正电子湮没技术对SmFeAsO_(1-x)F_x缺陷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正电子湮没技术是一门将核物理、核技术应用于固体物理、材料科学、化学、生命科学等学科领域的技术。它以正电子作为探针,通过探测正反物质相遇发生湮没产生的γ光子来研究固体的微观结构信息,主要包括正电子寿命谱仪(PALS)、多普勒展宽谱仪(DBS)、慢正电子束(SPB)等实验技术。该方法最大的特点在于对样品中原子尺度的缺陷极其灵敏,目前已经成材料缺陷研究中不可或缺的工具。
     本文主要利用正电子湮没技术并结合正电子理论计算及第一性原理计算对铁基超导体SmFeAsO1-xFx的缺陷进行了研究。
     第一章介绍了正电子湮没谱学及超导物理的基础知识。
     第二章主要用正电子湮没寿命谱、多普勒展宽谱并结合正电子寿命计算对SmFeAsO1-xFx的缺陷进行了研究。通过测量发现母体和超导样品S参数明显不同,分别反应了母体样品的结构相变和超导样品的超导态转变,S-W曲线良好的线性表明超导相变前后存在的是同一种类型的缺陷;通过寿命谱测量得到两个寿命成分,母体样品为151.6ps和290.3ps,超导样品为161.6ps和316.4ps,样品中的短寿命成分主要来自于正电子自由态湮没。在局域密度近似(LDA)和广义梯度近似(GGA)的基础上,用中性原子叠加-有限差分的方法(SNA-FD)对正电子在SmFeAsO和SmFeAsF单晶中体寿命及单空位寿命进行计算,表明GGA方法计算得到的自由态正电子寿命与正电子寿命谱实验测量的短寿命成分结果符合的较好,根据GGA的结果我们推断寿命测量得到的300ps左右长寿命成分可能来自于正电子在Sm空位中的湮没。
     在第三章中,我们提出通过定性对比基于密度泛函理论的第一性原理计算得到的态密度与符合多普勒展宽谱来分析费米面附近的电子结构的方法,并对LaOFeAs和SmOFeAs进行了研究。通过Mg、Al、Si的实验测量与理论计算的对比,确认了这种方法的可行性;用CASTEP软件LaOFeAs和SmOFeAs及掺F材料进行了计算,发现掺F以后O-2p电子的态密度明显增加,与常温下SmFeAsO0.82F0.18对SmOFeAs的商谱在(O-4)×10-3moc低动量区间的电子增多的趋势一致。根据理论计算结果,我们可以推断出掺F以后费米面附近的电子态密度(符合多普勒展宽低动量区间)的改变主要受O/F的p电子影响。此结果为研究SmOFeAs为何掺F以后才‘具有超导电性提供了一个可能的思路,同时也为深入分析正电子湮没多普勒展宽谱的动量分布信息提供了一种新的途径。
     第四章主要运用慢正电子技术对90keV质子辐照下的航天器热控涂层ZnO/Silicone的损伤机理进行了研究。研究表明质子辐照主要是对ZnO/Silicone中Silicone的性能产生了影响,当辐照剂量低于1×1015cm-2时,辐射交联占支配地位,而当辐照剂量高于1×1015cm-2时,则辐射降解占支配地位。
Positron annihilation technique (PAT) is a method that applies nuclear physics and analysis technology to solid physics, materials science, chemistry, biology etc. Using positron as a probe, it can provide a good approach to study the property of solid by detecting theγray which is generated by electron-positron annihilation. PAT mainly contains Positron annihilation lifetime spectroscopy (PALS), Doppler broadening spectroscopy (DBS), Slow positron beam (SPB) and so on. The greatest advantage of this technique lies in its sensitivity to atomic-scale defects in the samples. Thus it has become an indispensable implement in the study of defects in materials.
     In this paper, positron annihilation lifetime, doppler broadening and theoretical calculation of positron annihilation characteristics combined with Density functional theory (DFT) based first-principle calculation are used to study the defect in iron superconductor of SmFeAsO1-xFx.
     In the first chapter, a brief introduction of the basic knowledge of positron annihilation spectroscopy and superconductivity physics is given.
     In the second chapter, the defects of iron-based high-temperature superconductor SmFeAsO1-xFx are studied by PALS, DBS combined with the calculation of positron lifetime. The temperature dependence of S-parameter shows a remarkable difference between the parent and superconductor, which indicates the structural phase transition for parent and superconductivity transition for superconductor. The well linearity of S-W plot determines only one-type defects through the superconducting transition. SmFeAsO and SmFeAsO0.82F0.18 polycrystalline samples are studied by PALS at room temperature and the results show two lifetime component, which are 151.6ps and 290.3ps for the parent sample and 161.6ps and 316.4ps for the superconducting sample. It should be noted that the shorter lifetime component chiefly comes from positron free annihilation in the bulk. Based on local density approximation (LDA) and general gradient approximation (GGA), positron bulk lifetimes and positron monovacancy lifetimes of perfect SmFeAsO and SmFeAsF crystals are calculated by the Superposed-Neutral-Atom model and Finite-Difference method (SNA-FD). The calculated positron bulk lifetime by GGA method is in agreement well with that of the shorter lifetime component measured by positron lifetime experiment. Therefore, according to the result of GGA, we conclude that the approximate 300ps lifetime component may come from the positron annihilation in Sm vacancy.
     In the third chapter, we propose a new mothod to analyse the electronic momentum distribution of coincidence doppler broadening spectrum (DBS), that is, compare the density of state (DOS) calculated by Density functional theory (DFT) based first-principle calculation with the electronic momentum distribution of DBS. According to this idea, the electronic structure of LaOFeA and SmOFeAs are studied. The feasibility of this method is confirmed by comparing the experiment spectra of Mg, Al, Si with the DOS of DFT. CASTEP is used to calculate the electronic band structures and DOS of LaFeAsO1-xFx and SmFeAsO1-xFx, and the result shows that an increase in the partial denstiy of state of O-2p near the Fermi surface after F-doping. According to our CDB at room temperature, an increase in the region of [(0-4)×10-3m0c] is also observed after F-doping. Therefore, we can conclude that the O/F-2p plays an important role in the change of DOS near the Fermi surface. This result provides a way to research the superconductivity of SmFeAsO1-xFx superconductor, meanwhile, a new method is proposed for analysis the positron annihilation CDB spectrum.
     In the fourth chapter, the degradation mechanism of spacecraft thermal control coating ZnO/Silicone under 90keV proton irradiation is studied by slow positron beam. The result shows that the primary degradation caused by proton irradiation is derived from silicone, when irradiation dose is below 1×1015cm-2, the radiation crosslink dominates. However, when the radiation dose is greater than 1×1015cm-2, the radiation degradation dominates.
引文
[1]Y. C. Jean, J. Kyle, H. Nakanishi, et al., Evidence for a common high-temperature superconducting effect in La1.85Sr0.15CuO4 and YBa2Cu3O7, Physical Review Letters,1988, 60,1069-1072.
    [2]C. S. Sundar, A. Bharathi, W. Y. Ching, et al., Positron-annihilation studies on the BiSrCaCuO superconductor, Physical Review B,1991,43,13019.
    [3]U. De, D. Sanyal, S. Chaudhuri, et al., Probing single-crystalline YBa2Cu3O7 across the superconducting transition temperature by positron annihilation measurements, Physical Review B,2000,62,14519.
    [4]郁伟中,正电子物理及其应用,2003.
    [5]C. Y. Chao, Scattering of Hard gamma-Rays, Physical Review,1930,36,1519-1522.
    [6]C. D. Anderson, The positive electron, Physical Review,1933,43,491.
    [7]E. Fermi and G. E. Uhlenbeck, On the Recombination of Electrons and Positrons, Physical Review,1933,44,510.
    [8]张宪锋,聚合物自由体积的正电子谱学研究,2004.
    [9]孔伟,正电子湮没多参数测量系统研制,2004.
    [10]S. Valkealahti and R. M. Nieminen. Monte Carlo calculations of keV electron and positron slowing down in solids. Ⅱ. Applied Physics A:Materials Science & Processing.1984,35, 51-59.
    [11]H. K. Onnes, The superconductivity of mercury, Comm. Phys. Lab. Univ. Leiden,1911,122, 124.
    [12]J G Bendnorz and K A Muller,z.phys,1986, B64,189
    [13]M. K. Wu, J. R. Ashburn, C. J. Torng, et al., Superconductivity at 93 K in a new mixed phase Y-Ba-Cu-O compound system at ambient pressure, Physical Review Letters,1987,58, 908-910.
    [14]Z. X. Zhao, L. Q. Chen, Q. S. Yang, et al., Superconductivity above liquid nitrogen temperature in Ba-Y-Cu oxides, Kexue Tongbao,1987,32,661-4.
    [15]L. Gao, Y. Y. Xue, F. Chen, et al., Superconductivity up to 164 K in HgBa2 Cam-1CumO2m+2+deta(m= 1,2,and 3)under quasihydrostatic pressures, Physical Review B, 1994,50,4260.
    [16]Y. Kamihara, T. Watanabe, M. Hirano, et al., Iron-Based Layered Superconductor La O1-xFx FeAs (x= 0.05-0.12) with T c= 26 K, Journal of the American Chemical Society,2008,130, 3296-3297.
    [17]G. F. Chen, Z. Li, G. Li, et al., Superconducting Properties of the Fe-Based Layered Superconductor LaFeAsO0.9F0.1-deta, Physical Review Letters,2008,101,57007.
    [18]X. Zhu, H. Yang, L. Fang, et al., Upper critical field, Hall effect and magnetoresistance in the iron-based layered superconductor LaFeAsO0.9F0.1-δ, Superconductor Science and Technology,2008,21,105001.
    [19]H. H. Wen, G. Mu, L. Fang, et al., Superconductivity at 25 K in hole-doped (La1-xSrx) OFeAs, EPL (Europhysics Letters),2008,82,17009.
    [20]X. H. Chen, T. Wu, G. Wu, et al., Superconductivity at 43[thinsp]K in SmFeAsO1-xFx, Nature,2008,453,761-762.
    [21]G. F. Chen, Z. Li, D. Wu, et al., Superconductivity at 41 K and Its Competition with Spin-Density-Wave Instability in Layered CeO1-xFxFeAs, Physical Review Letters,2008, 100,247002.
    [22]Z. A. Ren, J. Yang, W. Lu, et al., Superconductivity in the iron-based F-doped layered quaternary compound Nd [O1-xFx] FeAs, EPL (Europhysics Letters),2008,82,57002.
    [23]R. Zhi-An, L. Wei, Y. Jie, et al., Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm [O1-xFx] FeAs, Chinese Physics Letters,2008,25,2215.
    [24]W. L. McMillan, Transition Temperature of Strong-Coupled Superconductors, Physical Review,1968,167,331.
    [25]X. Q. Huang, What will be the maximum Tc in the iron-based superconductors?, Arxiv preprint arXiv:0808.4093v3,2008
    [26]H. K. Onnes, The liquefaction of helium,11,1908-1909.
    [27]W. Meissner and R. Ochsenfeld, Ein neuer Effekt bei eintritt der Supraleitfahigkeit, Naturwissenschaften,1933,21,787-788.
    [28]C. J. Gorter and H. Casimir, On supraconductivity I, Physica,1934,1,306-320.
    [29]F. London and H. London, The electromagnetic equations of the supraconductor, Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1935,149,71.
    [30]A. B. Pippard, Field variation of the superconducting penetration depth, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1950,203,210.
    [31]L. D. Landau and E. M. Lifshitz, Statistical Physics:Course of Theoretical Physics Translated from the Russian by E. Peierls and RF Peierls,1958.
    [32]V. L. Ginzburg, L. D. Landau, J. Exp. Theor. Phys.(USSR),1950,20,1064.
    [33]A. A. Abrikosov, ZhurnalEksp. Tear. Fiz, Sov. Phys. JETP,1957,32,1442.
    [34]A. Abrikosov, The magnetic properties of superconducting alloys, Journal of Physics and Chemistry of Solids,1957,2,199-208.
    [35]J. Frohlich, R Gotschmann, et al., Bosonization of Fermi systems in arbitrary dimension in terms of gauge forms, Journal of Physics A:Mathematical and General,1995,28,1169.
    [36]J. Bardeen, L. N. Cooper and J. R. Schrieffer, Theory of superconductivity, Physical Review, 1957,108,1175.
    [37]L. N. Cooper, Bound electron pairs in a degenerate Fermi gas, Physical Review,1956,104, 1189.
    [38]Y. Nambu, Quasi-particles and gauge invariance in the theory of superconductivity, Physical Review,1960,117,648.
    [39]P. W. Anderson and R. Schrieffer, A Dialogue on the Theory of High Tc, Physics Today, 1991,44,54-61.
    [40]C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, et al., Phenomenology of the normal state of Cu-O high-temperature superconductors, Physical Review Letters,1989,63,1996.
    [41]L. Y. Zhang, Comments on superconductivity of BaLaCuO systems, Solid State Communications,1987,62,491-493.
    [42]S. C. Zhang, A unified theory based on SO(5) symmetry of superconductivity and antiferromagnetism, Science,1997,275,1089.
    [43]闵桂荣,郭舜,航天器热控制,科学出版社,1998.
    [44]X. D. Zhou, C. Ye, P. Cai, et al., Quasiparticle Interference of C2-Symmetric Surface States in a LaOFeAs Parent Compound, Physical Review Letters,2011,106,87001.
    [45]J. Prakash, S. J. Singh, J. Ahmed, et al., Compositionally controlled semimetal to superconducting transition in NaF doped LaOFeAs: Enhancement in Tc due to Na-doping, Physica C:Superconductivity,2009,469,300-304.
    [46]D. H. Lu, M. Yi, S. K. Mo, et al., ARPES studies of the electronic structure of LaOFe (P, As), Physica C:Superconductivity,2009,469,452-458.
    [47]S. C. Zhao, D. Hou, Y. Wu, et al., Raman spectra in iron-based quaternary CeO1-xFxFeAs and LaO1-xFxFeAs, Superconductor Science and Technology,2009,22,015017.
    [48]G. Lang, H. J. Grafe, F. Hammerath, et al., Probing of the charge distribution in iron pnictides, Physica C:Superconductivity,2009,
    [49]J. Mustre de Leon, J. Lezama-Pacheco, A. Bianconi, et al., X-ray Absorption Spectroscopy Probing the Local Structure Changes at the Tetragonal-Orthorhombic Transition in LnOFeAs Pnictides, Journal of Superconductivity and Novel Magnetism,2009,22, 579-583.
    [50]A. Iadecola, S. Agrestini, M. Filippi, et al., Local structure of ReFeAsO (Re= La, Pr, Nd, Sm) oxypnictides studied by Fe K-edge EXAFS, EPL (Europhysics Letters),2009,87, 26005.
    [51]N. Qureshi, Y. Drees, J. Werner, et al., Crystal and magnetic structure of the oxypnictide superconductor LaO1-xFxFeAs:evidence for magnetoelastic coupling, Arxiv preprint arXiv:1002.4326,2010,
    [52]L. X. Yang, B. P. Xie, B. Zhou, et al., Electronic structure of SmOFeAs, Journal of Physics and Chemistry of Solids,2011,72,460-464.
    [53]Y. J. Jo, J. Jaroszynski, A. Yamamoto, et al., High-field phase-diagram of Fe arsenide superconductors, Physica C:Superconductivity,2009,469,566-574.
    [54]Y. Izyumov and E. Kurmaev, High-Tc Superconductors Based on FeAs Compounds,2010.
    [55]F. Hunte, J. Jaroszynski, A. Gurevich, et al., Two-band superconductivity in LaFeAsO0.89F0. 11 at very high magnetic fields, Nature,2008,453,903-905.
    [56]H. Takahashi, K. Igawa, K. Arii, et al., Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs, Nature,2008,453,376-378.
    [57]X. H. Chen, T. Wu, G. Wu, et al., Superconductivity at 43 K in SmFeAsO1-xFx, Nature,2008, 453,761-762.
    [58]C. de La Cruz, Q. Huang, J. Lynn, et al., Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems, Nature,2008,453,899-902.
    [59]R. Zhi-An and et al., Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1-δ(Re=rare-earth metal) without fluorine doping, EPL (Europhysics Letters), 2008,83,17002.
    [60]R. Zhi-An and et al., Superconductivity in the iron-based F-doped layered quaternary compound Nd[O1-xFx]FeAs, EPL (Europhysics Letters),2008,82,57002.
    [61]J. W. G. Bos, G. B. S. Penny, J. A. Rodgers, et al., High pressure synthesis of late rare earth RFeAs (O, F) superconductors; R= Tb and Dy, Chemical Communications,2008, 3634-3635.
    [62]J. Dong, H. Zhang, G. Xu, et al., Competing orders and spin-density-wave instability in La (O1-xFx) FeAs, EPL (Europhysics Letters),2008,83,27006.
    [63]Y. Takabayashi, M. T. McDonald, D. Papanikolaou, et al., Doping Dependence of the Pressure Response of Tc in the SmO1-xFxFeAs Superconductors, Journal of the American Chemical Society,2008,130,9242-9243.
    [64]A. J. Drew, F. Pratt, T. Lancaster, et al., Coexistence of Magnetic Fluctuations and Superconductivity in the Pnictide High Temperature Superconductor SmFeAsO1-xFx Measured by Muon Spin Rotation, Physical Review Letters,2008,101,97010.
    [65]Y. Kohama, Y. Kamihara, M. Hirano, et al., Ferromagnetic spin fluctuation in LaFeAsO1-xFx, Physical Review B,2008,78,020512.
    [66]Y. Nakai, K. Ishida, Y. Kamihara, et al., Evolution from Itinerant Antiferromagnet to Unconventional Superconductor with Fluorine Doping in LaFeAs (O1-xFx) Revealed by 75 As and 139La Nuclear Magnetic Resonance, Journal of the Physical Society of Japan,2008, 77.
    [67]E. Manousakis, J. Ren, S. Meng, et al., Effective Hamiltonian for FeAs-based superconductors, Physical Review B,2008,78,205112.
    [68]C. Cao, P. Hirschfeld and H. P. Cheng, Proximity of antiferromagnetism and superconductivity in LaFeAsO1-xFx:Effective Hamiltonian from ab initio studies, Physical Review B,2008,77,220506.
    [69]F. Ma, Z. Y. Lu and T. Xiang, Arsenic-bridged antiferromagnetic superexchange interactions in LaFeAsO, Physical Review B,2008,78,224517.
    [70]F. Ma and Z.-Y. Lu, Iron-based layered compound LaFeAsO is an antiferromagnetic semimetal, Physical Review B,2008,78,033111.
    [71]C. Fang, H. Yao, W.-F. Tsai, et al., Theory of electron nematic order in LaFeAsO, Physical Review B,2008,77,224509.
    [72]D. J. Singh and M. H. Du, Density Functional Study of LaFeAsO1-xFx: A Low Carrier Density Superconductor Near Itinerant Magnetism, Physical Review Letters,2008,100, 237003.
    [73]S. Raghu, X. L. Qi, C. X. Liu, et al., Minimal two-band model of the superconducting iron oxypnictides, Physical Review B,2008,77,220503.
    [74]Y. Z. Zhang, I. Opahle, H. O. Jeschke, et al., Itinerant nature of magnetism in iron pnictides: A first-principles study, Physical Review B,2010,81,094505.
    [75]K. Kuroki, S. Onari, R. Arita, et al., Unconventional Pairing Originating from the Disconnected Fermi Surfaces of Superconducting LaFeAsO1-xFx, Physical Review Letters, 2008,101,87004.
    [76]S. H. Lee, M. C. Wen, C. C. Chao, et al., Apathy in late-life depression among Taiwanese patients, International Psychogeriatrics,2008,20,328-337.
    [77]F. Wang, H. Zhai, Y. Ran, et al., Functional renormalization-group study of the pairing symmetry and pairing mechanism of the FeAs-based high-temperature superconductor, Physical Review Letters,2009,102,47005.
    [78]Z. J. Yao, J. X. Li and Z. Wang, Spin fluctuations, interband coupling and unconventional pairing in iron-based superconductors, New Journal of Physics,2009,11,025009.
    [79]X. Dai, Z. Fang, Y. Zhou, et al., Even Parity, Orbital Singlet, and Spin Triplet Pairing for Superconducting LaFeAsO1-xFx, Physical Review Letters,2008,101,57008.
    [80]L. Boeri, O. Dolgov and A. Golubov, Is LaFeAsO1-xFx an Electron-Phonon Superconductor?, Physical Review Letters,2008,101,26403.
    [81]H. J. Zhang, G Xu, X. Dai, et al., Enhanced Orbital Degeneracy in Momentum Space for LaOFeAs, Chinese Physics Letters,2009,26,017401.
    [82]I. I. Mazin, D. J. Singh, M. D. Johannes, et al., Unconventional Superconductivity with a Sign Reversal in the Order Parameter of LaFeAsO1-xFx, Physical Review Letters,2008,101, 57003.
    [83]D. A. Papaconstantopoulos, M. J. Mehl and M. D. Johannes, Tight-binding Hamiltonian for LaOFeAs, Physical Review B,2010,82,054503.
    [84]K. Haule, J. H. Shim and G. Kotliar, Correlated Electronic Structure of LaO1-xFxFeAs, Physical Review Letters,2008,100,226402.
    [85]B. I. Zimmer, W. Jeitschko, J. H. Albering, et al., The rate earth transition metal phosphide oxides LnFePO, LnRuPO and LnCoPO with ZrCuSiAs type structure, Journal of Alloys and Compounds,1995,229,238-242.
    [86]P. Quebe, L. Terbuchte and W. Jeitschko, Quaternary rare earth transition metal arsenide oxides RTAsO (T= Fe, Ru, Co) with ZrCuSiAs type structure, Journal of Alloys and Compounds,2000,302,70-74.
    [87]Y. Kamihara, H. Hiramatsu, M. Hirano, et al., Iron-based layered superconductor: LaOFeP, Journal of the American Chemical Society,2006,128,10012-10013.
    [88]T. Watanabe, H. Yanagi, T. Kamiya, et al., Nickel-based oxyphosphide superconductor with a layered crystal structure, LaNiOP, Inorganic chemistry,2007,46,7719-7721.
    [89]Z. Wei, H. Li, W. L. Hong, et al., Superconductivity at 57.3 K in La-Doped Iron-Based Layered Compound Smo.95La0.05O0.85F0.15 FeAs, Journal of Superconductivity and Novel Magnetism,2008,21,213-215.
    [90]P. Cheng, B. Shen, G. Mu, et al., High-Tc superconductivity induced by doping rare-earth elements into CaFeAsF, EPL (Europhysics Letters),2009,85,67003.
    [91]G. Wu, H. Chen, T. Wu, et al., Different resistivity response to spin-density wave and superconductivity at 20 K in Ca1-xNaxFe2As2, Journal of Physics:Condensed Matter,2008, 20,422201.
    [92]H. S. Jeevan, Z. Hossain, D. Kasinathan, et al., High-temperature superconductivity in Eu0.5K0.5Fe2As2, Physical Review B,2008,78,092406.
    [93]G. F. Chen, Z. Li, G. Li, et al., Superconductivity in hole-doped Sr1-xKxFe2As2, Chin Phys Lett,2008,25,3403-3405.
    [94]K. Sasmal, B. Lv, B. Lorenz, et al., Superconducting Fe-Based Compounds A1-xSrxFe2As2 with A=K and Cs with Transition Temperatures up to 37 K, Physical Review Letters,2008, 101,107007.
    [95]M. Rotter, M. Tegel and D. Johrendt, Superconductivity at 38 K in the Iron Arsenide Ba1-xKxFe2As2, Physical Review Letters,2008,101,107006.
    [96]M. Rotter, M. Tegel, D. Johrendt, et al., Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe2As2, Physical Review B,2008,78,020503.
    [97]Y. Qi, Z. Gao, L. Wang, et al., Superconductivity at 34.7 K in the iron arsenide Eu0.7Na0.3Fe2As2, New Journal of Physics,2008,10,123003.
    [98]A. S. Sefat, R. Jin, M. A. McGuire, et al., Superconductivity at 22 K in Co-Doped BaFe2As2 Crystals, Physical Review Letters,2008,101,117004.
    [99]Y. K. Li, X. Lin, Z. W. Zhu, et al., Effect of Co doping on superconductivity and transport properties in SmFe1-xCoxAsO, Arxiv preprint arXiv:0808.3254,2008.
    [100]X. F. Wang, T. Wu, G. Wu, et al., Anisotropy in the Electrical Resistivity and Susceptibility of Superconducting BaFe2As2 Single Crystals, Physical Review Letters,2009,102,117005.
    [101]Z. Ren, Z. Zhu, S. Jiang, et al., Antiferromagnetic transition in EuFe2As2:A possible parent compound for superconductors, Physical Review B,2008,78,052501.
    [102]G. F. Chen, Z. Li, J. Dong, et al., Transport and anisotropy in single-crystalline SrFe2As2 and Ao.6Ko.4Fe2As2(A= Sr, Ba) superconductors, Physical Review B,2008,78,224512.
    [103]N. Ni, S. Budi(?)ko, A. Kreyssig, et al., Anisotropic thermodynamic and transport properties of single-crystalline Ba1-xKxFe2As2(x= 0 and 0.45), Physical Review B,2008,78,014507.
    [104]A. Kreyssig, M. A. Green, Y. Lee, et al., Pressure-induced volume-collapsed tetragonal phase of CaFe2As2as seen via neutron scattering, Physical Review B,2008,78,184517.
    [105]M. Rotter, M. Tegel and D. Johrendt, Superconductivity at 38 K in the Iron Arsenide Ba1-xKxFe2As2, Physical Review Letters,2008,101,107006.
    [106]X. C. Wang, Q. Q. Liu, Y. X. Lv, et al., The superconductivity at 18 K in LiFeAs system, Solid State Communications,2008,148,538-540.
    [107]J. H. Tapp, Z. Tang, B. Lv, et al., LiFeAs:An intrinsic FeAs-based superconductor with Tc= 18 K, Physical Review B,2008,78,060505.
    [108]S. Li, C. de La Cruz, Q. Huang, et al., Structural and magnetic phase transitions in Na(1-δ) FeAs, Physical Review B,2009,80,020504.
    [109]F. L. Pratt, P. J. Baker, S. J. Blundell, et al., Enhanced superfluid stiffness, lowered superconducting transition temperature, and field-induced magnetic state of the pnictide superconductor LiFeAs, Physical Review B,2009,79,052508.
    [110]J. Wen, G. Xu, G. Gu, et al., Single crystal growth and properties of iron-chalcogenide superconductors, Arxiv preprint arXiv:1104.0695,2011.
    [111]Y. Mizuguchi, F. Tomioka, S. Tsuda, et al., Superconductivity at 27 K in tetragonal FeSe under high pressure, Applied Physics Letters,2008,93,152505.
    [112]R. Khasanov, M. Bendele, A. Amato, et al., Evolution of Two-Gap Behavior of the Superconductor FeSe1-x, Physical Review Letters,2010,104,87004.
    [113]S. Medvedev, T. M. McQueen, I. A. Troyan, et al., Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure, Nature Materials,2009,8, 630-633.
    [114]K. W. Yeh, T. W. Huang, Y. L. Huang, et al., Tellurium substitution effect on superconductivity of the a-phase iron selenide, EPL (Europhysics Letters),2008,84, 37002.
    [115]S. Margadonna, Y. Takabayashi, Y. Ohishi, et al., Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (Tc=37 K), Physical Review B, 2009,80,064506.
    [116]J. Guo, S. Jin, G. Wang, et al., Superconductivity in the iron selenide KxFe2Se2(0≤x≤1.0), Physical Review B,2010,82,180520.
    [117]A. F. Wang, J. J. Ying, Y. J. Yan, et al., Superconductivity at 32 K in single-crystalline RbxFe2-ySe2, Physical Review B,2011,83,060512.
    [118]Y. Mizuguchi, H. Takeya, Y. Kawasaki, et al., Transport properties of the new Fe-based superconductor KxFe2Se2 (Tc= 33 K), Arxiv preprint arXiv:1012.4950,2010.
    [119]M. Fang, H. Wang, C. Dong, et al., Fe-based high temperature superconductivity with Tc= 31K bordering an insulating antiferromagnet in (T1, K) FexSe2 Crystals, Arxiv preprint arXiv:1012.5236,2010.
    [120]A. Krzton-Maziopa, Z. Shermadini, E. Pomjakushina, et al., Synthesis and crystal growth of Cs0.8 (FeSe 0.98)2:a new iron-based superconductor with Tc=27 K, Journal of Physics: Condensed Matter,2011,23,052203.
    [121]H. Ogino, Y. Matsumura, Y. Katsura, et al., Superconductivity at 17 K in (Fe2P2)(Sr4Sc2O6): a new superconducting layered pnictide oxide with a thick perovskite oxide layer, Superconductor Science and Technology,2009,22,075008.
    [122]T. Klimczuk, T. M. McQueen, A. J. Williams, et al., Superconductivity at 2.2 K in the layered oxypnictide La3Ni4P4O2, Physical Review B,2009,79,012505.
    [123]X. Zhu, F. Han, G. Mu, et al., Sr3Sc2Fe2As205 as a possible parent compound for FeAs-based superconductors, Physical Review B,2009,79,024516.
    [124]R. H. Liu, G. Wu, T. Wu, et al., Anomalous Transport Properties and Phase Diagram of the FeAs-Based SmFeAsO1-xFx Superconductors, Physical Review Letters,2008,101,087001.
    [125]H. Chen, Y. Ren, Y. Qiu, et al., Coexistence of the spin-density wave and superconductivity in Ba1-xKxFe2As2, EPL (Europhysics Letters),2009,85,17006.
    [126]J. Zhao, Q. Huang, C. de La Cruz, et al., Structural and magnetic phase diagram of CeFeAsO1-xFx and its relation to high-temperature superconductivity, Nature Materials, 2008,7,953-959.
    [127]M. D. Johannes and I. I. Mazin, Microscopic origin of magnetism and magnetic interactions in ferropnictides, Physical Review B,2009,79,220510.
    [128]Q. Huang, Y. Qiu, W. Bao, et al., Neutron-diffraction measurements of magnetic order and a structural transition in the parent BaFe2As2 compound of FeAs-based high-temperature superconductors, Phys. Rev. Lett,2008,101,1-4.
    [129]Y. Qiu, W. Bao, Q. Huang, et al., Crystal Structure and Antiferromagnetic Order in NdFeAsO1-xFx(x= 0.0 and 0.2) Superconducting Compounds from Neutron Diffraction Measurements, Physical Review Letters,2008,101,257002.
    [130]C. Day, Iron-based superconductors, Physics Today,2009,62,36"C40.
    [131]R. H. Liu, T. Wu, G. Wu, et al., A large iron isotope effect in SmFeAsO1-xFx and Ba1-xKxFe2As2, Nature,2009,459,64-67.
    [132]F. Han, X. Zhu, P. Cheng, et al., Superconductivity and phase diagrams of the 4d-and 5d-metal-doped iron arsenides SrFe2-xMx As2(M= Rh, Ir, Pd), Physical Review B,2009,80, 024506.
    [133]Q. Han, Y. Chen and Z. Wang, A generic two-band model for unconventional superconductivity and spin-density-wave order in electron-and hole-doped iron-based superconductors, EPL (Europhysics Letters),2008,82,37007.
    [134]F. Wang and D. H. Lee, The Electron-Pairing Mechanism of Iron-Based Superconductors, Science,2011,332,200.
    [135]Q. Luo, D. X. Yao, A. Moreo, et al., Charge Stripes in the Two-Orbital Hubbard Model for Pnictides, Arxiv preprint arXiv:1103.3743,2011.
    [136]H. Wang, Striped-magnetic-order suppresses giant optical anisotropy and drives structural distortion in iron arsenide superconductors, Arxiv preprint arXiv:1005.2121,2010.
    [137]T. Nomura, Perturbation theory of iron-pnictide superconductivity, Physica C: Superconductivity,2009.
    [138]F. Ma, Z. Lu and T. Xiang, Electronic structures of ternary iron arsenides AFe2As2 (A= Ba, Ca, or Sr), Frontiers of Physics in China,2010,5,150-160.
    [139]I. I. Mazin, Superconductivity gets an iron boost, Nature,2010,464,183-186.
    [140]P. Blaha, K. Schwarz, GKH. Madsen, et al., An augmented plane wave plus local orbital program for calculating crystal properties, Vienna University of Technology, Vienna, Austria,2001.
    [141]K. Nakayama, T. Sato, P. Richard, et al., Superconducting gap symmetry of Ba0.6K0. 4Fe2As2 studied by angle-resolved photoemission spectroscopy, EPL (Europhysics Letters), 2009,85,67002.
    [142]T. Y. Chen, Z. Tesanovic, R. H. Liu, et al., A BCS-like gap in the superconductor SmFeAsO0.85F0.15, Nature,2008,453,1224-1227.
    [143]H. H. Wen, G. Mu, H. Luo, et al., Specific-Heat Measurement of a Residual Superconducting State in the Normal State of Underdoped Bi2Sr2-xLaxCu06+delta Cuprate Superconductors, Physical Review Letters,2009,103,067002.
    [144]M. J. Puska and R. M. Nieminen, Defect spectroscopy with positrons:a general calculational method, Journal of Physics F: Metal Physics,1983,13,333.
    [145]M. J. Puska and R. M. Nieminen, Theory of positrons in solids and on solid surfaces, Reviews of Modern Physics,1994,66,841.
    [146]W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review,1965,140,A1133.
    [147]F. Herman, J. P. Van Dyke and I. B. Ortenburger, Improved statistical exchange approximation for inhomogeneous many-electron systems, Physical Review Letters,1969, 22,807-811.
    [148]R. M. Nieminen, E. Boronski and L. J. Lantto, Two-component density-functional theory: Application to positron states, Physical Review B,1985,32,1377.
    [149]陈祥磊,基于中性原子叠加模型的正电子理论计算,2009.
    [150]H. Takenaka and D. J. Singh, Positron potential and wave function in LaFeAsO, Physical Review B,2008,78,052503.
    [151]谢希德,陆栋,固体能带理论(第二版),2007.
    [152]D. R. Hartree, The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods, Mathematical Proceedings of the Cambridge Philosophical Society, 1928,24,89-110.
    [153]J. C. Slater, Wave Functions in a Periodic Potential, Physical Review,1937,51,846.
    [154]L. H. Thomas, The calculation of atomic fields, Mathematical Proceedings of the Cambridge Philosophical Society,1927,23,542-548.
    [155]E. H. Lieb, Thomas-fermi and related theories of atoms and molecules, Reviews of Modern Physics,1981,53,603.
    [156]P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review,1964,136, B864.
    [157]W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev,1965,140, A1133-A1138.
    [158]J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters,1996,77,3865.
    [159]J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B,1992,45,13244.
    [160]V. I. Anisimov, J. Zaanen and O. K. Andersen, Band theory and Mott insulators:Hubbard U instead of Stoner I, Physical Review B,1991,44,943.
    [161]V. I. Anisimov, F. Aryasetiawan and A. Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems:the LDA+ U method, Journal of Physics:Condensed Matter,1997,9,767.
    [162]F. Bloch, Z. Phys.52,555 (1928)
    [163]W. Y. Ching, Y.-N. Xu and K. W. Wong, Ground-state and optical properties of Cu2O and CuO crystals, Physical Review B,1989,40,7684.
    [164]W. Y. Ching, Theoretical Studies of the Electronic Properties of Ceramic Materials, Journal of the American Ceramic Society,1990,73,3135-3160.
    [165]C. Herring and A. G. Hill, The Theoretical Constitution of Metallic Beryllium, Physical Review,1940,58,132.
    [166]C. Herring, A New Method for Calculating Wave Functions in Crystals, Physical Review, 1940,57,1169.
    [167]T. L. Loucks, Augmented plane wave method,1967.
    [168]J. Korringa, On the calculation of the energy of a Bloch wave in a metal, Physica,1947,13, 392-400.
    [169]W. Kohn and N. Rostoker, Solution of the Schrödinger Equation in Periodic Lattices with an Application to Metallic Lithium, Physical Review,1954,94,1111.
    [170]D. D. Koelling and G. O. Arbman, Use of energy derivative of the radial solution in an augmented plane wave method:application to copper, Journal of Physics F:Metal Physics, 1975,5,2041.
    [171]H. L. Skriver, The LMTO method,1984.
    [172]E. Wimmer, H. Krakauer, M. Weinert, et al., Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces:O2 molecule, Physical Review B,1981,24,864.
    [173]I. B. Goldberg, The electronic band structure of V3Ga. II, Journal of Physics C:Solid State Physics,1975,8,1159.
    [174]D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical Review B,1990,41,7892.
    [175]M. D. Segall, P. J. D. Lindan, M. J. Probert, et al., First-principles simulation:ideas, illustrations and the CASTEP code, Journal of Physics:Condensed Matter,2002,14,2717.
    [176]Doppler, A program to model positron states and annihilation in solids,2003.
    [177]郗传英,符合多普勒测量系统研制及应用研究,2005.
    [178]M. Aftabuzzaman, A. Islam and S. Naqib, Electronic band structure, phonon spectrum, and elastic properties of LaOFeAs, Arxiv preprint arXiv:0909.2914,2009.
    [179]T. Nomura, S. W. Kim, Y. Kamihara, et al., Crystallographic phase transition and high-Tc superconductivity in LaFeAsO:F, Superconductor Science and Technology,2008,21, 125028.
    [180]李正中,固体物理,高等教育出版社,2002.
    [181]A. Martinelli, M. Ferretti, P. Manfrinetti, et al., Synthesis, crystal structure, microstructure, transport and magnetic properties of SmFeAsO and SmFeAs (O0.93F0.07), Superconductor Science and Technology,2008,21,095017.
    [182]X. B. Liu and Z. Altounian, Magnetic moments and exchange interaction in Sm(Co, Fe)5 from first-principles, Computational Materials Science,2011,50,841-846.
    [183]G. Ummarino, Multiband s± Eliashberg theory and temperature-dependent spin-resonance energy in iron pnictide superconductors, Physical Review B,2011,83,092508.
    [184]S. L. Skornyakov, N. A. Skorikov, A. V. Lukoyanov, et al., LDA+DMFT spectral functions and effective electron mass enhancement in the superconductor LaFePO, Physical Review B,2010,81,174522.
    [185]J. Yang, Z. A. Ren, G. C. Che, et al., The role of F-doping and oxygen vacancies on the superconductivity in SmFeAsO compounds, Superconductor Science and Technology,2009, 22,025004.
    [186]E. Z. Kurmaev, R. G. Wilks, A. Moewes, et al., X-ray spectra and electronic structures of the iron arsenide superconductors RFeAsO1-xFx(R= La, Sm), Physical Review B,2008,78, 220503.
    [187]A. E. Mattsson, P. A. Schultz, M. P. Desjarlais, et al., Designing meaningful density functional theory calculations in materials science---a primer, Modelling and Simulation in Materials Science and Engineering,2005,13, R1.
    [188]何知朱,新型热控材料器件及应用,宇航出版社,1988.
    [189]H. Cao, R. Zhang, H. Chen, et al., Application of slow positrons to coating degradation, Radiation Physics and Chemistry,2000,58,645-648.
    [190]F. Auret, S. Goodman, M. Hayes, et al., Electrical characterization of 1.8 MeV proton-bombarded ZnO, Applied Physics Letters,2001,79,3074.
    [191]Z. Q. Chen, S. J. Wang, M. Maekawa, et al., Thermal evolution of defects in as-grown and electron-irradiated ZnO studied by positron annihilation, Physical Review B,2007,75, 245206.
    [192]J. F. Ziegler, J. P. Biersack and U. Littmark, The stopping and range of ions in matter,1985, 316.
    [193]王广厚粒子同固体相互作用物理学上册科学出版社1988
    [194]A. Van Veen, H. Schut, M. Clement, et al., VEPFIT applied to depth profiling problems, Applied Surface Science,1995,85,216-224.
    [195]A. Van Veen, H. Schut, J. De Vries, et al., Analysis of positron profiling data by means of VEPFIT,1991,218,171.
    [196]H. Cao, Y. He, R. Zhang, et al., Degradation of polymer coating systems studied by positron annihilation spectroscopy. II. Correlation with free radical formation, Journal of Polymer Science, Part B:Polymer Physics,1999,37,1289-1305.
    [197]F. Saito, T. Yotoriyama, Y. Fujii, et al., Study of ion-irradiated polystyrene using slow positron beam, Radiation Physics and Chemistry,2007,76,200-203.
    [198]R. Zhang, X. Gu, H. Chen, et al., Study of the photodegradation of epoxy polymers with slow positron annihilation spectroscopy, Journal of Polymer Science Part B:Polymer Physics,2004,42,2441-2459.
    [199]L. X. Zhang, S. Q. Yang and S. Y. He, Damage of silicone rubber induced by proton irradiation, Chinese journal of polymer science,2003,21,563-568.
    [200]G. T. Wang, Y. Qian, G. Xu, et al., Gutzwiller Density Functional Studies of FeAs-Based Superconductors:Structure Optimization and Evidence for a Three-Dimensional Fermi Surface, Physical Review Letters,2010,104,47002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700