口腔修复体高效数控加工编程技术研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着三维测量、离散造型和数控加工技术的发展,CAD/CAM技术在口腔修复领域中得到了广泛的应用。口腔修复体的数控加工技术是口腔修复CAD/CAM技术中的重要组成部分。本文以口腔修复体的高效加工为主线,研究了口腔修复体数控编程中的相关理论、方法和技术。研究的主要内容和创新成果如下:
     (1)研究了口腔修复体网格曲面截面线法刀轨生成技术。采用“区域划分”的方法实现了截交线的快速计算,去除了初始刀轨的自交和冗余的刀位点。提出了基于改进截平面法的等残留高度刀轨生成算法:首先根据残留高度计算刀触点轨迹投影线并对其进行修正,然后由修正的刀触点轨迹投影线构造约束曲面,通过约束曲面和网格曲面迭代求交的方法生成等残留高度刀轨。通过实验验证了等残留高度刀轨在保证加工质量的条件下比截平面法刀轨的加工效率提高了约28%。
     (2)研究了口腔修复体网格曲面参数线法刀轨生成技术。提出了修复体等参数线刀轨生成算法:根据调和映射理论和参数线规划方式生成了四种类型的等参数线刀轨。提出了修复体参数螺旋刀轨生成算法:首先计算修复体模型在参数网格中的参数环,然后在相邻参数环的参数点之间进行“分组匹配”,依次计算初始和精确的对角参数螺旋线;在此基础上生成了无干涉的参数螺旋刀轨。通过实验验证了参数螺旋刀轨比截平面法刀轨的加工效率提高了约30%,且能够保证较好的加工质量。
     (3)研究了口腔修复体基于样条曲线拟合的刀轨优化技术。提出了修复体分段拟合圆弧样条刀轨生成算法:采用分段拟合的方法对初始刀位点进行拟合;通过“偏差映射”的方法对刀位点处的拟合精度进行了修正。提出了修复体IDOM法NURBS刀轨生成算法:改进了DOM算法中的初始特征点选取和新特征点确定方法,并在拟合过程中对特征点参数进行了修正;在此基础上生成了拟合精度较高、控制顶点较少的NURBS切削刀轨,并通过调节过渡刀轨的节点矢量和控制顶点,保证了整条刀轨的连续性。通过实验验证了优化后刀轨比优化前刀轨的加工效率和质量均有所提高,加工效率提高约19%。
     (4)研究了口腔修复体基于MMR的五轴加工刀轨生成技术。研究了基于最大材料去除率的无曲率干涉刀具方位角确定方法;提出了修复体MMR平底刀五轴加工刀轨生成算法:采用截平面法计算刀触点轨迹,以最大材料去除率、刀具无干涉为约束条件确定刀具方位角;在此基础上生成了MMR平底刀五轴加工刀轨。通过实验验证了MMR法刀轨比Sturz法刀轨的加工效率提高了约17%,同时加工质量也有所提高。
     (5)研究了口腔修复体分段刀轨加减速过渡的进给速度生成技术。提出了基于曲线加减速规划和“向前修正”的刀位点处进给速度过渡处理算法。提出了基于分段刀轨加减速过渡的自适应进给速度生成算法:以刀触点处进给速度和机床的运动特性为约束,对微段刀轨进行分段并规划进给速度;采用S曲线加减速方式对相邻刀轨段的进给速度进行过渡处理,实现了数控编程进给速度的自适应生成。通过实验验证了在保证机床运动平稳的条件下自适应进给速度方法比恒定进给速度方法的加工效率可提高6%~10%。
With development of3D measurement, discrete modeling and NC machining technologies,CAD/CAM technologies are widely applied to dental medical treatment. The NC machiningtechnology of dental restoration is one of the most important parts of Dental CAD/CAM technologies.Aiming at dental restoration high efficiency machining, the relevant theories, methods andtechnologies are researched in this dissertation. The main contents and contributions are as follows:
     1. Technologies for section-based tool path generation of dental restoration are researched. Thesection lines are calculated rapidly by the method of model segmentation, then self-intersections andredundant CL points are eliminated. An improved section plane algorithm for constant scallop heighttool path generation is proposed. Cutter contact projected traces are calculated and adjusted accordingto scallop height, and constraint surfaces are constructed by the adjusted projected traces, thenconstant scallop height tool paths are calculated iteratively by intersecting the constraint surfaces withmesh surface. Experimental result indicates that machining efficiency of constant scallop height toolpath is improved by about28%without reducing machining quality, compared with CL section planetool path.
     2. Technologies for parameter-based tool path generation of dental restoration are researched.Algorithm for iso-parametric tool path generation is proposed for dental restoration machining. Fourtypes of iso-parametric tool paths are generated according to harmonic map theory and parametricplanning styles. Algorithm for parametric spiral tool path generation is proposed for dental restorationmachining. The parametric loops of dental restoration model are calculated in parametric mesh, thenpoints of adjacent parametric loops are matched group by group, and initial, exact diagonal parametricspiral lines are calculated in sequence. Based on these, free-interference parametric spiral tool pathsare generated. Experimental result indicates that machining efficiency of parametric spiral tool pathsis improved by about30%with better machining quality, compared with CL section plane tool path.
     3. Technologies for tool path optimization of dental restoration are researched. Algorithm forarc spline tool path generation based on segment fitting is proposed for dental restoration machining.CL points of line tool paths are fitted into line-arc tool path by segment fitting, and fitting precision ofCL points is revised by method of deviation mapping.Algorithm for NURBS tool path generationbased on IDOM method is proposed for dental restoration machining. DOM fitting is improved byIDOM fitting in aspects of selection of initial dominant points, determination of new dominant points and parameters revision of the dominant points. Based on these, NURBS tool paths, whichposses higher fitting precision and fewer control points, are generated, then transition tool paths areimplemented by NURBS curves, and adjustments of knot vectors and control points are used tokeep the connections of cutting and transition tool paths continuity. Experimental result indicates thatmachining efficiency is improved by about19%after CL section plane tool path is optimized, andmachining quality is also improved.
     4. Technologies for5-axis tool path generation based on MMR(Maximal Material Removal rate)of dental restoration are researched. The method of MMR-based cutter orientation anglesdetermination without curvature interference is researched. Algorithm for5-axis tool path generationof MMR with flat-end cutter is proposed. Cutter contact points are calculated by section method, thencutter orientation angles are determined with constraint of MMR and free-interference. According tothese, MMR tool paths with flat-end cutter are generated. Experimental result indicates thatmachining efficiency of MMR tool paths is improved by about17%compared with Sturz tool paths,and machining quality is also improved.
     5. Technologies for feed-rates generation based on acceleration and deceleration control ofpiecewise tool paths are proposed for dental restoration machining. Algorithm for feed-rate transitionsof CL points, which is based on curve ADC (Acceleration and Deceleration Control) and adjustingahead, is proposed. Algorithm for adaptive feed-rate generation based on feed-rate transition ofsegment tool paths is proposed. With constraints of kinematic characters and actual cutting speeds,tool path segments of micro segment tool path are obtained, and feed-rates are planned in thesesegments, then feed-rates transition of the segments are processed by the method of S shape curveADC, and adaptive feed-rates generation for dental restoration machining is implemented.Experimental result indicates that machining efficiency of adaptive feed-rates method is improved by6%~10%with smooth movement of machine tool, compared with constant feed-rates method.
引文
[1]马轩祥,赵铱民.口腔修复学(第五版)[M].北京:人民卫生出版社,2005
    [2]刘洪臣,王燕一,江南,等.口腔修复技术进展(一)[J].口腔颌面修复杂志,2000,1(2):117-119
    [3]巢永烈,梁星.我国牙体缺损保存修复的现状、存在问题与对策[J].中华口腔医学杂志,2006,41(6):321-322
    [4]吕培军,孙玉春.口腔修复计算机辅助设计/制作的过去、现在和将来[J].北京大学学报(医学版),2010,42(1):14-19
    [5] Song Yali, Li Jia, Yin Ling, et al. The feature-based posterior crown design in a dentalCAD/CAM system [J]. International Journal of Advanced Manufacturing Technology,2007,31(11):1058-1065
    [6] http://www.sirona.com/ecomaXL/index.php?site=SIRONA_COM_cerec
    [7] http://www.kavo-everest.com/DE/Everest-System.aspx
    [8]吕培军,李彦生,王勇.国产口腔修复CAD/CAM系统的研究与开发[J].中华口腔医学杂志,2002,37(5):367-370
    [9]王树杰,林映,宋丽娜.基于Surfacer二次开发的口腔固定修复CAD/CAM系统[J].计算机工程与应用,2004.28:191-194
    [10]邹波,吕培军,王勇,等.全冠修复体计算机辅助设计的初步研究[J].中山大学学报(医学科学版),2005,26(6):711-713
    [11]韩景芸,费任元,李彦生,等.基于逆向工程技术的后牙嵌体的数字化个性设计[J].机械科学与技术,2005,24(3):315-318
    [12]刘清,俞青,景建龙,等.底层冠的计算机辅助初步设计与制作[J].口腔医学研究,2005,21(6):631-633
    [13]戴宁.口腔修复体造型关键技术研究及其应用[博士学位论文].南京:南京航空航天大学,2006
    [14]程筱胜.口腔修复曲面设计系统关键技术研究与实现[博士学位论文].南京:南京航空航天大学,2007
    [15]张丽艳.逆向工程中模型重建关键技术研究[博士学位论文].南京:南京航空航天大学,2001
    [16]周济,周艳红.数控加工技术[M].北京:国防工业出版社,2002
    [17]刘雄伟.数控加工理论与编程技术(第二版)[M].北京:机械工业出版社.2000
    [18] Hugues Hoppe. Surface Reconstruction from Unorganized Points[PhD thesis].University ofWashington,1994
    [19] Martti M&a&ntyl&a&. An Introduction to Solid Modeling[M].Computer Science Press, Rockville,Maryland,1995
    [20]安涛.口腔基底桥数字化设计技术研究与应用[博士学位论文].南京:南京航空航天大学,2008
    [21] Kim S J, Yang M Y. Triangular mesh offset for generalized cutter[J].Computer-Aided Design,2005,37:999-1014
    [22] Jung W, Shin H, Choi B K.Selt-intersection Removal in Triangular MeshOffsetting[J].Computer-Aided Design&Applications,2004,1(4):477-484
    [23] Park S C. Sculptured surface machining using triangular mesh slicing [J].Computer-AidedDesign,2004,36(3):279-288
    [24]高勃.口腔金属修复体成型新方法[J].国外医学:口腔医学分册,2000,27(2):72-74
    [25] Tinschert J, Natt G, Hassenpflug S, et al. Status of current CAD/CAM technology in dentalmedicine[J].International Journal of Computerized Dentistry,2004,7(1):25-45
    [26] Rekow E D.A review of the developments in dental CAD/CAM systems. Current Opinion inDentistry,1992,2(6)2:25-33
    [27] Christensen G J. In-Office CAD/CAM Milling of Restorations The Future[J].The Journal of theAmerican Dental Association,2008,139(1):183-185
    [28]刘小舟,吕培军,王勇.口腔可切削材料的研究进展[J].北京大学学报(医学版),2008,40(6):654-657
    [29]刘明丽,吕培军.切削陶瓷在CAD/CAM中的应用与发展[J].口腔颌面修复学杂志,2003,4(3):197-200
    [30] Zitzmann N U,Galindo M L,Hagmann E,et a1.Clinical evaluation of Procera Alleeram crownsin the anterior and posterior regions[J].International Journal of Plosthodont,2007,20:239-241
    [31] Lin R S, Koren Y. Efficient tool-path planning and machining for free-form surface[J]. Journalof Engineering for Industry.1996,118:20-28
    [32] Elber G, Gohen E. Tool path generation for freeform surface models[J]. Computer-AidedDesign,1994,26(6):490-496
    [33] Huang Y, Oliver J H. Non-constant parameter NC tool path generation on sculptured surfaces[J].International Journal of Advanced Manufacturing Technology,1994,9:281-290
    [34] Tournier C, Duc E.A Surface based approach for constant scallop height tool-path generation [J].International Journal of Advanced Manufacturing Technology,2002(19):318-324
    [35] Lee S G, Yang S.CNC tool-path planning for high-speed high-resolution machining using a newtool-path calculation algorithm[J]. International Journal of Advanced Manufacturing Technology,2002,20(5):326-333
    [36] Choi B K, Lee C S, Hwang J S, et al. Compound surface modeling and machining[J]. Computer-Aided Design,1988,20(3):127-136
    [37] Kim K I, Kim K. A new machine strategy for sculptured surfaces using offset surface[J]. Int JProd Res,1995,33(6):1683–1697
    [38] Lee C S. Tool-path generation in NC machining of automobile panel die [J]. Korea Society ofAutomotive Engineers,1994,2(5):74-84
    [39] Suresh K, Yang DCH. Constant scallop-height machining of free form surfaces[J]. ASMEJournal of Engineering for Industry,1994,116:253-259
    [40] Sarma R, Dutta D. The geometry and generation of NC tool paths[J].ASME Journal ofMechanical Design,1997,119:253-258
    [41] Feng H Y, Li H W. Constant scallop-height tool path generation for three-axis sculpture surfacemachining[J].Computer-Aided Design,2002,34(9):647-654
    [42] Lee Eungki. Contour offset approach to spiral toolpath generation with constant scallop height[J].Computer-Aided Design,2003,35:511-518
    [43] Ding S, Mannan M A, Poo A N, et al. Adaptive iso-planar tool path generation for machining offree-form surfaces[J]. Computer-Aided Design,2003,35(2):141-153
    [44]吴宝海,罗明,张莹,等.自由曲面五轴加工刀具轨迹规划技术的研究进展[J].机械工程学报,2008,44(10):9-15
    [45] Jung J Y. NC tool path generation for5-axis machining of free formed surfaces [J]. Journal ofIntelligent Manufacturing,2005,16(7):115-127
    [46] Lee Y S. Non-isoparametric tool path planning by machining strip evaluation for5-axissculptured surface machining [J]. Computer-Aided Design,1998,30(7):559-570
    [47] Lin T, Lee J W, Bohez E L J. A new accurate curvature matching and optimal tool based five-axis machining algorithm [J].Journal of Mechanical Science and Technology,2009,23(7):2624-2634
    [48] Lo C C. Efficient cutter-path planning for five-axis surface machining with a flat-end cutter [J].Computer-Aided Design,1999,31(7):557-566
    [49] Zhou Yunfei, Li Bin, Yan Sijie. Research on the method of precision evaluation and controllingfor the cutter location points in five-axis machining [J]. International Journal of AdvancedManufacturing Technology,2005,26(7):342-350
    [50] Rao A, Sarma R. On local gouging in five-axis sculptured surface machining using flat-end tools[J].Computer-Aided Design,2000,32(7):409-420
    [51] Choi B K, Jun C S. Ball-end cutter interference avoidance in NC machining of sculpturedsurface[J].Computer-Aided Design,1989,21(6):371-378
    [52] Hwang J S. Interference-free tool-path generation in the NC machining of parametric compoundsurfaces[J].Computer-Aided Design,1992,24(12):667-676
    [53] Park S C.Tool-path generation for Z-constant contour machining[J]. Computer-Aided Design,2003,35:27-36
    [54] Yan X, Yamazaki K, Liu J. Extraction of milling know-how from NC programs through reverseengineering[J]. International Journal of Production Research,2000,38(11):2443-2457
    [55] Jun C S, Kim D S, Park S. A new curve-based approach to polyhedral machining[J].Computer-Aided Design,2002,34(5):379-389
    [56] Tang K, Cheng C C, Dayan Y. Offsetting surface boundaries and3-axis gouge-free surfacemachining[J].Computer-Aided Design,1995,27(12):915-927
    [57]孙玉文,刘伟军,王越超.基于三角网格曲面模型的刀位轨迹计算方法[J].机械工程学报,2002,38(10):50-53
    [58]曾晓华,刘静华,闫光荣.基于STL数据模型的刀具轨迹生成[J].工程图学学报,2002,1:8-14
    [59]孙全平,陈小岗,陈前亮,等.磨牙冠高速精加工优化刀轨生成算法的实现[J].生物医药工程学杂志,2009,26(5):1111-1114
    [60] Sarma S E. The crossing function and its application to zig-zag tool paths[J]. Computer-AidedDesign,1999,31:881-890
    [61] Yann Quinsat, Laurent Sabourin. Optimal selection of machining direction for three-axis millingof sculptured parts[J].International Journal of Advanced Manufacturing Technology,2007,33(7):684-692
    [62] Sun Yuwen, Guo Dongming, Jia zhenyuan.Iso-parametric tool path generation from triangularmeshes for free-form surface machining[J].International Journal of Advanced ManufacturingTechnology,2006(28):721-726
    [63]徐金亭,刘伟军,卞宏友,等.基于网格曲面模型的等残留刀位轨迹生成方法[J].机械工程学报,2010,46(11):193-198
    [64] Lee S G, Kim H C, Yang M Y. Mesh-based tool path generation for constant scallop-heightmachining [J]. International Journal of Advanced Manufacturing Technology,2008,37(1):15-22
    [65]熊歆斌,王亚平.逆向工程中数控加工刀具轨迹生成的简化方法研究[J].工程图学学报,2006,1:35-39
    [66] Kiswanto G, Lauwers B, Kruth J P. Gouging elimination through tool lifting in tool pathgeneration for five-axis milling based on faceted models [J].International Journal of AdvancedManufacturing Technology,2007,32(7):293-309
    [67]韩景芸,费仁元,李彦升,等.金属全冠的CAM工艺技术研究[J].现代制造工程,2004,10:10-12
    [68]赵蓓芳,王亚平,王勇,等.口腔修复体的数控加工工艺研究[J]. CAD/CAM与制造业信息化,2006,10:96-98
    [69]刘大峰.基于点云的口腔修复体曲面测量与重建基础技术研究及应用[博士学位论文].南京:南京航空航天大学,2007
    [70]艾兴.高效加工技术及其应用研究[J].中国工程科学,2000,2(11):40-51
    [71]吴宝海,张萤,罗明,等.高效加工技术在航空发动机制造领域的发展和应用[J].航空制造技术,2010,21:48-52
    [72] Yang D C H, Kong T. Parametric interpolator versus linear interpolator for precision CNCmachining[J].Computer-Aided Design,1994,26(3):225-233
    [73] Lo C C. A new approach to CNC tool path generation[J].Computer-Aided Design,1998,30(8):649-655
    [74]周正干,王美清,李和平,等.高速加工的核心技术和方法[J].航空制造技术,2000,3:13-20
    [75] De Souza A F, Coelho R T. Experimental investigation of feed rate limitations on high speed[J].International Journal of Advanced Manufacturing Technology2007,32(5):1104-1114
    [76] Ramón Q S, Marcelino R S, Eleno A B. Genetic algorithm-based multi-objective optimization ofcutting parameters in turning processes[J]. Engineering Applications of Artificial Intelligence,2006,19:127-133
    [77] Guzel B U, Lazoglu I. Increasing productivity in sculpture surface machining via off linepiecewise variable feed-rate scheduling based on the force system model[J]. International Journalof Machine Tools&Manufacture2004,44:21-28
    [78] Fussell B K, Jerard R B, Herment J G, Robust federate selection for3-axis NC machining usingdiscrete models[J].Transaction of the ASME,2001,123(5):214-224[98]
    [79] Loop C.Smooth subdivision surfaces based on triangles.[Master’s thesis].Utah:University ofUtah,Department of Mathematics,1987
    [80] Loop C, DeRose T.Generalized B-spline surfaces of arbitrary topology[C].Computer GraphicsProceedings,ACM SIGGRAPH,1990,24(4):347-356
    [81] Wang H W, Qin K H. Error Estimating for Doo-Sabin surfaces. Journal Progress in NatureScience,2002,12(9):695-700
    [82]吴剑煌,刘伟军,王天然.3细分曲面的误差分析[J].机械工程学报,2007,43(2):104-109
    [83]安鲁陵.基于ACIS几何平台的CAD/CAM软件开发关键技术研究[博士学位论文].南京:南京航空航天大学,2001
    [84] Kim H C, Lee S G, Yang M Y. An optimized contour parallel tool path for2D milling with flatend mill [J]. International Journal of Advanced Manufacturing Technology,2006,31(7):567-573
    [85]杨建中.复杂多曲面数控加工刀具轨迹生成方法研究[博士学位论文].武汉:华中科技大学,2006
    [86]潘云鹤,董金祥,陈德人.计算机图形学-原理、方法及应用(修订版)[M].北京:高等教育出版社,2003
    [87] Schneider P J, Eberly D H.计算机图形学几何工具算法详解(周长发,译)[M].北京:电子工业出版社,2005
    [88] Botsch M, Pauly M, Rossl C, et al. Geometric Modeling Based on Triangle Meshes[A]. ACMSIGGRAPH’2006Courses,2006
    [89] Biermann H, Levin A, Zorin D.Piecewise smooth subdivision surfaces with normal control [C].Computer Graphics Proceedings, Annual Conference Series. ACM SIGGRAPH’2000,NewOrleans, Louisiana,2000,113-120
    [90] Page D L, Koschan A, Sun Y, et al. Robust crease detection and curvature estimation ofpiecewise smooth surfaces from triangle mesh approximations using normal voting [C].Proceedings of the International Conference on Computer Vision and Pattern Recognition. Kauai,Hawaii,2001,162-167
    [91]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2001
    [92] Goodman T N T, Unsworth K. Shape preserving interpolation by curvature continuousparametric curves[J].Computer-Aided Geometric Design,1988,5(4):323-340
    [93] Kim S J, Yang M Y.A CL surface deformation approach for constant scallop height tool pathgeneration from triangular mesh[J]. International Journal of Advanced ManufacturingTechnology,2006,28:314-320
    [94] Park S C, Shin H. Polygonal chain intersection[J]. Computer Graphics,2002;26(2):341-250
    [95] Park S C, Choi B K. Tool-path planning for direction-parallel area milling[J]. Computer-AidedDesign,2000,32(1):17-25
    [96]徐金亭,刘伟军,邱晓杰,等.自由曲面加工中的等参数螺旋轨迹生成方法[J].机械工程学报,2010,46(3):148-151
    [97] Eck M, DeRose T, Duchamp T,et al. Multiresolution analysis of arbitrary meshes[C].SIGGRAPH,1996:173-182
    [98] Khodakovsky A, Litke N, Schr der P. Globally smooth parameterizations with low distortion[C].Proceedings of the ACM SIGGRAPH, San Diego,California,USA,2003:350-357
    [99] Gu X, Yau S. Global conformal surface parameterization[C].Proceedings of the EurographicsSymposium on Geometry Processing,Aachen,Germany,2003:127-137
    [100] Praun E, Hoppe H. Spherical parameterization and remeshing[C]. Proceedings of the ACMSIGGRAPH, San Diego,California,USA,2003:340-349
    [101]胡事民,杨永亮,来煜坤.数字几何处理研究进展[J].计算机学报,2009,32(8):1451-1469
    [102]彭群生,胡国飞.三角网格的参数化[J].计算机辅助设计与图形学学报,2004,16(6):731-739
    [103] Floater M S. Parametrization and smooth approximation of surface triangulations[J].Computer-Aided Geometric Design,1997,14(3):231-250
    [104]胡国飞.方兴,彭群生.凸组合球面参数化[J].计算机辅助设计与图形学学报,2003,16(5):632-637
    [105] Sander P, Snyder J, Gortler S, et a1.Texture mapping progressive meshes[C].Computer GraphicsProceedings,Annual Conference Series, ACM SIGGRAPH, Los Angeles,2001,409-416
    [106] Meek D S, Walton D J. Approximating quadratic NURBS Curves by Arc Splines[J]. Computer-Aided Design,1993,25(6):371-377
    [107] Walton D J, Meek D S. Approximating of Quadratic Bezier Curves by Arc Splines[J]. Journal ofComputational and Applied Mathematics,1994,54(1):107-120
    [108]范炳炎.数控加工程序编制[M].北京:航空工业出版社,1990
    [109]田立检.非圆齿轮节线曲线设计的新方法[J].机械工程学报,1997,33(6):95-102
    [110]杨旭静.自由曲面高性能数控加工刀具路径技术研究[博士学位论文].长沙:湖南大学,2006
    [111] Pottmann H, Leopoldseder S, Hofer M. Approximation with active B-spline curves and surfaces[C]. Proceedings of the Pacific Graphics2002,New York: IEEE Press;2002:8-25
    [112] Sarkar B, Menq C H. Parameter optimization in approximating curves and surfaces tomeasurement data[J]. Computer Aided Geometric Design,1991,8(4):267-90
    [113]赵吉宾,刘伟军,王越超.基于NURBS曲线的STL模型截面轮廓平滑处理技术研究[J].小型微型计算机系统,2005,26(3):496-499
    [114]李建刚,张婷华,李泽湘,等.数控加工中的连续多段直线轨迹B-Spline拟合[J].哈尔滨工业大学学报,2008,40(10):1606-1608
    [115] Park H, Lee J H. B-spline curve fitting based on adaptive curve refinement using dominantpoints[J]. Computer-Aided Design,2007,39(6):439-451
    [116]刘元朋,张定华,桂元坤,等.用带约束的最小二乘法拟合平面圆曲线[J].计算机辅助设计与图形学学报,2004,16(10):1382-1385
    [117] Yang Huaiping, Wang Wenping, Sun Jiaguang. Control point adjustment for B-spline curveapproximation[J]. Computer-Aided Design,2004,36(7):639-652
    [118] Park H. An error-bounded approximate method for representing planar curves in B-splines[J].Computer Aided Geometric Design,2004,21(5):479-97
    [119] Park H, Kim K, Lee SC. A method for approximate NURBS curve compatibility based onmultiple curve refitting[J]. Computer-Aided Design,2000;32(4):237-52
    [120] Razdan A. Knot placement for B-spline curve approximation. Report1999. Arizona StateUniversity. http://citeseer.ist.psu.edu/398077.html
    [121] Li W S, Xu S H, Zhao G, et al. Adaptive knot placement in B-spline curve approximation[J].Computer-Aided Design,2005,37(8):791-797
    [122] Celniker G, Gossard D. Deformable curve and surface finite elements for free-form shape design[J].Computer Graphics,1991,25(4):257-66
    [123] Lyche T, M rken K. Knot removal for parametric B-spline curves and surfaces[J]. ComputerAided Geometric Design,1987,4(3):217-30
    [124] Choi B K, Park J W, Jun C S. Cutter-location data optimization in5-axis surfacemachining[J].Computer-Aided Design,1993,25(6):377-386
    [125] Cho H D, Jun Y T, Yang M Y. Five-axis CNC milling for effective machining of sculpturedsurfaces[J].International journal of production research,1993,31(11):2559-2573
    [126] Lee Y S, Chang T C. Automatic cutter selection for five-axis sculptured surface machining[J].International Journal of Production Research,1996,34(4):977-98
    [127] Lee Y S, Ji H. Surface interrogation and machining strip evaluation for5-axis CNC die and moldmachining[J]. International Journal of Production Research,1997,35(1):225-52
    [128] Wang Y J, Dong Zuomin, Vickers G W. A3D curvature gouge detection and elimination methodfor5-axis CNC milling of curved surfaces[J].International Journal of Advanced ManufacturingTechnology,2007,33:368-378
    [129] Chen Tao,Ye Peiqing,Wang Jinsong.Local interference detection and avoidance in five-axis NCmachining of sculptured surfaces[J].International Journal of Advanced ManufacturingTechnology,2005,25:343-349
    [130] Li S X, JEARD R B.5-axis machining of sculptured surfaces with a flat-end cutter[J].1993,26:165-178
    [131] Bohen E L J.Compensating for systematic errors in5-axis NC machining[J]. Computer-AidedDesign,2002,34:391-403
    [132] Li H W, Tutunea-Fatan O R, Feng H Y.An improved tool path discretization method forfive-axis sculptured surface machining[J],International Journal of Advanced ManufacturingTechnology,2007,33:994-1000
    [133] Hamann B, Chen J L. Data point selection for piecewise linear curve approximation[J].Computer Aided Geometric Design1994,11(3):289-301
    [134] Liu G H,Wong Y S, Zhang Y F,et al. Adaptive fairing of digitized data with discrete curvature[J].Computer-Aided Design2002,34(4):309-20
    [135]石川,赵彤,叶佩青,等.数控系统S曲线加减速规划研究[J].中国机械工程,2007,18(12):1421-1425
    [136]潘海鸿,杨微,陈琳,等.全程S曲线加减速控制的自适应分段NURBS曲线插补算法[J].中国机械工程,2010,21(2):190-195
    [137] Nam S, Yang M. A study on a generalized parametric interpolator with real-time jerk-limitedacceleration[J]. Computer-Aided Design,2004,36(1):27-36
    [138] Lin M T, Tsai M S, Yau H T. Development of a dynamics-based NURBS interpolator withreal-time look-ahead algorithm[J].International Journal of Machine Tools and Manufacture,2007,47(15):2246-2262
    [139]赵国勇,徐志祥,赵福令.高速高精度数控加工中NURBS曲线插补的研究[J].中国机械工程,2006,17(3):291-294
    [140]游有鹏,王珉,朱剑英.参数曲线的自适应插补算法[J].南京航空航天大学学报,2000,32(6):667-671
    [141]李思益,罗为.NURBS曲线高速高精度插补及加减速控制方法研究[J].计算机集成制造系统,2008,14(6):1142-1147

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700