缬草提取物对兔心室肌细胞离子通道的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究缬草提取物(VE)对兔心室肌细胞跨膜动作电位时程(APD)、钠电流(I_(Na))、L-钙电流(I_(Ca-L))、短暂外向钾电流(I_(to))、延迟整流钾电流(I_K)、内向整流钾电流(I_(Kl))、三磷酸腺苷敏感性钾电流(I_(KATP))的影响,以探讨其抗心律失常作用的细胞电生理机制。
     方法:使用酶解法分离单个兔心室肌细胞。采用全细胞膜片钳技术,在电压钳模式下记录不同浓度VE对I_(Na)、I_(Ca-L)、I_(to)、I_K、I_(Kl)、I_(KATP)的影响。在电流钳模式下观察跨膜动作电位的变化。
     结果:① 30μg/L、60μg/L缬草提取物(VE)可使动作电位时程(APD)明显缩短,APD_(50)和APD_(90)分别由给药前的(352±27)ms和(416±33)ms缩短至(257±24)ms、(168±20)ms和(316±31)ms、(265±23)ms,分别缩短了27.0%、52.2%和24.0%、35.6%(n=16,p<0.05),而动作电位幅值无明显改变;② 30μg/L和60μg/L的VE使兔心室肌细胞I_(Na)峰值(I_(Namax))从(53.47+5.13)pA/pF分别降至(40.25+4.18)pA/pF和(30.89+2.95)pA/pF(n=8,p<0.05和p<0.01),抑制率分别为24.7%和41.9%;VE使I_(Na)的电流-电压曲线上移,但不改变其激活电位、电位峰值和反转电位;VE还减慢钠通道灭活后的恢复过程;③ 30μg/L和60μg/L的缬草提取物(VE)使兔心室肌细胞I_(Ca-L)峰值(I_(Ca-Lmax))由(6.04±0.59)pA/pF分别减至(3.99+0.31)pA/pF和(2.31+0.24)pA/pF,抑制率分别为33.9%和57.1%(n=8,p<0.01);VE使I_(Ca-L)的电流-电压曲线上移,但不改变其激活电位、电位峰值和反转电位;VE还使钙电流失活曲线左移;④ 在刺激电压+60mV时,60μg/L和120μg/L的缬草提取物(VE)使瞬时外向钾电流(I_(to))幅值从(4.6±0.42)pA/pF分别降至(2.8±0.23)pA/pF和(1.7±0.14)pA/pF(n=7,p均<0.01),抑制率分别为39.1%和63.0%;⑤ 缬草提取物(VE)对延迟整流钾电流(I_K)、内向整流钾电流(I_(Kl))的电流幅值和电流-电压曲线的影响不明显(n=7,p>0.05);⑥ 不同浓度VE均不能引出三磷酸腺苷敏感性钾电流(I_(KATP))。
     结论:缬草提取物(VE)能明显缩短动作电位时程(APD);缬草提取物(VE)浓度依赖性抑制I_(Na)、I_(Ca-L)、I_(to);缬草提取物(VE)对I_K、I_(Kl)、I_(KATP)无明显影响,对I_(KATP)无直接开放作用。VE对抗心律失常作用可能与其对上述离子通道的影响有关。
Objective: To investigate the effects of valerian extract (VE) on action potential duration(APD), sodium current(INa), L-calcium current (Ica-L),transient outward potassium current(Ito), delayed rectifier potrssium current(IK) inward rectifier potassium current(IKl) and adenosine triphosphate-sensitive potassium current (Ikatp) in isolated rabbit ventricular myocytes.
    Methods: Single rabbit's ventricular myocytes were isolated with enzyme. The whole-cell patch clamp recording technique was used to observe the changes of action potential duration(APD) , sodium current(INa), L-calcium current (ICa-L),transient outward potassium current(Ito), delayed rectifier potassium current(IK), inward rectifier potassium current(IK1) and adenosine triphosphate-sensitive potassium current (Ikatp) under different concentration of VE.
    Results: (1)30 ug/L VE, 60 u g/L VE could shortened APD50 and APD90 from (352 ±27)ms to (257±24) ms, (168±20)ms, and (416±33)ms to (316±31)ms, (265 ± 23)ms(27.0%, 52.2%; 24.0%,35.6%, n=16, p<0.05) respectively, but had no significant effect on action potential amplitude.(2)VE at 30,60 u g/L decreased peak INa (INamax) from (53.47±5.13)pA/pF to(40.25±4.18)pA/pF and (30.89±2.95)pA/pF (24.7%,41.9%, n=8, p<0.05 and p<0.01), respectively.VE upshifted the INa I-V curves of without changes of their active, peak and reverse potentials; VE at 60 u g/L turned the steady-state inactication curve to right.(3)VE at 30,60 u g/L decreased peak ICa-L (Ica-Lmax) from (6.04±0.59)pA/pF to(3.99±0.31)pA/pF and(2.31±0.24)pA/pF (33.9%,57.1%, n=8, p<0.01), respectively.VE upshifted the I-V curves of Ica-L without changes of their active, peak and reverse potentials; (4)At 60mV, VE at 60 u g/L and 120 u g/L decreased Ito current amplitude from( 4.6±0.42) pA/pF to (2.8±0.23) pA/pF and (1.7±0.14) pA/pF(n=7, p<0.01,respectively);(5)VE
    
    did not inhibit Ik, Ik1 with no change on reversal-potential(n=7,p>0.05).(6) VE did not induce Ikatp directly.
    
    
    
    Conclusion: VE shortened APD in dose-dependent ;VE blocks INa in a concentration dependent manner and probably inhibits Ina in its inactive state ; VE blocks Ica-L manner and probably inhibits Ica-L in its inactive state ; VE inhibited Ito in a concentration dependent ;these could be the important mechanisms of its antiarrhythmic and its cardioprotective effects.
引文
1.江苏新医学院编.中药大词典.上册.上海:上海科技出版社,1986.566-567.
    2.肖培根,刘昌孝.国外药用植物的研究、生产和需求概况.中草药,1983,14(6):40-44.
    3. Hendriks H, Bos R. Pharmacological screening of valerenal and some other components of essential oil valeriana officinalis. Planta Med, 1981,42(1):62-68.
    4. Wagner H, Jurcic K. On the spasmolytic activity of the valeriana extracts. Planta Med, 1979,37(1):84-95.
    5.张宝恒,齐治,沈莉纳.几种缬草分离物对小白鼠心肌摄取~(86)Rb的影响.中草药,1983,2:25-27.
    6.张宝恒,孟和平,王彤等.缬草乙醇提取物(VES)对心血管的作用.药学学报,1982,17(5):382-384.
    7.薛存宽,蒋彦章,杨晶,等.神农缬草挥发油对动物心血管系统的作用.中西医结合杂志,1988,理论研究特集:8-12.
    8.尹虹,薛存宽,叶建明等.缬草提取物抗心肌缺血再灌注损伤的实验研究.微循还学杂志,2000,10(1):12-14.
    9.杨桂兰,王玮.宽叶缬草治疗冠心病的临床研究.中国中西医结合杂志,1994,14(9):540-542.
    10. Cionga E. Colum chromatography of the roots and rhizomes of valerian has fumished crude fractions with interesting pharmacol activities. Pharmazie, 1961,16:43-48.
    11.任世兰,余龙顺,裴宁.宽叶缬草对平滑肌和心血管的药理作用.中草药,1982,13(3):23-25.
    12.山西中药研究所资料室.抗心律失常的中草药—缬草(甘松).新中医,1979,1:46-49.
    13.马传庚,项思远,岑德意等.甘松乙醇提出液的抗心律失常的实验研究.安医学报,1980,15(4):9-12.
    
    
    14.钟达锦,林斌,陈素娟等.复方甘松汤治疗心律失常55例临床疗效观察与实验研究的初步报告.浙江医学,4(1):49-51
    15.王玉良,徐森根,范世藩.缬草抗心律失常的心肌细胞电生理学观察.中华心血管病杂志,1979,7(4):275-282.
    16.袁韶华,张宝恒,吴凤简.缬草提取物(V_(3d))抗心律失常的实验研究.中药药理与临床,1989,5(6):15-18.
    17.贾健宁,张宝恒.缬草提取物(V_(3d))对心血管系统的作用.广西中医学院学报,1999,16(1):40-42.
    18. Mitra R and Morad M. A uniform enzymatic method for dissociation of myocytes from hearts and stomachs of vertebrates. Am J Physiol,1985,249:H1056-H1060.
    19. Tytgat J. How to isolate cardiac myocytes. Cardiovasc Res, 1994,28:280-283.
    20. Hamill OP, Marty A, Neher E, et al. Improved patch clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch,1981,391:85-100.
    21. Sakakibara Y, Wasserstrom JA, Furukawa T, et al. Characterization of the sodium current in single human atrial myocytes. Circ Res,1992,71: 535-546.
    22. The Cardiac Arrhythmia Suppression Trial (CAST) Investigations: Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. N Engl J Med, 1989,321: 406-412.
    23. Maltsev VA, Sabbah HN, Higgins RSD, et al. Novel, ultraslow inactivating sodium current in human ventricular cardiomyocytes. Circulation, 1998, 98:2545-2552.
    24. Kawashima Y, Ochi R. Voltage-dependent decrease in the availability of single calcium channels by nitrendipine in guinea pig ventricular cells. J Physiol (Lond), 1988,402:219-235.
    25.蒋文平.膜离子通道与心律失常.中华心血管病杂志,2002,30(4):198-199.
    26. Surawicz B .Role of potassium channels in cycle length dependent regulation of action potential duration in mammalian cardiac Purkinjie and ventricular muscle fibres [J]. Cardiovasc Res, 1992;26:1021-1029.
    
    
    27. Liu DW, Gintant GA, Antzelevitch C. Ionic bases for electrophysiological distinctions among epicardial, miamyocardial, and endocardial myocytes from the free wall of the canine left ventricle. Circ Res, 1993,72:671-687.
    28. Li GR, Feng J, Yue L, et al. Transmural heterogeneity of action potential s and in myocytes isolated from the the human right ventricle. Am J Physiol, 1998, 275: H369-H377.
    29. Hiraoka M, Kawano S, Hirano Y, et al. Role of cardiac chloride currents in changes in action potentials characteristics and arrhythmias. Cardiovasc Res, 1998,40:23-33.
    30. Joseph L, Greenstein, Richard Wu, et al. Role of the calcium-independent transient outward current I_(tol) in shaping action potential morphology and duration. Circ Res,2000,87:1026-1033.
    31. Sager PT, Uppal P, Follmer C, et al. Frequency-dependent electrophysiologic effects of amiodarone in humans. Circulation, 1993, 88:1063-1071.
    32. Wang J, Feng J, and Nat-tel S. Class Ⅲ antiarrhythmic drug action in experimental atrial fibrillation.Differences in reverse use dependence and effectiveness between d-sotalol and the new antiarrhythmic drug ambasilide. Circulation, 1994b, 90:2032-2040.
    33. Feng J, Wang Z, Li G, et al. Effects of class Ⅲ antiarrhythmic drugs on transient outward and ultra-rapid delayed rectifier currents in human atrial myocytes. J Pharmacol Exp Ther, 1997,281:384-392.
    34. McKinnon D. Molecular Identity of Ito : Kv1.4 Redux. Circ Res, 1999; 84(5): 620-622.
    35. Guo W, Xu H, London B, et al. Molecular basis of transient outward K+ current diversity in mouse ventricular myocytes. J Physiol, 1999; 521(3): 587-599.
    36. Nerbonne JM. Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium. J Physiol, 2000; 525(2): 285-298.
    37. Caballero R, Delprn E, Valenzuela C, et al.Direct Effects of Candesartan and Eprosartan on Human Cloned Potassium Channels Involved in Cardiac Repolarization. Mol Pharmacol, 2001; 59(4): 825-836.
    38. Guo W, Li H, Aimond F, et al. Role of Heteromultimers in the Generation of Myocardial
    
    Transient Outward K+ Currents. Circ Res, 2002; 90(5): 586-593.
    39. Kaprielian R, Sah R, Nguyen T, et al. Myocardial infarction in rat eliminates regional heterogeneity of AP profiles, Ito K+ currents, and [Ca2+]i transients. Am J Physiol Heart Circ Physiol, 2002; 283(3): H1157-1168.
    40. Moreno I, Caballero R, Gonzalez T, et al. Effects of Irbesartan on Cloned Potassium Channels Involved in Human Cardiac Repolarization. J Pharmacol Exp Ther, 2003; 304(2): 862-873.
    41. Akar FG, Richard Wu, Deschenes I, et al. Phenotypic differences in transient outward K+ current of human and canine ventricular myocytes: insights into molecular composition of ventricular Ito. Am J Physiol Heart Circ Physiol, 2004; 286(2): H602-6O9.
    42. Lakhe NA, Furukawa Y, Yonezawa T, et al. Chronotropic and inotropic effects on terikalant on isolated, blood-perfused atrial and ventricular preparations of dogs [J]. Fundam Clin Pharmacol, 1997; 11:331-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700