基于CAN总线的矿井积水水位监控系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矿安全生产一直以来都受到水文地质灾害的严重影响。目前,国内煤矿井下水位监控系统主要采用集散控制系统,该系统由主从式体系结构组成、采用时分制通讯为主流技术,其监控底层设备无法进行相互间信息交换。此外,由于受到传感器技术的限制,矿井水位监控系统只能布置在工作环境较好的水仓处,无法覆盖整个煤矿井下工作环境,因此无法采集能最直接反应水文信息变化的巷道水位信息,造成监控系统检测精度低、反应迟缓,不能及时发出报警并将积水排出。
     本课题针对现有矿井水位监控系统的弊端,研究了一套全新的水位监控系统,该系统能够覆盖整个煤矿井下工作环境。其核心技术是利用变介质电容原理设计了一种新型水位传感器,通过聚四氟乙烯电缆将水位高度转化成相应电容值,再通过专用电路进一步将电容值转化为标准的电压值,并综合运用平均值滤波法及插值法拟合系统特性曲线,消除了所采集信息中的干扰误差,实现新型水位传感器系统的非线性校正;以单片机MSP430F169为核心处理器,设计了矿井分站,为了兼容现有井下传感器,降低监控系统成本,本系统还设计了多种传感器信号采集通道,不仅能够读取新型传感器的信号,而且还能够读取传统模拟量和开关量传感器的信号,读取传感器信号后,经过分站核心处理器的分析、处理后,根据处理后的结果,采用连级排水的方式实现井下积水的自动排除,并将读取的信号通过CAN总线传输给监控中心。当水位超过警戒水位时,能够及时报警;本系统采用CAN总线通信方式进行设备间的信息交流,通过对现有CAN控制器和收发器进行比较,选择了MCP2515芯片为CAN控制器以及应用TJA1040芯片作为CAN收发器构成了CAN总线通信模块,实现了应用CAN总线进行数据的发送和接送等功能;以监控系统组态软件为平台,设计了人机交换界面,通过它实现对底层设备进行远程监控。
     实验表明:本课题研制的新型水位传感器具有较高的检测精度,其非线性度误差减少到0.4%以下,能够满足在复杂环境下工作的要求;矿井分站能够采集各种类型传感器发送的信号,并能够适时的控制水泵的开停,达到兼容各种类型传感器和降低成本的目的;CAN总线通信大大提高了数据传输的正确率,将底层设备有效的连接起来,使得监控系统间信息无障碍传输。矿井积水水位监控系统能够实时、准确、高效的完成各项既定功能,达到了现场使用的要求;利用人机交换界面,实现了远程查看各水位监测点历史数据和报警数据的功能。
The safe production in the coal mine is affected by hydro-geological disasters. Currently, the domestic coal mine monitoring system mainly adopts the distributed control system, which consists of master-slave architecture, takes time-division communication as the mainstream technology. And the underlying monitoring equipments could not exchange information mutually. Besides, because of the limitations of sensor technology, the mine water level monitoring system can not cover the whole working environment, and is arranged only in water warehouse with better working environment. Therefore, the water level information of tunnel can not be gathered, which reflects the change of hydrologic information. This results in low detection accuracy and slow response of the system, and could not alarm in time and forecast the hydrology information.
     Aiming at the existing problems of mine water level monitoring system, a new monitoring system is designed to cover the entire coal mine working environment. The core technology is a new water level sensor, which is based on the principle of variable dielectric capacitor, transforms the water level to corresponding capacitance value by Teflon coaxial cable, and then transforms the capacitance value to the standard voltage by the special circuit. Finally the average filter and interpolation method are synthetically used to fit the system characteristic curve, and eliminate interference errors, thus the nonlinear correction was implemented at last. The mine substation is designed with the core processor of microcontroller MSP430F169, which aim at the compatibility with existed mine sensors and the lower cost of the monitoring system. A data interface for variety of sensors is designed, which not only read the sensor data, but also could read the traditional analog and switch level sensor data. After reading the sensor data, the analysis by the core processor and the automatic exclusion of underground water by the way of one by one, the data is transmitted through the CAN bus to the monitoring center, displaying real-time water level. When the water level is above the warning level, it can warn in time. In order to realize the data exchange between the bottom devices to break the limit from "information island", the CAN bus is used for the communication among equipments. Compared with the existed CAN controller and transceiver,the MCP2515is selected as CAN controller, and the TJA1040as CAN transceiver, the two parts constitute the CAN bus communication module, achieve the function of sending and receiving by application of CAN bus. The man-machine interface based on configuration software is designed to remote monitoring of the underlying device.
     The result of test shows that the designed sensor has higher detection accuracy, and its non-linearity error is reduced to0.3205%, meeting the requirements in a complex environment. Mine substation can acquire the data signal which is sent from various types of sensor, can timely control the water pump, and finally achieve the compatibility of various types of sensors and the purpose of reducing the cost. CAN bus communication greatly improves the rate of data transmission, and makes the information transmission accessibility between monitoring systems by linking up the bottom equipment. Mine water level monitoring system can complete all established functions timely, accurately, and efficiently, meet the working requirement. Man-machine interface realizes a remote view of the historical data of the water level monitoring sites and alarm data.
引文
[1]李强.煤矿主排水监控系统的设计及应用[D].太原:太原理工大学,2010.
    [2]http://www.3jjj.com/coal_new.asp?nid=395423&lid=44.
    [3]周海坤.KJF2000监控系统中分站通信模块的设计与实现[J].煤矿安全,2008,(4):66-68.
    [4]Thomesse, J. Fieldbus Technology in Industrial Automation[J]. Proceedings of the IEEE 2005,93(6):1073-1101.
    [5]Joao C. P Palma, Maria da Graca V B. Almeida Industrial Fieldbus Technology from a Teaching Point of View[J]. International Journal of Computer Applications in Technology,2006,5(4):227-233.
    [6]孙继平.煤矿安全生产综合监控[M].徐州:中国矿业大学出版社,2008:94-115.
    [7]A. P. Demin and G. Kh. Ismiylow. Water Consumption and Drainage in the Volga Basin[J]. Water Resources,2003,30(3):333-346.
    [8]W. Gerald Wilbanks.50 Years of Progress in Measuring and Controlling Industrial Processes[J]. IEEE Control Systems Magazine,1996, (16):62,64-66.
    [9]李高峰,张兴,王磊.采掘巷道自动化排水装置应用[J].中国西部科技,2010,09(22):44-51.
    [10]龙兴根,李华光.自动排水在井下的应用[J].江西煤炭科技,2007,(1):53.
    [11]天山.先进的积水检测和自动排水装置[J].实用电子文摘,1996,(12):67.
    [12]郅富标,毋虎城.基于S7-200型PLC的矿井主排水自动控制系统[J].中州煤炭,2009,(4):15-16,91.
    [13]王光生,尹文波,闫东等.基于PLC的矿井自动排水系统设计[J].自动化应用,2010,(2):19-22.
    [14]宋杰,肖兴明,张宪锋等.煤矿井下排水泵站的监控系统设计[J].煤矿机械,2006,27(5):845-846.
    [15]赫飞,张鹏,汪玉凤.基于PLC的煤矿井下排水系统的设计[C].//全国冶金自动化信息网2008年年会论文集.2008:742-744.
    [16]马胜利,温国栋.基于ARM的煤矿井下排水监控系统的设计[J].矿山机械,2009, 37(1):11-14.
    [17]吴兴华.煤矿井下排水监控系统设计[J].中国煤炭,2008,34(11):76-78.
    [18]崔文强,李铁鹰.分水仓自动排水开关控制系统的设计[J].机械管理开发,2010,25(4):53-54.
    [19]张英梅,翟进乾.基于单片机控制的煤矿排水系统设计[J].山西煤炭,2007,27(3):18-21.
    [20]袁小平,白楠,王泽林等.煤矿井下排水泵监控系统的设计[J].工矿自动化,2010,(3):113-114.
    [21]庞元俊.矿井监控系统与生产信号[M].北京:煤炭工业出版社,2009:38-49.
    [22]CAN Specification 2.0 Part A[S]. Philips Semiconductors,1993.
    [23]饶运涛,邹继军,朕勇芸等.现场总线CAN原理与应用技术[M].北京:北京航空航天出版社,2007:20-35.
    [24]SAE Standards, Recommended Practice for a Serial Control and Communication Vehicle Network[S]. Society of Automotive Engineers? 2003:32-67.
    [25]G Leen, D Heffernan. A new time-triggered controller area network[J]. Microprocessors and Microsystems,2002,26(2):77-94.
    [26]Mouaaz Nahas, Michael J. Pont, Michael Short. Reducing Message-length Variations in Resource-constrained Embedded Systems Implemented Using the Controller Area Network (CAN) protocol [J]. Journal of Systems Architecture,2009,55(5):344-354.
    [27]H. Kopetz. A Comparison of CAN and TIP[J]. Annual Reviews in Control,2000,24(6): 177-188.
    [28]陈景文,王红艳.CAN总线协议及组网方法[J].国内外机电一体化技术,2005,(2):46-48.
    [29]H. Boterenbrood. CANopen High-level Protocol for CAN-bus[S]. CiA. March 20, 2000.
    [30]煤矿安全生产规程[S].北京:中国法制出版社,2011.
    [31]陈青,周海坤,李长录等.FSK移频键控在矿用监控系统分站中的应用[J].煤矿安全,2008(4),64-65.
    [32]郭凤仪,李斌,马文龙等.深水水位检测用压力传感器补偿方法研究[J].仪表技术 与传感器,2010,(6):6-8.
    [33]刘高平,杨如祥,秦一涛等.光纤温度传感器在水库水位监测中的应用[J].电子测量与仪器学报,2008,22(5):112-116.
    [34]张洁,朱永,谭靖等.一种新型连通管式光电液位传感器[J].仪器仪表学报,2004,25(z4):203-205,211.
    [35]伍艮常.磁致伸缩式液位传感器[J].仪表技术与传感器,2007,(12):9-11.
    [36]李一博,金翠云,靳世久等.C8051F020在磁致伸缩液位传感器中的应用[J].仪器仪表学报,2003,24(z4):219-221.
    [37]马珺,王辉.检索式数字水位传感器智能变送器的设计[J].仪器仪表学报,2008,29(4):740-744.
    [38]李敏哲,赵继印,李建坡等.基于超声波传感器的无线液位测量系统[J].仪表技术与传感器,2005,(11):35-36.
    [39]洪志刚,杜维玲,周玲等.超声波外测液位检测方法研究[J].电子测量与仪器学报,2007,21(4):46-49.
    [40]薛连发.船舶监控系统嵌入式CAN通信节点设计[J].工业控制计算机,2010,23(11):15-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700