): 219-225.
    [58] Yang R Q, Jiang G B, Zhou Q F, et al. Occurrence and distribution of organochlorine pesticides (HCH and DDT) in sediments collected from East China Sea [J]. Environment International, 2005, 31(6): 799-804.
    [59] Yao Z W, Jiang G B, Xu H Z. Distribution of organochlorine pesticides in seawater of the Bering and Chukchi Sea [J]. Environmental Pollution, 2002, 116(1): 49-56.
    [60] Zhang G, Min Y S, Mai B X, et al. Time trend of BHCs and DDTs in a sedimentary core in Macao Estuary, Southern China [J]. Marine Pollution Bulletin, 1999, 39: 326-330.
    [61] Zhang Z L, Hong H S, Zhou J L, et al. Fate and assessment of persistent organic pollutants in water and sediment from Minjiang River Estuary, Southeast China [J]. Chemosphere, 2003, 52 (9): 1423-1430.
    [62] Zhao X K, Yang G P, Gao X C. Studies on the sorption behaviors of nitrobenzene on marine sediments [J]. Chemosphere, 2003, 52: 917-925.
    [63] Zhao X K, Yang G P, Wu P, et al. Study on adsorption of chlorobenzene on marine sediment [J]. Journal of colloid and interface science, 2001, 243 (2): 273-279.
    [64] Zhao X K, Yang G P. Study on the sorption of 2-naphthol on marine sediments [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 211(2-3): 259-266.
    [65] Zhou J L, Liu Y P. Kinetics and equilibria of the interactions between diethylhexyl phthalate and sediment particles insimulated estuarine systems [J]. Marine Chemistry, 2000, 71(1-2): 165-176.
    [66] Zhou J L, Rowland S J. Evaluation of the interactions between hydrophobic organic pollutants and suspended particles in estuarine waters [J]. Water Research, 1997, 31(7): 1708-1718.
    [67]卞永荣,蒋新,王代长,等.五氯酚在酸性土壤表面的吸附-解吸特征研究[J].土壤, 2004, 36(2): 181-186.
    [68]曹晓燕,韩化雨,杨桂朋.人工海水介质中CTAB在胶州湾沉积物上的吸附动力学和热力学行为[J].中国海洋大学, 2010, 40(11): 101-107.
    [69]陈宝梁.表面活性剂在土壤有机污染修复中的作用及机理: [博士学位论文].浙江:浙江大学环境与资源学院. 2004.
    [70]陈宝樑,马战宇,朱利中.表面活性剂对危的增溶作用及应用初探[J].环境化学, 2003,22(1): 53-58.
    [71]陈宝樑,朱利中,陶澍.非离子表面活性剂对菲在水/土壤界面间吸附行为的影响[J].环境科学学报, 2003, 23(1): 1-5.
    [72]陈家煌,李丽.粘性土颗粒分析技术改进初探[J].合肥工业大学学报(自然科学版),2003, 26(2): 311-314.
    [73]陈伟琪,洪华生,张珞平,等.珠江口表层沉积物和悬浮颗粒物中的持久性有机氯污染物[J].厦门大学学报(自然科学版), 2004, 43: 230-235.
    [74]方晓航,仇荣亮.农药在土壤环境中的行为研究[J].土壤与环境. 2002, 11(1): 94-97.
    [75]冯波,章永化,龚克成.蒙脱石-有机化合物的相互作用[J].化学通报, 2002, (7): 440-444.
    [76]傅献彩,沈文霞,姚天杨.物理化学[M].北京:高等教育出版社, 1999.
    [77]甘志芬.渤海湾西岸典型持久性有机污染物的环境行为初步研究: [硕士学位论文].河北:河北大学环境科学, 2010.
    [78]高敏苓,宋文华,依艳丽.棕壤不同粒径组分对阿特拉津吸附-解吸作用的影响[J].南开大学学报(自然科学版) [J]. 2009, 42(6): 92-98.
    [79]龚香宜.氯农药在湖泊水体和沉积物中的污染特征及动力学研究—以洪湖为例: [博士学位论文].武汉:中国地质大学环境工程, 2007.5.
    [80]郭志勇.自然水体中多种固相物质对有机氯农药的吸附特征研究:吉林:吉林大学环境科学, 2010.
    [81]韩化雨.阳离子表面活性剂和DDT复合体系在海洋沉积物上的吸附行为: [硕士学位论文].青岛:中国海洋大学化学化工学院, 2010, 4.
    [82]黄金莉,肖玉梅,刘吉平,等.农药丁吡吗啉与腐殖酸作用机理探讨[J].光谱学与光谱学分析, 2008, 28(8): 1866-1869.
    [83]黄俊,余刚,钱易.我国的持久性有机污染物问题与研究对策[J].环境保护, 2001, 29(11): 3-6.
    [84]黄圣彪,王子健,康跃惠,等.官厅水库沉积物柱状样中有机氯农药的垂直分布特征[J].环境科学研究, 2004, 17(6): 19-21.
    [85]黄岁樑,李海涛.海河沉积物对邻苯二甲酸二甲酯吸附行为研究[J].环境污染与防治. 2007, 29 (5): 321-325.
    [86]姜霞,高学晟,应佩峰,区自清.表面活性剂的增溶作用及在土壤中的行为[J].应用生态学报, 2003, 14(11): 2072-2076.
    [87]金相灿.沉积物污染化学[M]. 1992,北京:中国环境科学出版社.
    [88]康跃惠,麦碧娴,盛国英,傅家谟.珠江三角洲河口及邻近海区沉积物中含氯有机污染物的分布特征[J].中国环境科学, 2000, 20(3): 245-249.科学, 2004, 25 (3): 164-167.
    [89]李桂芝,刘永明.黄河水体沉积物对敌百虫和甲拌磷的吸附[J].环境化学, 2001, 20(3): 244-248.
    [90]李克斌,刘惠君,马云,张雍,刘维屏.不同类型表面活性剂在土壤上的吸附特征比较研究[J].应用生态学报, 2004, 15 (11): 2067-2071.
    [91]李克斌,王琪全,刘维屏.除草剂苯达松与腐植酸作用机理的研究[J].上海环境科学,1998, 5a, 17: 18-20.
    [92]李芯芯.三种典型表面活性剂在海洋沉积物上的吸附研究: [硕士学位论文].青岛:中国海洋大学化学化工学院, 2008.
    [93]李颖,岳钦艳,高宝玉,等.活性炭纤维对活性染料的吸附动力学研究[J].环境科学, 2007, 28(11): 2637-2641.
    [94]李玉,俞志明,宋秀贤等.胶州湾海水中阴离子表面活性剂的含量及分布[J].海洋与湖沼, 2005, 36(3): 284-288.
    [95]刘维屏, Gessa C.利谷隆在土壤中的吸附过程与机理[J].环境科学, 1995, 16(l): 16-18.
    [96]刘维屏,季瑾.农药在土壤-水环境中归宿的主要支配因素-吸附和脱附[J].中国环境科学, 1996, 16(1): 25-30.
    [97]刘维屏,王琪全,李克斌.近代分析技术研究农药与土壤活性组分作用机理[J].中国环境科学. 1998, 18(2): 102-106.
    [98]罗玲,欧晓明,廖晓兰.农药在土壤中的吸附机理及其影响因子研究概况[J].化工技术与开发. 2004, 33(1): 12-16.
    [99]罗雪梅,杨志峰,何孟常,等.土壤/沉积物中天然有机质对疏水性有机污染物的吸附作用[J].土壤, 2005, 37(1): 25-40.
    [100]丘耀文,张干,郭玲利,等.大亚湾海域典型有机氯农药生物累积特征及变化因素研究[J].海洋学报, 2007, 29(2): 51-58.
    [101]沈学优,卢瑛莹,朱利中.对-硝基苯酚在水/有机膨润土界面的吸附行为-热力学特征及机理[J].中国环境科学, 2003, 23(4): 367-370.
    [102]舒月红,贾晓珊. CTMAB-膨润土从水中吸附氯苯类化合物的机理-吸附动力学与热力学[J].环境科学学报, 2005, 25(11): 1530-1536.
    [103]孙晓芹.共存污染物Cu2+对菲和壬基酚在沉积物及其组分上吸附的影响: [硕士学位论文].大连:大连理工大学环境科学, 2009.
    [104]王宝辉,张学佳,纪巍,等.表面活性剂环境危害性分析[J].化工进展, 2007, 26(9): 1263-1268.
    [105]王红斌,杨敏,陈毅坚,卢建杭,刘维屏.活性炭自水溶液吸附苯酚的热力学探讨[J].云南民族大学学报(自然科学版), 2003, 12(4): 220-222.
    [106]王宏光,郑连伟.表面活性剂在多环芳烃污染土壤修复中的应用[J].化工环保, 2006, 26(6): 471-474.
    [107]王江涛,谭丽菊,张文浩,等.青岛近海沉积物中多环芳烃、多氯联苯和有机氯农药的含量和分布特征[J].环境科学, 2010, 31(11): 2713-2722.
    [108]王金本.表面活性剂在固-液界面上吸附过程的疏水效应研究[J].天中学刊, 2000, 15(2): 26-31.
    [109]翁仲颖,黄延林.沉积物粒度对重金属吸附的影响[J].环境工程, 1996, 14 (1): 47-49.
    [110]吴俊文,郑西,李玲玲,等.沙土对可溶性油的吸附作用及其影响因素研究.环境科学, 2006, 27(10): 2019-2023.
    [111]辛金豪,曾清如,廖柏寒,等.不同处理方法去除有机质对沉积物吸附有机农药和非离子表面活性剂的影响[J].环境化学, 2009,28(5): 655-660.
    [112]杨成建,曾清如,廖柏寒等.非离子表面活性剂对有机磷农药在沉积物上吸附行为的影响[J].环境化学, 2006, 25(2): 159-163.
    [113]杨成建.表面活性剂对有机农药在土壤/沉积物上吸附的影响研究: [硕士学位论文].湖南:湖南农业大学环境工程. 2006. 6.
    [114]杨东方,郭军辉,丁咨汝,等.胶州湾水域有机农药HCH的分布和残留量[J].海洋工程. 2010, 29(2): 62-69.
    [115]杨桂朋,李芯芯,曹晓燕. Tween20在海洋沉积物上的吸附行为[J].中国海洋大学学报(自然科学版), 2008, 38(2): 309-314.
    [116]杨炜春,王琪全,刘维屏.除草剂莠去津(atrazine)在土壤-水环境中的吸附及其机理[J].环境科学, 2000, 4(21): 94-97.
    [117]杨志群.黄河兰州段沉积物对有机氯农药的吸附特征研究: [硕士学位论文]. 2010,兰州,兰州大学.
    [118]姚焕炬,杨志群,周丐州,高宏.黄河兰州段沉积物对六六六的吸附解吸研究[J].人民黄河, 2009, 31(5):54-56.
    [119]应兴华,徐霞.影响农药在土壤与沉积物上吸附作用的研究[J].中国农学通报, 2005, 21(8): 393-396.
    [120]张景环,曾溅辉.表面活性剂对北京土壤中甲苯和萘吸附的影响[J].农业环境科学学报, 2006, 25(增刊): 512- 517.
    [121]章苏宁,张健,宋晓秋,等.稳态荧光探针法测定Tween系列非离子表面活性剂临界胶束浓度[J].光谱实验室, 2010, 27(4): 1231-1236.
    [122]赵青蓉,余蓉.分光光度法检测S/D处理中纯因子Ⅷ制品中残留Tween-80方法研究[J].中国输血杂志, 1996, 9(3): 122-124.
    [123]赵学坤,杨桂朋,高先池.久效磷在海洋沉积物上的吸附行为[J].环境化学, 2002, 21(5): 443-447.
    [124]赵玉慧.氨基甲酸醋类农药在海洋沉积物上吸附行为的研究[硕士学位论文].青岛,中国海洋大学化学化工学院, 2005
    [125]赵振国,赵子建,顾惕人.自溶液中的吸附Ⅻ.活性炭自水中吸附芳香化合物的热力学研究[J].化学学报, 1985, 43: 813-818.
    [126]郑立庆,方娜,周庆祥,等.农药在土壤中的吸附及其影响因素[J].安徽农业科学, 2007, 35(21): 6573– 6575.
    [127]中国科学院南京土壤所.土壤理化分析[M].上海科学技术出版社. 1978, 17-176.
    [128]钟宁,清如,廖柏寒,等.非离子表面活性剂对土壤中甲基对硫磷的增溶、洗脱及其在土壤中的吸附[J].安全与环境学报, 2005, 5(6): 34-37.
    [129]朱达.盐度对有机物在海底沉积物上吸附行为的影响[J].环境保护, 1995, 14: 34-37.
    [130]朱利中,陈保樑.双阳离子有机膨润土吸附水中有机物的特征及机理研究[J].环境科学学报, 1999, 19(6): 587-603.
    [131]朱利中,杨坤,董舒.阳-非离子混合表面活性剂对沉积物吸附硝基苯的影响[J].环境科学. 2004, 25(3): 164-167.
    [132]朱利中,杨坤.对硝基苯酚在沉积物上的吸附特性[J].环境化学, 2001, 20 (5): 449-453.
    [133]朱路,张宗阳,张仲鼎,等.天然沸石吸附甲基橙的准二级动力学[J].郑州大学学报, 2008, 40(1): 97-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700