具有时空耦合特征的模糊逻辑控制系统及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绝大多数工业生产过程为时空耦合系统,或分布参数系统,其明显的特征是系统的状态、控制、输出及参数等不仅随时间变化,而且还随空间变化。针对时空耦合系统,传统的基于被控对象精确数学模型的控制方法,需要复杂的控制理论,但实际系统往往存在参数不确定性、复杂非线性等情况,精确的数学模型难以获得,即使获得也很难实施有效控制。而智能模糊控制最大的优点是不依赖被控对象的精确数学模型并能达到令人满意的鲁棒控制效果。由于传统的模糊控制没有将空间信息考虑在内,所以它在本质上不具有处理时空耦合系统的能力。基于此,本文提出了具有时空耦合特征的模糊逻辑控制系统,它最主要的特色是在不增加传统模糊控制复杂度的情况下,只需增加数个传感器用于获得物理场的时空信息就可以实现时空处理机能,从而降低控制器的设计成本和工业生产的运行成本。最后的仿真和实验结果证明了本文提出的方法是有效的。
     主要创新点包括以下几个方面:
     1)建立了时空模糊逻辑系统
     针对时空耦合系统的特点,结合type-2模糊系统,提出了时空模糊集、时空模糊关系及其运算法则,建立了较完善的时空模糊逻辑系统理论。将type-2模糊集的第二隶属度表征空间信息,定义了时空模糊集;时空模糊集可以由时间(第一)隶属函数和空间(第二)隶属函数来描述。跟三维模糊集相类似,时空模糊集具有三个坐标分别用于时间变量的论域、隶属度及表征空间信息。与三维模糊集最大的差别是时空模糊集定义了空间隶属函数来描述空间的信息。由于时空模糊集有明确的空间物理意义,时空模糊集的定义及其运算法则与type-2模糊系统有所差异,在Type-2中的降维运算在时空模糊逻辑系统中变成了空间降维运算。
     2)设计了时空模糊逻辑控制器,并推导出其解析模型
     针对时空耦合系统,首先归纳了时空模糊控制器存在的相关设计问题,并设计了一个时空模糊逻辑控制器。随后,给出了详细的时空模糊控制器解析模型的推导过程。再根据推导出的解析模型,基于Lyapunov稳定性理论,提出了时空模糊控制器的稳定性参数设计方法。最后,将时空模糊控制器应用在化工过程的反应棒上,仿真结果表明时空模糊逻辑控制器的控制性能优于传统的模糊逻辑控制器。
     3)揭示了模糊PID控制器的饱和特性,提出了模糊PID控制器的整定方法
     在实际应用模糊控制过程中,模糊规则的数量总是有限的,基于此,揭示了模糊PID控制器内在的饱和特性。然后根据内模控制原理,提出了一种模糊PID控制器的参数整定方法。仿真和实验结果验证了该饱和特性及其整定方法的有效性。
     4)提出了时空模糊PID控制器的整定方法
     首先基于传统模糊PID控制器的结构,设计了时空模糊PID控制器的结构,再根据传统的一阶加纯滞后模型,提出了融合空间特征的一阶加纯滞后模型。然后,基于奈奎斯特图的原理,提出了基于空间拓展的奈奎斯特图用于时空模糊PID控制器的整定方法,仿真和实验结果验证了时空模糊PID控制器及其整定方法的有效性。
A variety of industrial processes are inherently spatio-temporal systems or distributed parameter systems (DPS) where their states, controls, outputs and process parameters may vary temporally and spatially, such as many thermal, fluid flow and chemical reactor processes. The distributed parameter process is traditionally controlled with model-based methods, within which a precise mathematical model of the process is required. However, a precise mathematical model can not be obtained due to unknown uncertainty, nonlinearity and disturbances. When there are strong unknown uncertainties in the process, the performance will deteriorate. As an intelligent method, the fuzzy logic controller (FLC) is widely used in industrial processes due to its inherent robustness under unknown environment. Though some studies have been presented about application of type-1 FLCs to DPS control, however, these type-1 fuzzy approaches are not inherently designed for the spatially distributed dynamic process because of their two-dimensional (2D) nature. Thus, a new spatio-temporal fuzzy logic system (FLS) is proposed to control DPS. Without additional complexity, the spatio-temporal FLS can process spatial information by adding some sensors for measurement, which may reduce cost.
     The novelty of the spatio-temporal FLS mainly includes the following four parts:
     1) A spatio-temporal FLS is built.
     A novel application of type-2 FLS is presented by developing a spatio-temporal FLS to control a class of DPS. The key difference to the previous type-2 fuzzy system is that the secondary membership function describes a different physical variable - space domain. A spatio-temporal fuzzy set consists of a temporal (primary) membership function and a spatial (secondary) membership function. Since its secondary membership function is designed for the spatial domain, it has some different definitions and operations from the previous type-2 application. The type-reduction will become the spatial reduction before the traditional defuzzification. This spatio-temporal FLS is successfully applied to a catalytic reaction rod to demonstrate its effectiveness and potential to a wide range of engineering applications on modeling and control of DPS.
     2) A spatio-temporal FLC is designed. And its model is derived.
     A three domain FLC is proposed based on the spatial fuzzy set for the spatially distributed systems. An analytical mathematical model of the spatio-temporal FLC is derived using an extended graphic analytical method. The model of the spatio-temporal FLC is characteristic of a global sliding mode control techniques. A catalytic reactor is given to demonstrate the effectiveness of the spatio-temporal FLC and the proposed tuning method by comparing with other controller.
     3) An inherent saturation of the traditional FLC is revealed. And an efficient tuning method is proposed for fuzzy PID controller.
     An inherent saturation of the traditional FLC is revealed due to the finite fuzzy rules used. An equivalent structure and model of the fuzzy rule base is derived to show a saturation property. The bandwidth of the fuzzy PID control system can be adjusted by changing saturation parameter. An internal model control (IMC) based tuning method is proposed to auto-tune the fuzzy PID controller in this paper. The simulation and experiment results demonstrate these amazing effects of the inherent saturation, the proposed tuning method, and its influence to the robustness of fuzzy PID controller.
     4) A tuning method is proposed for spatio-temporal fuzzy PID controller.
     A spatio-temporal fuzzy PID controller and its tuning method are proposed to control a class of DPS. An analytical mathematical model of the 3D fuzzy PID controller is first obtained after simple derivation. Then, a spatial first-order plus delay time (FOPDT) model is proposed to tune the spatio-temporal fuzzy PID controller. An extension Nyquist principle is used to design parameter of the spatio-temporal fuzzy PID controller based on the FOPDT model. The stability of the fuzzy PID control system is analyzed using the Lyapunov stability theory. Finally, the simulation and experiment results demonstrate the effectiveness of the spatio-temporal fuzzy PID control and the proposed tuning method by comparing with other controller.
引文
[1]David R. H. A review of the advanced packaging technologies. Surface Mount Techonologies,1997,9:54-58
    [2]Keser B., Amrine C, Duong T., etc. Advanced Packaging:the redistributed chip package. IEEE Transactions on Advanced Packaging,2008,31(1):39-44
    [3]Li H. X., Yew T. G, Chung C.Y., etc. Design and performance evaluation of microprocessor packaging capacitors using integrated capacitor-via-plane model. IEEE Transations on Advanced Packaging,2000,23(3):361-368
    [4]Ray, W. H. Advanced process control. New York:McGraw-Hill,1981.1-265
    [5]Christofides, P.D.Nonlinear and Robust Control of Partial Differential Equation Systems:Methods and Applications to Transport-Reaction Processes. Boston: Birkhauser,2001.1-196
    [6]Christofides, P.D. Control of Nonlinear Distributed Process Systems:Recent Developments and Challenges. AIChE Journal,2001,47(3):514-518
    [7]Ying, H. Fuzzy control and modeling:analytical foundations and applications. New York:IEEE Press,2000.
    [8]Akbarzadeh-T, M.-R. Fuzzy control and evolutionary optimization of complex systems:[PhD Dissertation]. USA:The University of New Mexico,1998
    [9]Sooraksa, P., Chen, GR. Mathematical modeling and fuzzy control of a flexible-link robot arm. Mathl. Comput. Modeling,1998,27(6):93-93
    [10]Sagias, D.I., Sarafis, E.N., Siettos, C.I., Bafas, GV. Design of a model identification fuzzy adaptive controller and stability analysis of nonlinear processes. Fuzzy Sets and Systems,2001,121(1):169-179
    [11]Lin, J., Lewis, F.L. Two-time scale fuzzy logic controller of flexible link robot arm. Fuzzy Sets and Systems,2003,139(1):125-149
    [12]Zadeh, L.A.Fuzzy sets. Information and Control,1965,8:338-353
    [13]Zadeh L. A. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions On Systems, Man, Cybern,1973,3: 28-44
    [14]Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning-1. Information Sciences,1975,8:199-249
    [15]Kandel, A., Luo, Y., Zhang, Y.Q. Stability analysis of fuzzy control systems. Fuzzy Sets and Systems,1999,105(1):33-48
    [16]Mendel, J.M. Uncertain Rule-Based Fuzzy Logic Systems:Introduction and New Directions. New Jersey:Prentice Hall,2001.79-430
    [17]Mendel, J.M. Type-2 Fuzzy Sets:Some Questions and Answers. IEEE Connections, Newsletter of the IEEE Neural Networks Society,2003,1:10-13
    [18]Mendel, J.M., John, R.I. Type-2 Fuzzy Sets Made Simple. IEEE Transactions on Fuzzy Systems,2002,10(2):117-127
    [19]Hagras, H.A. A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Transactions on Fuzzy Systems,2004,12(4): 524-539
    [20]Hagras, H.A. An incremental adaptive life long learning approach for type-2 fuzzy embedded agents in ambient intelligent environments. IEEE Transactions on Fuzzy Systems,2007,15(1):41-56
    [21]Wu D. R. and Tan W.W. A Simplified Type-2 Fuzzy Controller for Real-time Control. ISA Transactions,2006,45(4):503-516
    [22]Wu D. R. and Tan W.W. Genetic learning and performance evaluation of type-2 fuzzy logic controllers. Eng. Appl. of Artif. Intel.,2006,19(8):829-841
    [23]Li H. X., Zhang X. X., and S. Y. Li. A Three-dimensional Fuzzy Control Methodology for a Class of Distributed Parameter System. IEEE Transations on Fuzzy Syststems,2007,15(3):470-481
    [24]张宪霞.空间分布动态系统的 3-D 模糊控制设计与分析:[博士学位论文].上海:上海交通大学,2008
    [25]Astrom K. J. and Hagglund T.. PID controllers:Theory, design and tuning. America:Instrument Society of America,1995.3-256
    [26]Deng, H., Li, H.X., Chen, G.R. Spectral approximation based intelligent modeling for distributed thermal process. IEEE Transactions on Control Systems Technology,2005,13(5):686-700
    [27]Varma, A., Morbidelli, M. Mathematical methods in chemical engineering. New York:Oxford University Press,1997.
    [28]Chateau, P.D., Zachmann, D.W.. Schaum's outline of theory and problems of partial differential equations, Schaum's outline series.New York:McGraw-Hill, 1986.5-187
    [29]Bamieh, B., Paganini, F., Dahleh, M.A. Distributed Control of Spatially Invariant Systems. IEEE Transactions on Automatic Control,2002,47(7): 1091-1107
    [30]Astrom K. J. and Hagglund T. The future of PID control. Control Engineering Practice,2001,9:1163-1175
    [31]Thomas, J.W. Numerical partial differential equations. New York: Springer,1995.
    [32]Reddy, J.N. Introduction to the Finite Element Method. New York: McGraw-Hill,1993.
    [33]林伟,刘明扬,陈云峰,赵怡.分布参数控制系统.北京:国防工业出版社,1981.6-163
    [34]Wang, P.K.C. Theory of stability and control for distributed parameter systems (a bibliography). International Journal of Control,1968,7(2):101-116
    [35]Lions, J.L. Optimal control of systems governed by partial differential equations. New York:Springer Verlag,1971
    [36]钱学森,宋健.工程控制论.北京:科学出版社,1980.1-168
    [37]宋健,于景元.人口发展过程的预测.中国科学,1980,9:920-932
    [38]王康宁.分布参数控制系统.北京:科学出版社,1986.1-178
    [39]张学铭.分布参数系统最优控制过程数学理论.济南:山东科学出版社,1980.1-186
    [40]Balas, M.J. Reduced-order feedback control of distributed parameter systems via singular perturbation methods. Journal of Mathematical Analysis and Applications,1982,87:281-294
    [41]Balas, M.J. The Galerkin method and feedback control of linear distributed parameter systems. Journal of Mathematical Analysis and Applications,1983, 91:527-546
    [42]Balas, M.J. Finite dimensional control of distributed parameter systems by Galerkin approximation of infinite dimensional controller. Journal of Mathematical Analysis and Application,1986,114:17-36
    [43]Balas, M.J. Finite-dimensional controllers for linear distributed parameter systems:exponential stability using residual model filters. Journal of Mathematical Analysis and Application,1988,133:283-296
    [44]Balas, M.J. Stable feedback control of linear distributed parameter systems: time and frequency domain conditions. Journal of Mathematical Analysis & Applications,1998,225:144-167
    [45]Byrnes, C.I., Gilliam, D.S., Lauko, I.G., Shubov, V.I. Output regulation for parabolic distributed parameter systems:set point control. Proceedings of the 36th Conference on Decision & Control, San Diego, California USA,1997:2225-2230
    [46]Byrnes, C.I., Lauko, I.G., Gilliam, D.S., Shubov, V.I. Output regulation for linear distributed parameter systems.IEEE Transactions on Automatic Control, 2000,45(12):2236-2252
    [47]Yoshida, M., Matsumoto, S. Controller design for parabolic distributed parameter systems using finite integral transform techniques. Journal of Process Control,1996,6(6):359-366
    [48]Yoshida, M., Takeda, T., Maruko, M., Matsumoto, S. Control of the temperature distribution in two dimensional space of an annular type non-isothermal adsorber. Journal of Process Control,2003,13:831-838
    [49]Sadek, I.S., Bokhari, M.A. Optimal control of a parabolic distributed parameter system via orthogonal polynomials. Optimal control of applications & methods, 1998,19:205-213
    [50]Lu, S.H., Fong, I.K. Stability robustness of linear normal distributed parameter systems. Systems & Control Letters,2000,41:317-323
    [51]Reinschke, J., Smith, M.C. Designing robustly stabilising controllers for LTI spatially distributed systems using coprime factor synthesis. Automatica,2003, 39:193-203
    [52]Alvarez-Ramirez, J., Puebla, H., Ochoa-Tapia, J.A. Linear boundary control for a class of nonlinear PDE processes. Systems & Control Letters,2001,44: 395-403
    [53]Boubaker, O., Babary, J.P. On SISO and MIMO variable structure control of nonlinear distributed parameter systems:application to fixed bed reactors. Journal of process control,2003,13:729-737
    [54]Chen, C.C., Chang, H.C. Accelerated disturbance damping of an unknown distributed system by nonlinear feedback. AIChE Journal,1992,38(9): 1461-1476
    [55]Christofides, P.D., Daoutidis, P. Nonlinear control of diffusion-convection-reaction processes. Computers & Chemical Engineering, 1996,20:1071-1076
    [56]Christofides, P.D., Daoutidis, P. Feedback control of hyperbolic PDE systems. AIChE Journal,1996,42(11):3063-3086
    [57]Palazoglu, A., Karakas, A. Control of nonlinear distributed parameter systems using generalized invariants. Automatica,2000,36:697-703
    [58]Zheng, D., Hoo, K.A. Low-order model identification for implementable control solutions of distributed parameter systems. Computers and Chemical Engineering,2002,26:1049-1076
    [59]King, B., Hovakimyan, N. An adaptive approach to control of distributed parameter systems. Proceeding of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii USA,2003.5715-5720
    [60]Park, T. Y., Yoon, H.M., Kim, O.Y. Optimal control of rapid thermal processing systems by empirical reduction of modes. Industrial & Engineering Chemistry Research,1999,38:3964-3975
    [61]Shvartsman, S.Y., Kevrekidis, I.G. Nonlinear Model Reduction for Control of Distributed Parameter Systems:A Computer Assisted Study. AlChE Journal, 1998,44:1579-1595
    [62]Kravaris, C, Arkun, Y. Geometric Nonlinear Control-An Overview. Procedings of 4th International Conference on Chemical Process Control, Padre Island, TX, 1991.477-516
    [63]El-Farra, N.H., Christofides, P.D. Integrating Robustness, Optimality, and Constraints in Control of Nonlinear Processes. Chemical Engineering Science, 2001,56(5):1841-1869
    [64]Baker, J., Armaou, A., Christofides, P.D. Nonlinear Control of Incompressible Fluid Flow:Application to Burgers'Equation and 2D Channel Flow. Journal of Mathematical Analysis and Applications,2000,252(1):230-255
    [65]Chiu, T., Christofides, P.D. Nonlinear Control of Particulate Processes. AIChE Journal,1999,45:1279-1297
    [66]Shang, H., Forbes, J.F., Guay, M. Feedback control of hyperbolic distributed parameter systems. Chemical Engineering Science,2005,60:969-980
    [67]Sira-Ramirez, H. Distributed sliding mode control in systems described by quasilinear partial differential equations. Systems and Control Letters,1989,13: 117-181
    [68]Wu, W. Finite difference output feedback control of a class of distributed parameter processes. Industrial & Engineering Chemistry Research,2000,39: 4250-4259
    [69]Mamdani, E.H., Assilian, S. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies,1974,7 (1): 1-13
    [70]Seborg, D. E., Thomas, F. E., Duncan, A. M.. Process Dynamics and Control-Second Edition. America:John Wiley & Sons, Inc.2004,316-356
    [71]Lee, C.C. Fuzzy logic in control systems:fuzzy logic controlling. IEEE Transactions on Systems, Man, and Cybernetics,1990,20(2):404-418
    [72]Manel, A., Albert, A., Jordi, A., Manel, P. Wastewater Neutralization Control Based on Fuzzy Logic:Experimental Results. Industrial and Engineering Chemistry Research,1999,38:2709-2719
    [73]Zhang, J. A. Nonlinear Gain Scheduling Control Strategy Based on Neuro-fuzzy Networks. Industrial Engineering Chemistry Research,2001,40:3164-3170
    [74]Hojjati, H.; Sheikhzadeh, M.; Rohani, S. Control of Supersaturation in A Semibatch Antisolvent Crystallization Process Using A Fuzzy Logic Controller. Industrial Engineering Chemistry Research,2007,46:1232-1240
    [75]丁永生,应浩.解析模糊控制理论:模糊控制系统的结构和稳定性分析.控制与决策,2000,15(2):129-135
    [76]Li H. X.& Tso S. K. Higher Order Fuzzy Control Structure for Higher Order or Time-Delay Systems. IEEE Transation on Fuzzy Syststem,1999,7(5):540-552
    [77]胡包钢,应浩.模糊PID控制技术研究发展回顾及其面临的若干重要问题.自动化学报,2001,27(4):567-584
    [78]Tong, R. M. Analysis and Control of Fuzzy Systems Using Finite Discrete Relations. International Journal of Control,1978,27:431-440
    [79]Takagi T., Sugeno M. Fuzzy identification of systems & its applications to modeling and control. IEEE Trans. On Systems, Man,& Cybernetics,1985,15: 116-132
    [80]Ma X. J., Sun Z. Q. Analysis and design of fuzzy controller and fuzzy observer. IEEE Transactions on Fuzzy Systems,1998,6:41-51
    [81]George K. I. Mann, Bao-Gang Hu, and Raymond G. Gosine. Two-Level Tuning of Fuzzy PID Controllers. IEEE Transactions On Systems, Man, And Cybernetics—art B:Cybernetics,2001,31(2):263-269
    [82]George, K. I. M.; Hu. B.G.; Raymond, G. G. Analysis of Direct Action Fuzzy PID Controller Structures. IEEE Transactions on Systems Man, and Cybernetics-Part B,1999,29(3),371-388
    [83]Ying, H., Analytical relationship between the fuzzy PID controllers and the linear PIDcontroller, Technical report. Department of Biomedical Engineering, The University of Alabama at Birmingham,1987.
    [84]Ying, H. The simplest fuzzy controllers using different inference methods are different nonlinear proportional-integral controllers with variable gains. Automatica,1993,29:1579-1589
    [85]Ying, H. A fuzzy controller with linear control rules is the sum of a global two-dimensional multilevel relay and a local nonlinear proportional-integral controller. Automatica,1993,29:499-505
    [86]Ying, H., Analytical structure of a two-input two-output fuzzy controller and its relation to PI and multilevel relay controllers. Fuzzy Sets and Systems,1994, 63:21-33
    [87]Li, H.X. A comparative design and tuning for conventional fuzzy control. IEEE Transactions on Systems, Man, and Cybernetics, Part B,1997,27(5):884-889
    [88]Li, H.X., Gatland, H.B. A new methodology for designing a fuzzy logic controller. IEEE Transactions on Systems, Man, and Cybernetics, Part B,1995, 25(3):505-512
    [89]Li, H.X., Gatland, H.B. Conventional fuzzy logic control and its enhancement. IEEE Transactions on Systems, Man, and Cybernetics, Part B,1996,26(5): 791-797
    [90]Li, H.X., Gatland, H.B., Green, A.W. Fuzzy variable structure control. IEEE Transactions on Systems, Man, and Cybernetics, Part B,1997,27(2):306-312
    [91]Li, H.X., TSO, S.K. Duality of conventional fuzzy logic control. International Journal of Intelligent control and Systems,1998,4(2):577-596
    [92]Li, H.X., Zhang, L., Cai, K.Y, Chen, G.R. An improved robust fuzzy-PID controller with optimal fuzzy reasoning. IEEE Transactions on Systems, Man, and Cybernetics, Part B,2005,35(6):1283-1294
    [93]Kuhu P., Rajani K. M., and Nikhil R. Pal. A New Scheme for Fuzzy Rule-Based System dentification and Its Application to Self-Tuning Fuzzy Controllers. IEEE Transactions On Systems, Man, And Cybernetics—art B:Cybernetics, 2002,32(4):470-482
    [94]Giuseppe D. F., Frank Hoffmann, Giuseppe Lo Re, and Alfonso Urso. A Genetic Algorithm for the Design of a Fuzzy Controller for Active Queue Management. IEEE Transactions On Systems, Man, And Cybernetics—art C:Applications And Reviews,2003,33(3):313-324
    [95]Seng T. L., Khalid M. B., Yusof R. Tuning of a Neuro-Fuzzy Controller by Genetic Algorithm. IEEE Transactions On Systems, Man, And Cybernetics—Part B:Cybernetics,1999,29(3):226-237
    [96]Eranda H. and George K. I. Mann. Design and Tuning of Standard Additive Model Based Fuzzy PID Controllers for Multivariable Process Systems. IEEE Transactions On Systems, Man, And Cybernetics—Part B:Cybernetics, 2008,38(3):667-674
    [97]Chung H.Y., Chen B. C, Lin J. J. A PI-type fuzzy controller with self-tuning scaling factors. Fuzzy Sets and Systems,1998,93:23-28
    [98]Woo, Z. W.; Chung, H. Y.; Lin, J. J. A PID type fuzzy controller with self-tuning Scaling factors. Fuzzy Sets and Systems,2000,115:321-326
    [99]Rajani, K. M., Nikhil R. P. A Robust Self-Tuning Scheme for PI-and PD-Type Fuzzy Controllers. IEEE Transactions On Fuzzy Systems,1999,7(1):2-16
    [100]Rajani, K. M., Nikhil R. P. A self-tuning fuzzy PI controller. Fuzzy Sets and Systems,2000,115:327-338
    [101]Guzelkaya M., Eksin I., Yesil E. Self-tuning of PID-type fuzzy logic controller coefficients via relative rate observer. Engineering Applications of Artificial Intelligence,2003,16:227-236
    [102]Yesil E., Guuzelkaya M., I. Eksin. Self tuning fuzzy PID type load and frequency controller. Energy Conversion and Management,2004,45:377-390
    [103]Xu J.X., Hang C. C, Liu C. Parallel structure and tuning of a fuzzy PID controller. Automatica,2000,36:673-684
    [104]Xu J. X., Pok Y. M., Liu C, etc. Tuning and Analysis of a Fuzzy PI Controller Based on Gain and Phase Margins. IEEE Transactions On Systems, Man, And Cybernetics—Part A:Systems And Humans,1998,28(5):685-691
    [105]Karnik N. N., Mendel J.M. Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems,1999,7(6):643-658
    [106]Zhang X. X., H. X. Li, and S. Y. Li. Analytical Study and Stability Design of Three-Dimensional Fuzzy Logic Controller for Spatially Distributed Dynamic Systems. IEEE Transactions Fuzzy Systems,2008,16(6):1613-1625
    [107]Ishihara, J. Y, Terra, M. H. Impulse controllability and obsevability of rectangular Descriptor systems. IEEE Trans. Automaica. Controntreol, 2001,46(6):34-45
    [108]Li, Y.; Kiam, H. A.; Gregory, C.Y. Patents, Software, and Hardware for PID Control. IEEE Control Systems Magazine,2006:42-54
    [109]Li, Y.; Kiam, H. A.; Gregory, C.Y. PID Control System Control System Analysis and Design. IEEE Control Systems Magazine,2006:32-41
    [110]Youbin P., Damir V., Raymond H. Anti-Windup, Bumpless, and Conditioned Transfer Techniques for PID Controllers," IEEE Control System,1996,48-57
    [111]Scottedard, H. A., HALL, C. E. Variable-structure PID control to prevent integrator windup. IEEE Transactions On Industrial Elecnonics,2001,48(2): 442-451
    [112]Hippe, P. Windup in control:Its Effects and Their Prevention. England: Spring-Verlag London Limited.2006
    [113]Choi, J. W. and Lee, S. C. Antiwindup strategy for PI-type speed controller, IEEE Trans. Ind. Electron,2009,56(6):2039-2046
    [114]Tang, K. S., Man K. F, G. R., Chen, et al. An optimal fuzzy PID controller. IEEE Trans. Ind. Electron.,2001,48(4):757-765
    [115]Precup, R. E., Preitl, S., J. K., Tar, et al. Fuzzy control system performance enhancement by iterative learning control. IEEE Trans. Ind. Electron,2008, 55(9):3461-3475
    [116]Wang, P. P., Tyan, C. Y. Fuzzy dynamic systems and fuzzy linguistic controller classification. Automatica,1994,30(11):1769-1774.
    [117]Wang, J.J., Fu C, zhang Y. SVC control system based on instantaneous reactive power theory and fuzzy PID. IEEE Transactions On Industrial Electronics,2008, 55(4):1658-1665
    [118]Vega, P.; Prada, C, Aleixander, V. Self-tuning Predictive PID Controller. IEE Pro. D,1991,138(3):303-311
    [119]Garcia, C. E., Morari, M. Internal Model Control I. A Unifying Review and Some New Results. Ind. Eng. Chem. Process Des. Dev.,1982,21:308-318
    [120]Braae, M., Rutherford, D. A.. Section of parameters for a fuzzy logic control. Fuzzy Sets and Systems,1979,2:185-199
    [121]Braae, M., Rutherford, D. A.. Theoretical and linguistic aspects of the fuzzy logic controller. Automatica,1979,15:553-577
    [122]Kickert, W.J.M., Mamdani, E. H.. Analysis of a fuzzy logic controller. Fuzzy Sets and Systems,1978,1:29-44
    [123]Siler, W, Ying, H.. Fuzzy Control Theory:a linear Case. Fuzzy Sets and Systems,1989,33:275-290
    [124]Theodoropoulou, A., Adomaitis, R.A., Zafiriou, E.. Model Reduction for Optimization of Rapid Thermal Chemical Vapor Deposition Systems. IEEE Transactions on Semiconductor Manufacturing,1998,11(1):85-98
    [125]Bailey-Kellogg, C, Zhao, F. Influence-based model decomposition for reasoning about spatially distributed physical systems. Artificial Intelligence, 2001,130:125-166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700