新型磁性高分子载体的制备、固定化脂肪酶及其催化酮洛芬手性拆分的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文综述了固定化酶技术、固定化酶用磁性高分子载体材料以及脂肪酶与固定化脂肪酶用于2-芳基丙酸类化合物手性拆分的最新进展,提出了本学位论文的研究思路和选题指导思想。采用无皂种子乳液聚合和DPE可控自由基聚合法合成了两种新型磁性高分子载体材料,对合成的载体进行了表征,优化了固定化条件,研究了两种固定化酶的性质;并使用游离酶及上述两种载体材料固定化脂肪酶后用于催化酮洛芬酯类手性水解反应,研究了多种因素对于不对称水解反应的影响。
     1、利用传统的化学共沉淀法合成了Fe304磁性纳米粒子,并使用油酸和γ-氨丙基三乙氧基硅烷对Fe304磁性纳米粒子进行了改性。结果表明,对磁性粒子的化学改性是成功的,且合成的磁性粒子粒径约为十几纳米,并有一定的磁响应性。
     2、采用苯乙烯(St),甲基丙烯酸缩水甘油酯(GMA)和甲基丙烯酸β-羟乙酯(HEMA)作为共聚单体,利用无皂乳液聚合法合成种子乳液后将APTS-Fe3O4纳米粒子引入,得到磁性种子乳液;在此磁性种子乳液存在下,采用甲基丙烯酸丁酯(BMA)与醋酸乙烯酯(VAc)为共聚第二单体,得到磁性聚合物复合乳胶粒;对乳胶粒进一步功能化后,用共价结合法和物理吸附法对进行了脂肪酶的固定化。结果表明,合成的磁性乳胶粒具有核壳结构,且具有一定的磁响应性。且用共价结合法制得的固定化酶性质优于物理吸附法制得的固定化酶。
     3、利用1,1-二苯乙烯(DPE)作为控制试剂,通过两步聚合,合成了高分子-磁性粒子复合微球。首先,以油酸改性的纳米Fe304粒子、DPE以及单体GMA、引发剂AIBN为油相,2%淀粉NaCl饱和溶液为水相,应用简单的悬浮聚合法在氮气氛围中进行第一步聚合。聚合结束后使反应体系冷却过夜,后在第一步反应体系中加入第二种单体HEMA和少量交联剂,不另加引发剂,进行第二步聚合,即得磁性高分子微球载体。用所得高分子微球进行了脂肪酶的固定化,研究了固定化酶的性质,采用SDS凝胶电泳证实了酶的连接方式。结果表明,该固定化酶在水相和有机相中均表现出了较好的催化活性,说明该载体是一种两亲型载体。
     4、合成了酮洛芬的不同种酯并对其用核磁共振氢谱进行了表征。选用玫瑰假丝酵母脂肪酶作为催化剂,研究了其在水相中催化酮洛芬的不同酯水解的反应。研究了反应的各种条件,如不同底物、底物浓度、反应pH值、反应时间、有机溶剂、共溶剂DMSO的加入等对的反应的转化率及立体选择性的影响,结果表明,加入一定量DMSO,能够提高底物的转化率和产物的立体选择性。
     5、选用上述合成的两种载体固定化玫瑰假丝酵母脂肪酶作为催化剂,考察了两种固定化酶对酮洛芬不同酯的选择性,对比了两种固定化酶的反应效果。结果表明,P(GMA-b-HEMA)磁性高分子微球固定化脂肪酶催化酮洛芬酯水解的效果较好,在此基础上,优化了其催化酮洛芬酯水解反应的条件,并考察了固定化酶的重复使用效果。结果表明,该固定化酶重复使用五次之后,仍能保持一定的催化活力和对底物的选择性。
This dissertation reviews the studies of enzyme immobilization technologies, novel immobilization materials of today and application of lipase and immobilized lipase on chiral separation of 2-Arylpropionic Acid. Novel magnetic polymer composites were synthesized via soap-free seeded emulsion polymerization and DPE controlled radical polymerization, respectively. After that, these novel magnetic polymer composites were used as carriers for lipase immobilization. Then free lipase and the synthesized immobilized lipases were used as catalyst to catalyze the asymmetric hydrolysis of ketoprofen ester.
     1、Fe3O4 nanoparticles were synthesized by the chemical co-precipitation method, and the magnetic nanoparticles were chemically modified by oleic acid and y-aminopropyltriethoxysilane (APTS).
     2、Superparamagnetic composites based on polymer colloids were prepared by seeded emulsion. Firstly, styrene (St), glycidyl methacrylate (GMA) and 2-hydroxyethyl methacrylate (HEMA) were copolymerized by soap-free seeded emulsion polymerization, and then APTS-Fe3O4 nanoparticles were introduced into above copolymer emulsion by covalent bonding or physically absorption. Secondly, butyl methacrylate (BMA), vinyl acetate (VAc) and ethylne glycol dimethacrylate (EGDMA) were added drop wise to the the superparamagnetic seed latexes without addition of any emulsifier. The results showed that the magnetic composites of polymer colloids were successfully synthesized and had a structure with a thinner shell (around 100 nm) and a bigger cavity (around 200 nm) and also possessed a certain level of magnetic response (4.16emu/g carrier). Candida rugosa lipases (CRL) were covalently immobilized or physically absorbed on the magnetic microspheres. The immobilized lipase could be separated, recovered and reused easily and rapidly. The immobilization conditions were optimized; the properties of immobilized lipase (such as themal stability, reusability and kinetic properties) prepared by the two methods were compared. The results indicated that immobilized lipase prepared by covalent bonding held better themal stability and reusability than ICRL prepared by physically absorption.
     3、OA-Fe3O4 nanoparticles were introduced into 1,1-Diphenylethylene (DPE) controlled radical polymerization system to prepare superparamagnetic microspheres for enzyme immobilization by two steps of polymerization. In the presence of DPE, glycidyl methacrylate (GMA) and 2-hydroxyethyl methacrylate (HEMA), methacryloxyethyl trimethyl ammonium chloride (MATAC) with charge were selected as copolymering monomers based on their reactive functional group and excellent biocompatibility which were suitable for immobilization of Candida rugosa lipase (CRL). SDS-PAGE analysis was also conducted to demonstrate whether CRL is covalently immobilized or only physically adsorbed. The results indicated that the polymerization was successfully carried out, and lipase was immobilized on the magnetic microspheres through ionically adsorption and covalent binding under mild conditions. The immobilized lipase exhibited high activity recovery (69.7%), better resistance to pH and temperature inactivation in aqueous phase, as well as superior reusability in nonaqueous phase. The data showed that the resulting carrier could hold an amphiphilic property.
     4、The methyl ester, ethyl ester, propyl ester, isopropyl ester and butyl ester of ketoprofen were synthesized. Candida rugosa lipase was used as catalyst to catalyze the asymmetric hydrolysis reaction of ketoprofen esters. The reaction conditions (such as structure of substrate, pH, addition of DMSO and reaction time) were optimized. The obtained products were analyzed by HPLC. The results showed that the conversion% of substrate and eep value of products will increase with the addition of DMSO.
     5、Candida rugosa lipase was immobilized on magnetic polymer colloids and P(GMA-b-HEMA). Then the immobilized CRL were used to catalyze asymmetric hydrolysis reaction of ketoprofen esters. The effects of the two immobilized CRL on the conversion% of substrate and eep value of products were compared. The reaction conditions (such as structure of substrate, pH, addition of DMSO and reaction time) were optimized. The reusability of immobilized CRL was also investigated.
引文
[1]王镜岩,朱圣庚,徐长法等.生物化学[M].第三版.北京:高等教育出版社.2002.
    [2]Silman IH, Katchalski E:Water-insoluble derivatives of enzymes, antigens, and antibodies[J]. Annu Rev Biochem.1966,35:837-877.
    [3]Vandamme E.J., Peptide antibiotic production through immobilized biocatalyst technology[J]. Enzyme Microb. Technol.1983,5:403-415.
    [4]Schulze, B., Wubbolts, M.G., Biocatalysis for industrial production of fine Chemicals[J]. Curr. Opin. Biotechnol.1999,10:609-615.
    [5]Jinghua Yu, Lei Ge,Ping Dai, Shenguang Ge,Shiquan Liu A novel enzyme biosensor for glucose based on rhodanine derivative chemiluminescence system and mesoporous hollow silica microspheres receptor[J]. Biosensors and Bioelectronics.2010,25:2065-2070.
    [6]Abd-Elgawad Radi, Xavier Munoz-Berbel, Montserrat Cortina-Puig, Jean-Louis Marty Novel Protocol for Covalent Immobilization of Horseradish Peroxidase on Gold Electrode Surface [J]. Electroanalysis.2009,21:696-700.
    [7]Evren Tastan,Sakip Onder, Fatma Nese Kok Immobilization of laccase on polymer grafted polytetrafluoroethylene membranes for biosensor construction[J]. Talanta.2011,84:524-530.
    [8]Hitoshi M., Tatsuya H., and Yasunori M. Enzyme Biosensor Based on Plasma-Polymerized Film-Covered Carbon Nanotube Layer Grown Directly on A Flat Substrate[J]. ACS Appl. Mater. Interfaces.2011, (3):2445-2450.
    [9]Shengyuan Deng, Guoqiang Jian, Jianping Lei, Zheng Hu, Huangxian Ju A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes[J]. Biosensors and Bioelectronics.2009,25:373-377.
    [10]张宪锋,郑裕国.酶法拆分手性化合物HPBE[J].生物加工过程.2003,1(2):34-38.
    [11]Sivalingam G, Madras G. Modeling of lipase catalyzed ring-opening polymerization of ε-caprolactone[J]. Biomacromolecules.2004,5(2):603-609.
    [12]郭丽,张凌之,吕子敏等.固定化酶催化合成CCK-8C-端三肽衍生物[J].化学学报.2003,61(3):406-410.
    [13]曹林秋.载体固定化酶:原理、应用和设计[M].北京:化学工业出版社.2008.
    [14]Kasche. V. Mechanism and yields in enzyme catalysed equilibrium and kinetically controlled synthesis of β-lactam antibiotics, peptides and other condensation products[J]. Enzyme Microb. Technol.1986,8(1):4-16.
    [15]Kitaguchi H, Klibanov A M. Enzymic peptide synthesis via segment condensation in the presence of water mimics[J]. J. Am. Chem. Soc.1989,111(26):9272-9273.
    [16]熊宗贵等.生物技术制药[M].北京:高等教育出版社.1999.
    [17]拜永孝,李彦锋,马应霞等.固定化酶技术及其应用研究进展[J].化学通报.2005,68(3):w027.
    [18]Nelson, J. M. and Griffin, E. G. Adsorption of invertase[J]. J. Am. Chem. Soc.1916,38: 1109-1115.
    [19]Albayrak N, Yang ST. Immobilization of Aspergillus oryzae β-galactosidase on to sylated cotton cloth[J]. Enzyme Microb Technol.2002,31:371-383.
    [20]周诗毅,袁均林,贺红武,马玉涵,谭宏亮.包埋法固定SOD及固定化酶性质的研究[J].华中 师范大学学报(白然科学版).2005,39:97-99.
    [21]肖美燕,徐尔尼,陈志文.包埋法固定化细胞技术的研究进展[J].食品科学.2003,24(4):158-161.
    [22]Miroslawa etal. Catalytic properties of membrane-bound Mucor lipase immobilized in a hydrophilic carrier[J]. Journal of Molecular Catalysis B:Enzymatic.2002,19-20:261-268.
    [23]Tetsuo Omata, Atsuo Tanaka, Tsuneo Yamane and Saburo Fukui Immobilization of microbial cells and enzymes with hydrophobic photo-crosslinkable resin prepolymers[J]. Applied Microbiology and Biotechnology.1979,3:207-215.
    [24]孙万成,蒋笃孝,罗毅皓.壳聚糖/海藻酸钠微胶囊固定化磷脂酶A1及其结构考察[J].食品科学.2005,26(9):100-103.
    [25]Zarbosky O. Immobilised enzymes [M]. Cleveland:CRC Press.1973.
    [26]Sharma S., Kaur P., Jain A. et al. A Smart Bioconjugate of Chymotrypsin[J]. Biomacromolecules.2003,4(2):330-336.
    [27]Xiaowei Yang, Zhengwei Cai, Zhangmei Ye, Sheng Chen, Yu Yang, Haifang Wang, Yuanfang Liu and Aoneng Cao In situ synthesis of porous silica nanoparticles for covalent immobilization of enzymes[J]. Nanoscale.2012,4:414-416.
    [28]Cao L. Immobilised enzymes:science or art?[J]. Curr Opin Chem Biol.2005,9(2):217-226.
    [29]王家东,姜子明,曹彬,侯红萍等.固定化糖化酶的研究[J].中国调味品.2006,3:14-16.
    [30]Grolger, E H.. Capan, Barthuber A. et al. Asymmetric Synthesis of an (R)-Cyanohydrin Using Enzymes Entrapped in Lens-Shaped Gels[J]. Org. Lett.2001,3(13):1969-1972.
    [31]Pessela B. C. C., Mateo C., Carrascosa A. V. et al. One-Step Purification, Covalent Immobilization, and Additional Stabilization of a Thermophilic Poly-His-Tagged β-Galactosidase from Thermus sp. Strain T2 by using Novel Heterofunctional Chelate-Epoxy Sepabeads[J]. Biomacromolecules.2003,4(1):107-113.
    [32]Dickey F H. The Preparation of Specific Adsorbents[J]. Proc. Natl. Acad. Sci.1949,35: 227-229.
    [33]Wulff G, Sarchan A. Enzyme-analogue built polymers and their use for the resolution of racemates[J] Tetrahedron. Letter.1973,14(44):4329-4332.
    [34]张莹,苏立强等.壳聚糖表面胰蛋白酶分子印迹聚合物的制备及性能的研究[J].化工时刊.2010(24):9-11.
    [35]Yong Li, Huang-Hao Yang, Qi-Hua You, Zhi-Xia Zhuang, Xiao-Ru Wang Protein Recognition via Surface Molecularly Imprinted Polymer Nanowires[J]. Anal. Chem.2006,78 (1), pp 317-320.
    [36]盖青青,何锡文,张玉奎等.光接枝表面修饰法制备牛血红蛋白的分子印迹微球[J].高等学校化学学报.2008,29(1):64-70.
    [37]Kumada Y, Tokunaga Y, Imanaka H. et al. Screening and characterization of affinity Peptide tags specific to polystyrene supports for the orientated immobilization of proteins[J]. Biotechnol Prog.2006,22(2):401-405.
    [38]Ida J., Matsuyama T., Yamamoto H.. Immobilization of glucoamylase on ceramic membrane surfaces modified with a new method of treatment utilizing SPCP-CVD[J]. Biochem. Eng. J. 20005(3):179-184.
    [39]Mateo C., Fernandez-Lorente G., Abian O. et al. Multifunctional epoxy supports:a new tool to improve the covalent immobilization of proteins. The promotion of physical adsorptions of proteins on the supports before their covalent linkage[J]. Biomacromolecules.2000, 1(4):739-45.
    [40]Girard-Egrot A. P., Godoy S., Blum L. J. Enzyme association with lipidic Langmuir-Blodgett films:interests and applications in nanobioscience[J]. Adv Colloid Interface Sci.2005, 116(1-3):205-225.
    [41]Turkova J. Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function[J]. J Chromatogr B Biomed Sci Appl.1999,722 (1-2):11-31.
    [42]Rudiger O., Abad J. M., Hatchikian E. C. et al. Oriented immobilization of Desulfovibrio gigas hydrogenase onto carbon electrodes by covalent bonds for nonmediated oxidation of H2[J]. J Am Chem Soc.2005 127(46):16008-16009.
    [43]Tinazli, J. Tang, R. Valiokas et al. High-affinity chelator thiols for switchable and oriented immobilization of histidine-tagged proteins: a generic platform for protein chip technologies[J]. Chemistry.2005, 11(18):5249-5259.
    [44]Zuzana B., Marcela S., Antonan L. et al. Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly (HEMA-co-EDMA) and magnetic poly (HEMA-co-EDMA) microspheres[J]. Journal of Chromatography B.2002,770(1-2):25-34.
    [45]Huang W., Wang J. Q., Bhattacharyya D. et al. Improving the activity of immobilized subtilisin by site-directed attachment to surfaces[J]. Annal Chem.1997,69(22):4601-4607.
    [46]Min D. J., Andrade J. D., Stewart R. J. Specific immobilization of in vivo biotinylated bacterial luciferase and FMN:NAD(P)Hoxidoreductase[J]. Annal Biochem.1999,270(1): 133-139.
    [47]汪海萍,魏荣卿,沈斌等.双醛淀粉柔性固定木瓜蛋白酶研究[J].生物加工过程.2004,2(1):25-29.
    [48]魏荣卿,沈斌,刘晓宁,汪海萍,王宇星,欧阳平凯.壳聚糖载体柔性固定化木瓜蛋白酶[J].过程工程学报.2005,5(2):183-187.
    [49]曲伟光,魏荣卿,何冰芳,刘晓宁,仲玉,陈新营.亲水梳状环氧聚合物载体柔性固定化脂肪酶[J]催化学报.2011,12(32):1869-1874.
    [50]郭桥,罗贵民,孙启安等.α-淀粉酶与糖化酶的共固定化研究[J].生物化学杂志.1994,10(3):259-263.
    [51]孙颖,惠春.磁性高分子复合微球的研究进展[J].材料导报.2005,19(12):17-19.
    [52]Wang P. H., Pan C. Y. Polymer metal composite microspheres preparation and characterization of poly(St-co-AN)Ni microspheres[J].Eur Polym J.2000,36 (10):2297-2300.
    [53]Nikitin L. V., Stepanov G. V., Mironova L. S et al. Properties of magnetoelastics synthesized in external magnetic field[J]. J of Magn and Magnetic Mater.2003,258-259:468-470.
    [54]任广智,李振华,何炳林.磁性壳聚糖微球用于脉激酶的固定化研究[J].离子交换与吸附.2000,16(4):304-310.
    [55]Kawaguchi H. Functional polymer microspheres[J]. Prog.Polym.Sci.2000,25(8):1171-1210.
    [56]Ugelstad J., Berge, A. Ellingsen T. et al. Preparation and application of new monosized polymer particles[J]. Prog. Polym. Sci.1992,17(1):87-161.
    [57]杨旭,覃军,陶长元.磁性高分子微球[J].化学世界.2005,3:185-187.
    [58]王延梅,封麟先.磁性高分子微球的研究进展[J].高分子材料科学与工程.1998,14(5):6-8.
    [59]Shakeel A. A., Qayyum H., Potential applications of enzymes immobilized on/in nano materials:A review. Biotechnology Advances.2012,30:512-523.
    [60]刘爱丽.纳米磁性高分子微球的合成及用于DNA电化学生物传感器的研究[硕士论文].浙江:浙江大学.2005.
    [61]邱广亮,邱广明.磁性明胶复合微球的制备和性质[J].食品科学.1998,19(11):7-10.
    [62]袁定重,张秋禹.磁性高分子微球研究进展及其在生化分离中的应用[J].材料科学与工程学报.2006,24(2):306-310.
    [63]Lei L., Bai Y. X., Li Y.F., Yi L.X. Yang Y., Study on immobilization of lipase onto magnetic microspheres with epoxy groups[J]. Journal of Magnetism and Magnetic Materials. 2009(321):252-258
    [64]Yong, Y., Bai Y.X. et al. Characterization of Candida rugosa lipase immobilized onto magnetic microspheres with hydrophilicity[J]. Process Biochemistry 2008(43):1179-1185.
    [65]Solcnee H. J.. Colloidal size hydrophobic polymers particulate having discrete particles of an inorganic material dispersed therein[P],US Pat: 4421660,1983,12-20.
    [66]Noguchi H., Yanase N., Uchida Y. et al.Preparation and characterization by thermal analysis of magnetic latex particles[J]. Appl Polym Sci.1993,48(9):1539-1547.
    [67]独俊红,白耀文.含环氧基团的磁性高分子复合微球[J].北京化工大学学报.2008,35(1):45-49.
    [68]周春华,刘威Fe3O4/P(NaUA-St-BA)核-壳纳米磁性复合粒子的合成与表征[J].高分子学报.2005,(4):606-610.
    [69]郭睿威,戚桂村,金启明.细乳液聚合研究进展[J].化工进展.2005,24(2):159-164.
    [70]贺枰,崔陇兰.高Fe304含量单分散P(St/AA)复合微球的合成与表征[J].高分子学报.2007,(8):731-736.
    [71]Lu Shulai, Jose Ramos Self-Stablilized Magnetic Polymeric Composite Nanoparticles by Emulsifier-Free Miniemulsion Polymerization[J]. Langmuir.2007,23,12893-12900.
    [72]温汉华,梁媛媛,黄志坚,谢恬.分散聚合法制备含环氧基团的磁性高分子微球[J].杭州师范大学学报(自然科学版).2011(10):141-145.
    [73]刘雪奇,曾红梅,赖琼钰.含羧基磁性高分子微球的合成与表征[J].无机化学学报.2005,21(4):490-494.
    [74]Lee H, Lee E, Kim D K, et al. Antibiofouling Polymer-Coated Superparamagnetic Iron Oxide Nanoparticles as Potential Magnetic Resonance Contrast Agents for in Vivo Cancer Imaging[J]. J Am Chem Soc.2006,128:7383-7389.
    [75]Zhang J G, Xu S Q, Kumacheva E. Polymer Microgels:Reactors for Semiconductor, Metal, and Magnetic Nanoparticles[J]. J Am Chem Soc.2004,126 (25):7908-7914.
    [76]Sakagawa M, Fujimoto K, Kawaguchi H. Reprints of 8th Polymer Microspheres Symposium. 1994:798-821.
    [77]雷琳.磁性复合载体的制备及其固定化脂肪酶研究[硕士论文].兰州:兰州大学.2009.
    [78]Szwarc M., Levy M., Milkovich R.. Polymerization initiated by electron transfer to monomer. A new method of formation of block polymerization[J]. J. Am. Chem. Soc.1956,78(11): 2656-2657.
    [79]Poynton C. H..Biologiealmagnetieeolloids[P].USP4,920,061.1990.
    [80]Molday R. S., Yen S. PS., Rembaum A. Application of magnetic microsphere in labeling and separation of cells[J]. Nature.1977,268(5619):437-438.
    [81]Rembaum A., Dreyer W. J. Immunomicrospheres:reagents for cell labeling and separation[J]. Seience.1980,208(4442):364-368.
    [82]邓勇辉.功能性磁性聚合物微球的制备、表征及其初步应用[博士论文].上海:复旦大学.2005.
    [83]Lubbe A. S., Bergemane C., Huhut. W. Preclinical experience with magnetic drug targeting: Tolerance and efficaey[J]. CancerRes.1996,56(20):4694-4701.
    [84]Aleion C., Arnold W., Klein. R. J. Locoregional cancer treatment with magnetic drug t argeting[J]. CaneerRes.2000,60 (23):6641-6648.
    [85]Lei L., Liu X., Li Y.F., Cui Y.J., Yang Y., Qin G.R. Study on synthesis of poly(GMA)-grafted Fe3O4/SiOx magnetic nanoparticles using atom transfer radical polymerization and their application for lipase immobilization[J]. Mater. Chem. Phys.2011 (125),866-871.
    [86]Christy R. V., Zhang Z. J. Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/Polystyrene Core/Shell nanoparticles[J]. J. Am. Chem. Soc. 2002,124(48):14312-14313.
    [87]Pyun, T. Kowalewski, K. Matyjaszewski. Synthesis of polymer brushes using atom transfer radical polymerization[J]. Macromol.Rapid Commun.2003,24(18):1043-1059.
    [88]Rather B., Nuyken O., Wieland P. et al. Free-radical synthesis of block copolymers on an industrial scale[J]. Macromol. Symp.2002,177:25-41.
    [89]Wieland P., Raether B., Nuyken O. A new additive for controlled radical polymerization. Macromol. Rapid Commun.2001,22(9):700-703.
    [90]张和鹏,张秋禹,王巍等.可控制自由基聚合DPE法制备了P(AA-MMA-St)/Fe3O4磁性复合微球[J].化学学报.2006,64(17):1831-1836.
    [91]陈志军,鄢彭凯,方少明,田俊峰,李丁丁,贾陆军,冒小峰,Fe304表面原位引发可控/“活性”聚合制备磁性聚苯乙烯纳米粒子[J],物理化学学报,2007,23(3):349-354.
    [92]冯洪珍,孟昭力,王如斌.手性药物拆分的几种方法及研究进展[J].广东药学院学报.2003,19:153-155.
    [93]何煦昌.手性药物的发展.中国医药工业杂志.1997,28(11):519-524.
    [94]马明,陈鹰.药物对映体的拆分方法研究概述.中国药师.2002,5:370-372.
    [95]Harrison I. T., Lewis B., Nelson P., Rooks W., Roszkowski A., Tomolonis A., Fried J. H., Nonsteroidal antiinflammatory agents. I.6-Substituted 2-naphthylacetic acids[J]. J. Med. Chem.1970,13 (2):203-205.
    [96]Schmid A., Dordick J.S., Hauer B., Kiener A., Wubbolts M., Biocatalysis today and tomorrow[J]. Nature.2001,409:258-268.
    [97]Mitchell D. T., Lee S. B., Trofin L., Li N, Nevanen T. K., Sderlund H., Martin C. R., Smart Nanotubes for Bioseparations and Biocatalysis[J]. J. Am. Chem. Soc.2002,124(40): 11864-11865.
    [98]Marin-Zamora M. E., Rojas-Melgarejo F., Garcia-Canovas F., Garcia-Ruiz P. A., Stereospecificity of Mushroom Tyrosinase Immobilized on a Chiral and a Nonchiral Support[J]. J. Agric. Food Chem.2007,55(11):4569-4575.
    [99]Massolini G., Calleri E., Lavecchia A., Loiodice F., Lubda D., Temporini C, Fracchiolla G., Tortorella P., Novellino E., Caccialanza G.. Enantioselective Hydrolysis of Some 2-Aryloxyalkanoic Acid Methyl Esters and Isosteric Analogues Using a Penicillin G Acylase-Based HPLC Monolithic Silica Column[J]. Anal. Chem.2003,75(3):535-542.
    [100]Palomo J. M., Fuentes M., Fernandez-Lorente G., Mateo C., Guisan J. M., Fernandez-Lafuente R., General Trend of Lipase to Self-Assemble Giving Bimolecular Aggregates Greatly Modifies the Enzyme Functionality[J]. Biomacromolecules.2003,4(1): 1-6.
    [101]Ahmar M., Girard C., Bloek R. Enzymatic resolution of methyl 2-alkyl-2-arylacetates[J]. Tertahedron Lett.1989,30:7053-7056.
    [102]刘幽燕,许建和,胡英.表面活性剂对脂肪酶活性和选择性的影响[J].化学学报,2000,58(2):149-152.
    [103]Battistel E, Bianchi D, CestiP, et al. Enzymatic resolution of racemic amines in a co ntinuous reactor in organic solvents[J]. Biotechnol Bioeng.1993 (40):760-767.
    [104]徐毅,李树木,辛嘉英,等.底物、水量对脂肪酶不对称拆分萘普生的影响[J].分子催化.1999,13(4):292-296.
    [105]Yamamoto K, Otsubo K, Ueno Y. Optically active a-substituted carboxylic acids micr obial manufacture [P]. JP:224496,1991. (CA 1992,116:57584.
    [106]Effenberger F, Graef B.W, Osswald S. Preparation of (S)-naproxen by enantioselective hydrolysis of racemic naproxen amide with resting cells of Rhodococcus erythropolis MP50 in organic solvents[J]. Tetrahedron:Asymmetry.1997,8(16):2749-2755.
    [107]Tsai S.W., Wei H.J. Effect of solvent on enantioselective esterification of naproxen by lipase with trimethylsilyl methanol [J]. Biotechnol Bioeng.1994,43(1):64-68.
    [108]Huang W.C., Tsai S.W, Chang C.S. Enantioselective esterification o f (S)-naproxen from racemic naproxen by alky lated lipase in organic solvents[J]. J Chin Inst Chem Eng.1998, 29(2):153-159.
    [109]崔玉敏,魏东芝,俞俊棠.有机介质中固定酶催化萘普生与硅醇的酯化反应[J].华东理工大学学报.1998,24(4):410-414.
    [110]梅之南,斐小平,蔡鸿生.右旋酮洛芬的药物动力学和药效学性质[J].中国新药杂志.1998(75),339-341.
    [111]陈亮,何凤慈,蒋耀光,孟德胜,向明凤.非甾体抗炎药酮洛芬及其手性对映体[J].中国药业.2005(14):27-29.
    [112]Xiu G. H., Jiang L., Mass-Transfer Limitations for Immobilized Enzyme-Catalyzed Kinetic Resolution of Racemate in a Batch Reactor[J]. Ind. Eng. Chem. Res.,2000,39(11): 4054-4062.
    [1]王红艳.种子乳液聚合法制备特殊形态聚合物颗粒[硕士论文].无锡:江南大学.2007.
    [2]Okubo M, Izumi J., Takekoh R. Production of micron-sized monodispersed core/shell composite polymer particles by seeded dispersion polymerization [J]. Colloid Polym Sci,1999, 277,875-880.
    [3]Hourston D.J., Romaine J. Modification of natural rubber latex—I. Natural rubber-polystyrene composite latices synthesized using an amine-activated hydroperoxide [J]. Eur Polym J. 1989,25,695-700.
    [4]杨勇,李彦锋,拜永孝,易柳香,夏春谷.酶固定化技术用载体材料的研究进展[J].化学通报.2007,4,257-263.
    [5]Du Y.Z., Kodaka M., Biotinylated and enzyme-immobilized latex particles[J], Journal of Polymer Science:Part A:Polymer Chemistry,2005,43,562-574.
    [6]Lu S.L., Qu R.J., Forcada J., Preparation of magnetic polymeric composite nanoparticles by seeded emulsion polymerization [J], Materials Letters.2009,63,770-772.
    [7]Cui Y.J, Li Y.F. et al, Facile synthesis of amino-silane modified superparamagnetic Fe3O4 nanoparticles and application for lipase immobilization [J], Journal of Biotechnology,2010, 150:171-174.
    [8]李学慧,吴业,刘宗明.磁流体的研制[J].化学世界,1998,1,15-17.
    [9]Deng Y.H., Wang C.C., Hu J.H., Yang W.L., Fu S.K. Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach [J]. Colloid. Surface. A:Physicochem. Eng. Aspects,2005,262:87-93.
    [10]Lei Y.L., Liu Z.Z., Liu Q.F. et al. Synthesis of a macroporous hydrophilic ternary copolymer and its application in boronate-affinity separation [J]. React. Funct. Polym.,2001,48:159-167.
    [11]Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal. Biochem.,1976,72:248-254.
    [12]Watanabe N, Yasude O, Yasuji M, Koichi Y. Isolation and identification of alkaline lipase producing microorganisms:cultural conditions and some properties of crude enzymes[J]. Agric. Biol. Chem.,1977,41:1353-1358.
    [13]王金刚,王治国,张迎春.反应物配比对Fe304纳米磁流体性能的影响研究[J].云南大学学报(自然科学版).2005,27(3A):241-244.
    [14]姜炜.纳米磁性粒子和磁性复合粒子的制备及其应用研究[博士论文].南京:南京理工大学.2005.
    [15]Aranzazu del Campo, Tapas Sen, Jean-Paul Lellouche et al. Multifunctional magnetite and silica-magnetite nanoparticles Synthesis, surface activation and applications in life sciences[J]. J. Magn. Magn. Mater.,2005,293:33-40.
    [16]Sajjadi S, Jahanzad F. Comparative study of monomer droplet nucleation in the seeded batch and semibatch miniemulsion polymerisation of styrene [J]. Eur. Polym.J.2003,39:785-794.
    [17]刘雪奇,Fe304纳米磁粉及高分子核壳结构磁微球的制备与性能研究[硕士论文].四川:四川大学.2005.
    [18]Ma Z.Y., Guan Y.P., Liu H.Z. Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption. [J] J. Magn. Magn. Mater.,2006,301:469-477.
    [19]杨勇.功能化磁性载体的制备及其固定化脂肪酶研究[硕士论文].兰州:兰州大学.2008.
    [20]王镜岩,朱圣庚,徐长法等.生物化学[M].第三版.北京:高等教育出版社.2002.
    [21]Chang M. Y, Juang R. S. Activities, stabilities, and reaction kinetics of three free and chitosan-clay composite immobilized enzymes [J]. Enzyme Microb. Tech.,2005,36:75-82.
    [1]Yang Z., Wang S.X., Ding B.J., Yang Z.M. Modification of magnetite nanoparticles via surface-initiated atom transfer radical polymerization (ATRP) [J]. Chemical Engineering J. 2008,138:578-585.
    [2]Matsuno R., Yamamoto K., Otsuka H. et al. Polystyrene-Grafted Magnetite Nanoparticles Prepared through Surface-Initiated Nitroxyl-Mediated Radical Polymerization[J].Chem. Mater.,2003,15:3-5.
    [3]Matyjaszewski K. Controlled Radical Polymerization[M]. Washington,DC:ACS; 1998.
    [4]Raether B., Nuyken O., Free-radical synthesis of block copolymers on an industrial scale [J]. Macromol.Symp.2002,177:25-42.
    [5]Wieland P.C., Raether B., A New Additive for Controlled Radical Polymerization [J].Macromol. Rapid Commun.2001,22:700-703.
    [6]Tomaz K., Christine S., Yusuf Y., Turgut N, Nuyken O. The use of the DPE radical polymerization method for the synthesis of chromophore-labelled polymers and block copolymers[J]. European Polymer Journal.2005,41:1265-1271.
    [7]张和鹏,张秋禹,王巍,罗绍兵,谢钢,张军平,王曙正.可控制自由基聚合DPE法制备P(AA-MMA-ST)/Fe3O4磁性复合微球[J].化学学报,2006,64:1831-1836.
    [8]Massart R., Cabuil V. Effect of some parameters on the formation of colloidal magnetite in alkaline-medium-Yield and particle-size control [J]. J. Chim. Phys. Phys. Chim. Biol,1987, 84:967-973.
    [9]Massart R., Cabuil V. Effect of some parameters on the formation of colloidal magnetite in alkaline-medium-Yield and particle-size control [J]. J. Chim. Phys. Phys. Chim. Biol.,1987, 84:967-973.
    [10]Feng D., Higashihara T., Faust R. Facile synthesis of diphenylethylene end-functional polyisobutylene and its applications for the synthesis of block copolymers containing poly (methacrylate)s [J]. Polymer.2008,49 (2):386-393.
    [11]Yang Y, Bai Y.X., Li Y.F., Lei L., Cui Y.J., Xia C.G. Characterization of Candida rugosa lipase immobilized onto magnetic microspheres with hydrophilicity[J]. Process Biochem. 2008,43:1179-1185.
    [12]Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal. Biochem.,1976,72:248-254.
    [13]Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature.1970,227:680-685.
    [14]Rodriguez-Nogales M.J., Roura E, Contreras E. Biosynthesis of ethyl butyrate using immobilized lipase:a statistical approach [J]. Process Biochem.2005,40 (1):63-68.
    [15]Ren Y.Z., limura K., Kato T. Structure of barium stearate films at the air/water interface investigated by polarization modulation infrared spectroscopy and π-A isotherms[J]. Langmuir,2001,17:2688-2693.
    [16]王煦漫,张彩宁,古宏晨.包覆油酸的Fe3O4纳米粒子的制备[J].精细化工.2007,24(8):733-736.
    [17]Ramirez L. P., Landfester K. Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes. Macromol. Chem. Phys.,2003,204(1):22-31.
    [18]Fried T., Shemer G., Markovich G. Ordered two-dimensional arrays of ferrite nanoparticles. Adv. Mater.,2001,13:1158-1161.
    [19]Viala S, Tauer K, Antonietti M, Kruger R-P, Bremser WStructural control in radical polymerization with 1,1-diphenylethylene.1. Copolymerization of 1,1-diphenylethylene with methyl methacrylate[J]. Polymer.2002,43 (26):7231-7241.
    [20]Ma Z.Y, Guan Y.P., Liu.H.Z. Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption [J]. J. Magn. Magn. Mater.,2006,301:469-477.
    [1]黄量,戴立信,杜灿屏,手性药物的化学与生物学[M].北京:化学工业出版社.2002.
    [2]黄蓓,杨立荣,吴坚平,手性拆分技术的工业应用[J].化工进展.2002,21:375-380.
    [3]Ghanern A., Aboul-Enein H.Y. Lipase-mediated chiral resolution of racemates in organic solvents[J].Tetrahedron:Asymmetry,2004,15:3331-3351.
    [4]胡艾希,曹声春,董先明,文凌飞.2-芳基丙酸类消炎药的酶催化拆分研究进展[J].中国医药工业杂志.2001,32(6):285-287.
    [5]Ghanem A. Aboul-Enein H.Y. Application of lipases in kinetic resolution of racemates[J].Chirality.2005,17:1-15.
    [6]Kim M.G., Lee E. G., Chung B.H. Improved enantioselectivity of Candida rugosa lipase towards ketoprofen ethyl ester by a simple two-step treatment[J]. Process Biochemistry.2000, 35:977-982.
    [7]Kim S.H., Kim T.K., Shin G.S., Lee K.W., Shin H.D., Lee Y.H. Enantio selective hydrolysis of insoluble (R,S)-ketoprofen ethylester in dispersed aqueous reaction system induced by chiral cyclodextrin[J]. Biotechnology Letters.2004,26:965-969.
    [8]Fernandez-Alvaro E., Kourist R., Winter J., Bottcher D., Liebeton K. etal. Enantioselective kinetic resolution of phenylalkyl carboxylic acids using metagenome-derived esterases[J]. Microbial Biotechnology.2010,3(1):59-64.
    [9]蔡晓青,2-芳基丙酸类药物的酶促拆分及光学活性高分子前药合成[硕十论文].浙江:浙江大学.2006.
    [10]张玉彬,生物催化的手性合成[M].北京:化学工业出版社.2002.
    [1]胡艾希,曹声春,董先明,文凌飞.2-芳基丙酸类消炎药的酶催化拆分研究进展[J].中国医药工业杂志,2001,32(6):284-288.
    [2]杜伟,宗敏华,陈伟锋,郭勇,李琼.有机相脂肪酶催化酮基布洛芬的立体选择性酯化[J].微生物学报.2000,27(5):352-356.
    [3]Wu J.C., Philip H., Poh T. Y., Chow Y., MMR Talukder and Won Jae Choi. Enhanced enantioselectivity of immobilized Candida antarctica lipase for hydrolysis of ketoprofen ethyl ester at pH 1 [J]. Korean J. Chem. Eng.2007,24(4):648-650.
    [4]Chang C.S., Hsu C.S., Enhancement of enantioselectivity and reaction rate on the synthesis of (S)-ketoprofen hydroxyalkyl ester in organic solvents via isopropanol-dried immobilized lipase [J]. Journal of Chemical Technology and Biotechnology.2005(80):537-544.
    [5]Gutierrez-Ayesta C., Carelli A. A., Ferreira M.L. Relation between lipasestructures and their catalytic ability to hydrolyse triglycerides and phospholipids [J]. Enzyme and Microbial Technology.2007,41:35-43.
    [6]刘军民,许建和,刘幽燕,许学书,袁勤生.混合溶剂系统中固定化脂肪酶对酮基布洛芬的催化酯化反应[J].高等学校化学学报.1998,19(12):1959-1963.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700