用户名: 密码: 验证码:
阴离子表面活性剂对DDT在胶州湾沉积物上吸附行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机氯农药是公认的环境优先控制污染物,也是典型的持久性污染物(POPs),具有难以降解性、半挥发性、生物蓄积性和高毒性,在自然界中可长期存在,并通过食物链富集,对人类健康和环境的危害极大。虽然我国已于1983年禁此了它的生产与使用,但由于其使用量大,在环境中降解缓慢、滞留时间长,使得有机氯农药仍然是在环境中检出率最高的一类POPs。这些有机氯农药可以通过大气输送、河流搬运及雨水冲洗等方式进入水体并汇于海洋。因为它们具有疏水性强、脂溶性高的特性,很容易被水体中的悬浮颗粒物质所吸附,并最终通过重力沉降等物理化学作用进入水体沉积物中;而沉积物中的有机氯农药也可通过再悬浮和解吸等作用重新进入水体造成二次污染,因此研究有机氯农药在水体和沉积物中迁移转化规律具有重要的意义,也是国内外关注的热点之一。
     本论文以有机氯农药DDT为研究对象,通过实验室模拟,采用湿筛法处理的胶州湾沉积物为吸附剂,以人工海水溶液为介质,研究了阴离子表面活性剂十二烷基苯磺酸钠(SDBS)存在下DDT在胶州湾沉积物上的吸附行为和吸附机理,并考察了影响因素对该吸附过程的影响,另外本研究还选取CTAB作为阳离子表面活性剂的代表,重点探讨表面活性剂类型对该吸附过程的影响及相关机理。论文得到如下主要结论:
     1)动力学研究表明,沉积物对DDT的吸附动力学曲线符合伪二级动力学吸附速率方程,SDBS和CTAB的加入均能促进DDT在沉积物上的吸附,且CTAB影响下更为显著。
     2)热力学研究表明,沉积物对DDT的吸附等温线较好的符合Freundlich等温式;在SDBS、CTAB和DDT共存的复合体系中,SDBS(C_0:5,10,15,30 mg·L~(-1))和CTAB(C_0:15,30,50 mg·L~(-1))的存在显著能提高沉积物对DDT的平衡吸附量,并使吸附等温线趋于线性。其中CTAB的影响更为显著;当SDBS的初始浓度为60 mg·L~(-1)时,SDBS的存在对吸附起抑制作用。
     3) p,p`-DDT和o,p`-DDT在三种处理方式的胶州湾沉积物上的吸附能力顺序为:HCl处理样﹥H_2O处理样﹥H_2O_2处理样。吸附主要与沉积物中的有机质含量有关。SDBS的存在促进DDT在H_2O_2处理沉积物上的吸附,抑制其在HCl处理沉积物上的吸附。
     4)环境因素研究表明,无论是单一体系还是复合体系,沉积物对DDT的吸附量随着盐度的增加而增加、温度的升高而降低。此外沉积物粒径的减小增加了两体系中沉积物对DDT的吸附量。
     5)热力学研究表明沉积物对DDT的吸附热力学函数均为ΔH~θ<0,ΔG~θ<0,ΔS~θ>0,即该吸附过程是一个放热、熵增的自发反应。加入15mg·L~(-1)SDBS、15mg·L~(-1)CTAB后,p,p`-DDT和o,p`-DDT在沉积物上的吸附有较大的标准吸附自由能变(|ΔG~θ|)和标准吸附焓变(|ΔH~θ|),更小的标准吸附熵变(ΔS~θ)。
Organochloyine pesticides (OCPs) are priority pollutants and typical persistent organic pollutants (POPs). Because of their persistence, half-volatility and high toxicity in the environment, OCPs are great harmful to the environment and human health. Although their use has been restricted in our country since 1983, OCPs are still the most widespread POPs in the environment due to the persistence. These OCPs are transported in to marine environment through different ways, such as atmospheric transport and river transportion. Because OCPs have a strong affinity for suspended particles, they tend to subsequently settle down with sediments to the bottom of the ocean. Meanwhile, OCPs in sediments can also release into water by resuspension and lead to recontamination of water. Therefore the study on migration and transformation of OCPs in water and sediments is very important.
     In this thesis,the sorption behaviors of DDT on Jiaozhou Bay sediments were studied in the presence of an anionic surfactant dodecylbenzenesulfonic acid sodium(sodium dodecylbenzene sulfonate, SDBS) by laboratory experimently. In addition, the effect of CTAB (cetyltrimethylammonium bromide, a cationic surfactant) was also investigated. Major results and conclusions are shown as follows:
     1) The sorption kinetic process of DDT on the sediments followed the pesudo-second-order kinetic rate equation. The sorption of DDT was accelerated remarkably by the addition of SDBS and CTAB, and CTAB showed a more remarkable impact.
     2) The sorption isotherms of DDT on sediment could be described by the Freundlich isotherm. The results showed that SDBS with the initial concentrations of 5, 10, 15, 30 mg·L~(-1) and CTAB with the initial concentrations15, 30, 50 mg·L~(-1) could remarkably enhance the sorption of DDT and linearized the isotherms of DDT. CTAB played a more important role. SDBS had a negative effect on the sorption when the initial concentration was 60 mg·L~(-1).
     3) The sorption capability of DDT on the sediment with different treatment procedures was in such a sequence as: HCl treated﹥H_2O-treated﹥H_2O_2 treated. The sorption capability correlated with the contents of the organic matter in the sediments. The presence of SDBS could accelerate the sorption of DDT on H_2O_2 treated sediment while reduced the sorption of DDT on HCl treated sediment.
     4) The effects of environmental factors, such as temperature, salinity, on the sorption of DDT were obvious. The sorption amount of DDT on sediments increased with increasing salinity, but decreased with increasing of temperature in both single and combined systems.The sorption capacity was also increased with the decrease of sediment particle size.
     5) Estimation of thermodynamic parameters indicated that the sorption of SDBS and DDT was spontaneous (ΔG~θ<0) and exothermic (ΔH~θ<0) with an increase in the degree of freedom (ΔS~θ>0). In the presence of 15 mg·L~(-1)SDBS and CTAB caused |ΔG~θ| and|ΔH~θ|values higher andΔS~θvalue smaller during the DDT sorption process.
引文
[1] Aksu Z. Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modeling [J]. Biochemical Engineering Journal, 2001, 7(1): 79-84.
    [2] Ball W P, Roberts P V. Long-term sorption of halogenated organic chemicals by aquifer material.1.Equilibrium [J]. Environmental Science and Technology, 1991, 25(7): 1223-1237.
    [3] Barkat M, Nibou D, Chegrouche S, et al. Kinetics and thermodynamics studies of chromium (VI) ions adsorption onto activated carbon from aqueous solutions [J]. Chemical Engineering and Processing, 2009, 48(1): 38-47.
    [4] Beck A J, Jones K. The effects of particle size, organici matter content, crop residues and dissolved organic matter on the sorption kinetics of atrazine and isoproturon by clay soil[J]. Chemosphere, 1996, 32(12): 2345-2358.
    [5] Bhargava D S, Sheldarkar S B. Use of TNSAC in phosphate adsorption studies and relationships literature, erperimmental methodoiogy, justification and effects of process variables[J].Water Research,1993, 27: 303-312.
    [6] Boenigk J, Wiedlroither A, Pfandl K. Heavy metal toxicity and bioavailability of dissolved nutrients to a bacterivorous flagellate are linked to suspended particle physical properties [J]. Aquatic Toxicology, 2005, 71(3): 249-259.
    [7] Cavanna S, Garatti E, Rastelli E, et al. Adsorption and desorption of bensulfuron-methyl on italian paddy field soils [J]. Chemosphere, 1998, 37(8): 1547-1555.
    [8] Chen G C, Shan X Q, Zhou Y Q, et al. Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes [J]. Journal of Hazardous Materials, 2009, 169(1-3): 912-918.
    [9] Chiou C T, Kile D E, Brinton T I, et al. A Comparison of water solubility enhancement of organic solute by aquatic humic materials and commercial humic acides [J]. Environmental Science and Technology, 1987, 21: 1231-1234.
    [10] Chiou C T, Kile D E, Brinton T I. Water solubility enhancement of some organic pollutant and pesticides by dissolved humic and fulvic acids [J]. Environmental Science and Technology, 1986, 20(5): 502- 508.
    [11] Chiou C T, Peters L J, Freed V H. A physical concept of soil-water equilibria for nonionicorganic compounds [J]. Science, 1979, 206(4420): 831- 832.
    [12] Chiou C T, Porters P E, Schmedding D W. Partition equilibria of nonionic organic compounds between soil organic matter and water [J]. Environmental Science and Technology, 1983, 17(4): 227-231.
    [13] Chiou C T. Partition and adsorption of organic contaminants in environmental systems [J]. John whey&Sons, Inc, Hoboken, New lersery, 2002.
    [14] Chiou M S, Li H Y. Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan bead [J]. Journal of Hazardous Materials B, 2002, 93(2): 233-248.
    [15] Cornelissen G, Gustafsson O, Bucheli T D, et al. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences fordistribution, bioaccumulation, and biodegradation [J]. Environmental Science and Technology, 2005, 39(18): 6881-6895.
    [16] Cornelissen G. Temperature dependence of slow adsorption and desorption kinetics of organic compounds in sediments [J]. Environmental Science and Technology, 1997, 31(2): 454-460.
    [17] Demirbas A, Sari A, Isildak O. Adsorption thermodynamics of stearic acid onto bentonite [J]. Journal of Hazardous Materials B, 2006, 135(1-3): 226-231.
    [18] Demirbas E, Dizge N, Sulak M T, et al. Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon [J]. Chemical Engineering Journal, 2009, 148(2-3): 480-487.
    [19] Doong R, Wu Y, Lei W. Surfactant enchanted remediation of cadmium contaminated soils [J]. Environmental Science and Technology, 1998, 37(8): 65-71.
    [20] Edward D A, Luth R G, Liu Z. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solution [J]. Environmental Science and Technology, 1991, 26(12): 2324-2330.
    [21] Erin C D, Mark R W. Dialysis investigations of atrazine-organic matter interactions and the role of a divalent metal [J]. Environmental Science and Technology, 1998, 32(2): 232-237.
    [22] Francioso O, Bak E, Rossi N, et al. Sorption of trifluralin in relation to the physio-chemical characteristics of selected soils [J]. Science of The Total Environment, 1992, 123-124: 503-512.
    [23] Fytianos K, Voudrias E, Papamichali A. Behaviour and fate of linear alkylbenzene sulfonate in different soils [J]. Chemosphere, l998, 36(13): 2741-2746.
    [24] Gao Y Z, Ling W T, Zhu L Z, et al. Surfactant-Enhanced Phytoremediation of Soils Contaminated with Hydrophobic Organic Contaminants: Potential and Assessment [J]. Pedosphere, 2007, 17(4): 409-418.
    [25] GB/T 7492-87气相色谱法测定水中666、DDT [S].
    [26] Gonzalez P E, Fernandez A A. Thermal and spectroscopic study of several dithiocabamates [J]. Journal of Chemistry Technology and Biotechnology, 1993, 56: 67-72.
    [27] Hamaker J W, Thompson J M. Adsorption of Organic Chemicals in the Soil Environment. New York: Marcel Dekker Book Ltd, 1972, 1-28.
    [28] Hand V C, Willianms G K. Structure-activity relationship for sorption of linear alkylbenzenesulfonate [J]. Environmental Science and Technology, 1987, 21(4): 370-373.
    [29] Harley R. Adsorption of organic monuron in the selected soil [J]. Chemosphere, 1961, 33: 458-463.
    [30] Hermnsin M C, Covnejo J. In Proceedings of the 5th International Workshop on Environmental Behaviour of Pesticides and Regulatory Aspects [J]. Copin, A.; Ed; ESS Rixensart: Belgium, 1994: 206-207.
    [31] Hessett J J, Banwart W L. The sorption of nonpolar organics by soils andsediments in: Reactions and movements of organic chemicals in soils [J]. Science Society of America (SSSA) special publication, 1989, 22: 31-44.
    [32] Ho Y S, Mckay G. Pseudo-second order model for sorption process [J]. Biochemistry, 1999, 34(5): 451-465.
    [33] Ho Y S. Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods [J].Water Research, 2006, 40(1): 119-125.
    [34] Hong H, Xu L, Zhang L, et al. environmental fate and chemistry of organic pollutants in the sediment of Xiamen and Victoria Harbors [J]. Marine Pollution Bulletin, 1995, 31:229-236.
    [35] House W A, Farr I S. Adsorption of sulphonates from detergent mixtures on potassium kao linite [J]. Colloids and Surface, 1989, 40: 167-180.
    [36] Hulscherth E M, Cornelissen G. Effect of temperature on sorption equilibrium and sorption kinetics of organic micropollutants-a review [J]. Chemosphere, 1996, 32(4): 609-626.
    [37] Johnson M D, Huang W L, Dang Z, et al. A distributed Reactivity model for sorption by soils and sediments.12. Effects of subcritical water extraction and alterations of soil organic matter on sorption equilibria [J]. Environmental Science and Technology, 1999, 33(10): 1657-1633.
    [38] Jones H T, Turner A. Sorption of ionic surfactants to estuarine sediment and their influence on the sequestration of phenanthrene. Environmental Science and Technology, 2005, 39(6): 1688-1697.
    [39] Kara M, Yuzer H, Saban E, et al. Adsorption of cobalt from aqueous solutions onto sepiolite [J]. Water Research, 2003, 37(1): 224-232.
    [40] Karickhoff S W, Brown D S, Scott T A. Sorption of hydrophobic pollutants on natural sediments [J]. Water Research, 1979, 13(3): 241-248.
    [41] Kile D E, Chiou C T. Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration [J]. Environmental Science and Technology, 1989, 23(7): 832-838.
    [42] Kozak J, Weber J B, Sheets T J. Adsorption of prometryn and metolachlor by selected soil organic matter fractions [J]. Soil Science, 1983, 136(2): 93-101.
    [43] Kumar K V, Sivanesan S. Pseudo-second order kinetics and pseudo isotherms for malachite green onto activated carbon: Comparison of linear and non-linear regression methods [J]. Journal of Hazardous Materials, 2006, 136(3): 721-726.
    [44] Kumar K V. Pseudo-second order models for the adsorption of safranin onto activated carbon: Comparison of linear and non-linear regression methods [J]. Journal of Hazardous Materials, 2007, 142(1-2): 564-567.
    [45] Lafvert C T. Sediment and saturated soil associated reaction involving an anionic surfactant (dodecylsufate): Partition of PAH compounds among phases [J]. Environmental Science and Technology, 1991, 25(6): 1039-1046.
    [46] Lambert S M, Porter P E, Schieferstein R H. Movement and sorption of chemicals applied to soil [J]. Weeds, 1965, 13, 185-190.
    [47] Li H T, Xu M C, Shi Z Q, et al. Isotherm analysis of phenol adsorption polymeric adsorbents from nonaqueous solution [J]. Journal of Colloid and Interface Science, 2004, 271(1): 47-54.
    [48] Li X X, Yang G P, Cao XY. Sorption Behaviors of Sodium Dodecylbenzene Sulfonate (SDBS) on Marine Sediments [J]. Water Air & Soil Pollution, 2008, 194: 23-30.
    [49] Lu C, Chung Y L, Chang K F. Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes [J]. Journal of Hazardous Material B, 2006, 138(2): 304-310.
    [50] Martin D F. Marine Chemistry, vol.1: Analytical methods (2nd ed.) [M]. New York: Marcel Dekker, Inc., 1972, 143-158.
    [51] Means J C. Influence of salinity upon sediment-water partition of aromatic hydrocarbons [J]. Marine Chemistry, 1995, 51(1): 3-16.
    [52] Mingelgrin U, Gerstl Z. Reevaluation of partitioning as a mechanism of nonionic chemicals in soils [J]. Journal of Environmental Quality, 1983, 12(1): 1-10.
    [53] Nivas B T, Sabatini D A, Shiau B J. Surfactant enhanced remediation of subsurface chromium contamination [J]. Water Research, 1996, 30(3): 511-520.
    [54] Nkedi-kizza P, Rao P S C, Hornsby A G. Influence of organic cosolvents on sorption of hydrophobic organic chemicals by soils [J]. Environmental Science and Technology, 1985, 19(10): 975-979.
    [55] Nkedi-kizza P, Rao R S C, Johnson J W. Adsorption of diuron and 2, 4, 5,-T on soil paticle-size separates [J]. Journal of Environment Quality, 1983, 12(2): 195-197.
    [56] OzcAN A S, ERDEM B, OzcAN A. Adsorption of acid blue 193 from a queous solutions onto Na -bentonite and DTMA- bentonite [J]. Journal of Colloid and Interface Science, 2004, 280(1): 44-54.
    [57] Pan G, Jia C, Zhao et al. Effect of cationic and surfactants on the sorption and desorption of perfluorooctane sulfonate (PFOS) on nature sediments [J]. Environmental Pollution, 2009, 157: 325-330.
    [58] Pennell K D, Adnofli A M, Abriola L M. Solubilization of dodecane tetrachloroethylene and 1,2-dichlorobenzene in micellar solutions of ethoxylated nonionic surfactants [J]. Environmental Science and Technology, 1997, 31(5): 1382-1389.
    [59] Piatt J J, Backhus D A, Capel P D, et al. Temperature-dependant sorption of naphthalene, phenanthrene, and pyrene to low organic carbon aquifer sediments [J]. Environmental Science and Technology, 1996, 30(3): 751-760.
    [48] Li X X, Yang G P, Cao XY. Sorption Behaviors of Sodium Dodecylbenzene Sulfonate (SDBS) on Marine Sediments [J]. Water Air & Soil Pollution, 2008, 194: 23-30.
    [49] Lu C, Chung Y L, Chang K F. Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes [J]. Journal of Hazardous Material B, 2006, 138(2): 304-310.
    [50] Martin D F. Marine Chemistry, vol.1: Analytical methods (2nd ed.) [M]. New York: Marcel Dekker, Inc., 1972, 143-158.
    [51] Means J C. Influence of salinity upon sediment-water partition of aromatic hydrocarbons [J]. Marine Chemistry, 1995, 51(1): 3-16.
    [52] Mingelgrin U, Gerstl Z. Reevaluation of partitioning as a mechanism of nonionic chemicals in soils [J]. Journal of Environmental Quality, 1983, 12(1): 1-10.
    [53] Nivas B T, Sabatini D A, Shiau B J. Surfactant enhanced remediation of subsurface chromium contamination [J]. Water Research, 1996, 30(3): 511-520.
    [54] Nkedi-kizza P, Rao P S C, Hornsby A G. Influence of organic cosolvents on sorption of hydrophobic organic chemicals by soils [J]. Environmental Science and Technology, 1985, 19(10): 975-979.
    [55] Nkedi-kizza P, Rao R S C, Johnson J W. Adsorption of diuron and 2, 4, 5,-T on soil paticle-size separates [J]. Journal of Environment Quality, 1983, 12(2): 195-197.
    [56] OzcAN A S, ERDEM B, OzcAN A. Adsorption of acid blue 193 from a queous solutions onto Na -bentonite and DTMA- bentonite [J]. Journal of Colloid and Interface Science, 2004, 280(1): 44-54.
    [57] Pan G, Jia C, Zhao et al. Effect of cationic and surfactants on the sorption and desorption of perfluorooctane sulfonate (PFOS) on nature sediments [J]. Environmental Pollution, 2009, 157: 325-330.
    [58] Pennell K D, Adnofli A M, Abriola L M. Solubilization of dodecane tetrachloroethylene and 1,2-dichlorobenzene in micellar solutions of ethoxylated nonionic surfactants [J]. Environmental Science and Technology, 1997, 31(5): 1382-1389.
    [59] Piatt J J, Backhus D A, Capel P D, et al. Temperature-dependant sorption of naphthalene, phenanthrene, and pyrene to low organic carbon aquifer sediments [J]. Environmental Science and Technology, 1996, 30(3): 751-760.Environmental Science and Technology, 1990, 24(7): 1013-1020.
    [73] Torres J P M, Pfeiffer W C, Markowitz S, et al. Dichlorodiphenyltrichloroethane in soil, river sediment, and fish in the Amazon in Brazil [J]. Environmental Research, 2002, 88(2): 134-139.
    [74] von Oepen B, K?rdel W, Klein W. Sorption of nonpolar and polar compounds to soils: process, measurements and experience with the applicability of the modified OECD-Guideline [J]. Chemosphere, 1991, 22(3-4): 285-304.
    [75] Wan H B, Wong M K, Mok C Y. Comparative study on the quantum yields of direct photolysis of organophosphorus pesticides in aqueous solution [J]. Journal of Agricultural and Food Chemistry, 1994, 42: 2625-2630.
    [76] Wang L L, Niu J F, Yang Z F, et al. Effects of carbonate and organic matter on sorption and desorption behavior of polycyclic aromatic hydrocarbons in sediments from Yangtze River [J]. Journal of Hazardous Materials, 2008, 154(1-3): 811-817.
    [77] Wany T Y, Lu Y L, Zhang H, et al. Contamination of persistent organic pollutants (POPs) and relevant management in China [J]. Environment International, 2005, 31(6): 813-821.
    [78] Weber W J Jr, Huang W. A distributed reactivity model for sorption by soil and sediments: Intraparticle heterogeneity and phase distribution relationships under nonequilibrium conditions [J]. Environmental Science and Technology, 1996, 30: 881-888.
    [79] Weber W J Jr, Voice T C, Pirbazari M. Sorption of hydrophobic compounds by sediments soil and suspended solids-II sorbent evaluation studies [J]. Water Research, 1983, 17(10): 1443-1452.
    [80] Westall J C, Chen H, Zhang W, et al. Adsorption of linear alkylbenzene sulfonates on sediment materials [J]. Environmental Science and Technology, 1999, 33(18): 3110-3118.
    [81] Wu P, Yang G P, Zhao X K. Sorption behavior of 2, 4-dichlorophenol on marine sediment [J]. Journal of Colloid and Interface Science, 2003, 265(2): 251-256.
    [82] Xing B S, Pignatello J J. Competitive sorption between l, 3-dichlorobenzene or 2, 4-dichlorophenol and natural aromatic acids in soil organic matter [J]. Environmental Science and Technology, 1998, 32(5): 614-619.
    [83] Xu S, Boyd S A. Cationic surfactant adsorption by swelling and nonswelling layer silicates [J]. Langmuir, 1995, 11(7): 2508-2514.
    [84] Yang G P, Zhang J W, Liu X T. Distribution of dibenzothiophene in the sediments of the South China Sea [J]. Environmetal Pollution, 1998, 101(3): 405-414.
    [85] Yang G P, Zhang Z B, Liu X T, et al. Sorption of benzothiopheneon marine sediment [J]. China Journal of Oceanology and Limnology, 1997a, 15(4): 350-356.
    [86] Yang G P, Zhang Z B. Adsorption of dibenzothiophene on marine sediments treated by a sequential procedure [J]. Journal of Colloid and Interface Science, 1997, 192(2): 398-407.
    [87] Yang G P. Polycyclic aromatic hydrocarbons in the sediments of the South China Sea [J]. Environmetal Pollution, 2000, 108(2): 163-171.
    [88] Yang Y, RattéD, Smets B F, et al. Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption [J]. Chemosphere, 2001, 43(8): 1013-2021.
    [89] Yao Y J, Xu F F, Chen M, et al. Adsorption behavior of methylene blue on carbon nanotubes [J]. Bioresource Technology, 2010, 101(9): 3040-3046.
    [90] Young T M, Weber W J Jr. A distributed reactivity model for sorption by soils and sediments: effects of diagenetic processes on sorption energetics [J]. Environmental Science and Technology, 1995, 29(1): 92-97.
    [91] Yuan C, Jafvert C T. Sorption of linear alcohol ethoxylate surfactant homologs to soil [J]. Journal of Contaminant Hydrology, 1997, 28: 311-325.
    [92] Zhao X K, Yang G P, Wang Y J. Adsorption of dimethylphthate on marine sediments [J]. Water, Air & Soil Pollution, 2004, 157 (1-4): 179-192.
    [93] Zhao X K, Yang G P, Wu P, et al. Study on adsorption of chlorobenzene on marine sediment [J]. Journal of Colloid and Interface Science, 2001, 243(2): 273-279.
    [94] Zhou J L, Liu Y P. Kinetics and equilibria of the interactions between diethylhexyl phthalate and sediment particles in simulated estuarine systems [J]. Marine Chemistry, 2000, 71(1-2): 165-176.
    [95] Zhou J L, Rowland S J. Evaluation of the interactions between hydrophobic organic pollutants and suspended particles in estuarine waters [J]. Water Research, 1997, 31(7): 1708-1718.
    [96] Zhou W J, Zhu L Z. Influence of surfactant sorption on the removal of phenanthrene from contaminated soils [J]. Environmental Pollution, 2008, 152(1): 99-105.
    [97] Zhu L, Chen B, Tao S, et al. Interactions of organic contaminants with mineral-adsorbed surfactants [J]. Environmental Science and Technology, 2003, 37(17): 4001-4006.
    [98]卞永荣,蒋新,王代长,等.五氯酚在酸性土壤表面的吸附-解吸特征研究[J].土壤, 2004, 36(2): 181-186.
    [99]曹罡,莫汉宏,安凤春.除草剂2, 4-D在胡敏酸上的吸附[J].环境科学学报, 2002, 22(1): 120-122.
    [100]曹晓燕,韩化雨,杨桂朋.人工海水介质中CTAB在胶州湾沉积物上的吸附动力学和吸附热力学行为[J].中国海洋大学学报, 2010, 40(11): 101-107.
    [101]陈宝梁,马战宇,朱利中.表面活性剂对苊的增溶作用及应用初探[J].环境化学, 2003, 22(1): 53-58.
    [102]陈翠红,朱琨.表面活性剂对黄土吸附苯甲酸的影响[J].农业环境科学学报, 2007, 26(2): 598-602.
    [103]陈华林,陈英旭.沉积物对菲和五氯酚的吸附性能[J].环境学报, 2003, 22(2): 159-161.
    [104]陈家煌,李丽.粘性土颗粒分析技术改进初探[J].合肥工业大学学报, 2003, 26(2):311-314.
    [105]陈建芳,叶欣荣,周怀阳,等.长江口-杭州湾有机污染历史初步研究BHC与DDT的地层学记录[J].中国环境科学, 1999, 19(3): 206-210.
    [106]戴树桂,董亮,王臻.表面活性剂在土壤颗粒物上的吸附行为[J].中国环境科学, 1999, 19(5): 392-396.
    [107]傅献彩,沈文霞,姚天杨.物理化学[M].北京:高等教育出版社, 1999.
    [108]高敏苓,宋文华,依艳丽.棕壤不同粒径组分对阿特拉津吸附-解吸作用的影响[J].南开大学学报, 2009, 42(6): 92-98.
    [109]高士祥,曹加胜,孙成等.不同类型表面活性剂对1,2,4一三氯苯的增溶作用[J].土壤与环境, 1999, 8(3): 184-188.
    [110]龚道新,汪传刚,胡湘望,等.噻吩磺隆在土壤中的吸附及表面活性剂对吸附的影响[J].农业环境科学学报, 2007, 26(5): 1689-1693.
    [111]龚香宜.氯农药在湖泊水体和沉积物中的污染特征及动力学研究—以洪湖为例: [博士学位论文].武汉,中国地质大学环境工程, 2007.
    [112]郭志勇,董得明,花修艺,等.自然水体中三种固相物质对有机氯农药的吸附作用[J].中国科技论文在线, 2009, 4(5): 313–318.
    [113]郭志勇,花修艺,梁大鹏,等.自然水体生物膜、悬浮颗粒物和表层沉积物的轻、重组分对有机氯农药的吸附特征[J].高等学校化学学报, 2010, 31(5): 919–926.
    [114]郭志勇.自然水体中多种固相物质对有机氯农药的吸附特征研究: [博士学位论文].吉林:吉林大学, 2010.
    [115]韩化雨.阳离子表面活性剂和DDT复合体系在海洋沉积物上的吸附行为: [硕士学位论文].青岛:中国海洋大学, 2010.
    [116]胡雄星,韩中豪,周亚康.黄浦江表层沉积物中有机氯农药的分布特征及风险评价[J]. 2005, 24(6): 703-706.
    [117]胡雄星,夏德祥,韩中豪.苏州河水及沉积物中有机氯农药的分布与归宿[J]. 2005, 25(1): 124-128.
    [118]金相灿.沉积物污染化学[M].北京:中国环境科学出版社, 1992, 9.
    [119]李桂芝,刘永明.黄河水体沉积物对敌百虫和甲拌磷的吸附[J].环境化学, 2001, 20(3): 244-248.
    [120]李洪,付宇众,周传光,等.大连湾和锦州湾表层沉积物中有机氯农药和多氯联苯的分布特征[J].海洋环境科学, 1998, 17(2): 73-76.
    [121]李玉,俞志明,宋秀贤,等.胶州湾海水中阴离子表面活性剂的含量及分布[J].海洋与湖沼, 2005, 36(3): 284-288.
    [122]刘维屏,季瑾.农药在土壤-水环境中归宿的主要支配因素—吸附和脱附[J].中国环境科学, 1995, 16(1): 25-30.
    [123]刘维屏,土琪,全方卓.新农药环境化学行为研究一除草剂绿草定(Triclopyr)在土壤一水环境中的吸附和光解[J].中国环境科学, 1995, 15(4): 311-315.
    [124]刘文新,凌晰,陈江麟,等.黄海近岸表层沉积物中DDTs、PCBs与酞酸脂的地理分布[J].环境科学, 2008, 29(7): 1761-1767.
    [125]刘振宇,郭会琴,何欢,等.苯噻草胺在土壤中的吸附与解吸行为研究[J].环境科学, 2009, 30(6): 1756-1761.
    [126]区自清,贾良清,何耀武,等.洗涤剂LAS在土壤上吸附性为及机理研究[J].应用生态学报, 1995, 6(2): 206–211.
    [127]饶品华,徐菁利,张文启,等.表面活性剂在土壤粒子上的吸附及影响因素综述[J].安徽农业科学, 2009, 37(14): 6542-6545.
    [128]沈学优,马占宇,陈平,等.表面活性剂对极性有机污染物在沉积物上吸附的影响[J].环境科学, 2003, 24(5): 131-135.
    [129]舒卫先,李世杰.长江三角洲地区典型湖泊表层沉积物中有机氯农药DDT,HCH的残留特征与风险评估[J].环境科学学报, 2009, 40(5): 1171-1175.
    [130]舒月红,贾晓珊. CTMAB-膨润土吸附水中1, 2,4-三氯苯的动力学[J].中山大学学报, 2006, 45(9): 123-127.
    [131]司友斌,周静,王兴祥,等.除草剂苄嘧磺隆在土壤中的吸附[J].环境科学, 2003, 24(3): 122 - 125.
    [132]孙剑辉,王国良,张干,等.黄河表层沉积物中有机氯农药的相关性分析与评价[J].环境科学学报, 2008, 28(2): 342-348.
    [133]陶庆会,汤鸿霄.阿特拉津在天然水体沉积物中的吸附行为[J].环境化学, 2004 23(2): 145-151.
    [134]徐红霞,吴海燕,张景飞,等. 2,4-二氯苯酚在太湖沉积物中的吸附/解吸行为研究[J].农业环境科学学报, 2008, 27(4 ): 1415-1420.
    [135]徐霞,朱利中.共存有机物对毒死蜱在沉积物上吸附的影响[J].中国环境科学, 2003, 23(4): 399-402.
    [136]徐晓白.有毒有机物环境行为和生态毒性理论文集.北京:中国科学技术出版社, 1990, 93-102.
    [137]徐远远,朱利中.溴化十四烷基吡啶对黑麦草吸附土壤中菲的影响[J].环境科学学报, 2008, 28(4): 738-741.
    [138]杨成建.表面活性剂对有机农药在土壤/沉积物上吸附的影响研究: [硕士学位论文].湖南:湖南农业大学, 2006.
    [139]杨桂朋,戚佳琳.海水中萘的光化学降解研究[J].海洋与湖沼, 2003, 34(1): 56-66.
    [140]姚焕炬,杨志群,周丐州,等.黄河兰州段沉积物对六六六的吸附解析研究[J].人民黄河, 2009, 31(5): 54-56.
    [141]叶常明,雷志芳,王兴君.丁草胺在土壤中的吸附及环境物质的影响[J].环境化学, 2003, 22(1): 14-18.
    [142]于天仁,王振权.土壤分析化学[M].北京:科学出版社, 1988: 192-196, 224-235.
    [143]余颖,庄源益,谷文新,等.树脂NKY对染料活性艳蓝KN-R的吸附特性[J].离子交换与吸附, 2000, 16(5): 432-440.
    [144]袁东星,杨东宁,陈猛,等.厦门西港及闽江口表层沉积物中多环芳烃和有机氯污染物的含量及分布[J].环境科学学报, 2001, 21(1): 107-112.
    [145]张景环,曾溅辉.表面活性剂在北京碱性土壤中的吸附行为研究[J].环境污染与防治, 2007, 29(8): 571-574,582.
    [146]赵学坤,杨桂朋,高先池.久效磷在海洋沉积物上的吸附行为[J].环境化学, 2002, 21(5): 443-447.
    [147]郑轩.菲和亚甲基蓝在海洋沉积物上的吸附研究: [硕士学位论文].青岛:中国海洋大学, 2010.
    [148]中国科学院南京土壤研究所,土壤理化分析[M].上海:上海科学技术出版社, 1978: 3-4, 142-150.
    [149]周明莹,乔向英,矫国本,等.胶州湾河流入海口水中HCHs、DDTs含量水平特征[J].海洋水产研究, 2006, 27(4): 60-65.
    [150]朱利中,陈保梁,等.双阳离了有机膨润上吸附水中有机物的特征及机理研究[J].环境科学学报, 1999, 19 (6): SA7-03.
    [151]朱利中,冯少良.混合表面活性剂对多环芳烃的增溶作用及机理[J].环境科学学报, 2002, 22(6): 774-778.
    [152]朱利中,杨坤,董舒.阳-非离子混合表面活性剂对沉积物吸附硝基苯的影响[J].环境科学, 2004, 25: 164-167.
    [153]朱路,张宗阳,张仲鼎,等.天然沸石吸附甲基橙的准二级动力学[J].郑州大学学报, 2008, 40(1): 97-100.
    [154]朱晓华.持久性有机污染物在不同地点和不同介质中的吸附及富集规律: [硕士学位论文].青岛:青岛大学环境科学, 2006.
    [155]朱优峰,徐晓白,习志群.有机氯农药在多介质环境中迁移转化的研究进自然科学进展[J].自然科学进展, 2003, 13(9): 910-916.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700