空间分布动态系统的3-D模糊控制设计与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业生产过程中的多数系统都具有空间分布特性,但实际应用过程中通常忽略系统的空间分布特性,采用发展较为成熟、实现较为简单的集总参数控制理论去解决存在的控制问题。然而,随着现代工业的发展,人们对生产过程提出了越来越严格的要求,除了考虑生产安全外,还要满足日益增长的环保、产品质量、能耗等要求。传统集总参数控制方法已不能满足实际控制要求,研究空间分布系统控制理论已成为现代控制理论的热点之一。经典分布参数系统控制方法是过去几十年中针对空间分布系统发展起来的方法,其不但需要系统的精确数学模型,并且需要设计人员掌握大量的、复杂的涉及到分布参数系统理论的数学知识,这为其在工程实践中的应用带来困难。模糊控制由于具有两个优点(设计控制器不需要被控系统的数学模型以及可以通过实际经验而非复杂数学推导获得令人满意的控制器),在现实生活中得到广泛应用。然而传统模糊集固有的二维信息特征,使得传统模糊控制器并不能有效地解决空间分布系统的控制问题。空间分布系统模糊控制仍然是个有待解决的问题。为此,本论文基于空间分布系统的空间分布特性,从模糊集及模糊控制策略着手对空间分布系统的模糊控制问题进行了研究。
     主要工作包括以下几个方面:
     针对传统二维模糊集不能表征空间信息的特点,提出了具有三维信息(分别用于基本变量的论域、隶属度及空间信息)的空间模糊集,使其具有表征空间信息的能力。介绍了空间模糊集运算法则,并且给出了由空间模糊集延伸出的两个概念:空间输入变量与空间模糊化。根据系统的空间分布特点,提出了基于空间模糊集的模糊控制策略,使得控制器能够模拟人类操作员知识或者专家经验从整个空间角度去控制一个空间分布的场。作为基于空间模糊集的模糊控制策略的初步尝试,设计了区间值模糊控制器,仿真例子表明了该控制器的有效性。
     针对单控制源空间分布系统,提出了一种新型模糊控制器-3-D模糊控制器。它是在基于空间模糊集的模糊控制思想指导下设计而成的自成体系的模糊控制器。它具有与传统模糊控制器相似的结构,由空间模糊化、空间模糊规则推理及去模糊化构成,但却有着其独特的特点:①它可将来自空间域上的多个传感器输入作为空间分布输入,然后采用空间模糊集构造空间信息;②它具有能够处理空间信息的模糊规则推理机制;③规则数目不会随着测量传感器的数目增加而增加。由于3-D模糊控制器结构简单,空间模糊集与3-D推理均物理意义明确,计算并不复杂,使得对其作进一步研究分析成为可能。仿真例子表明了该控制器的有效性。
     推导了两项输入3-D模糊控制器的数学解析模型,并且对其作了结构分析。利用传统模糊控制器所使用的一种图形化解析法(规则库平面分解的方法),推导并得到3-D模糊控制器的数学解析模型。从数学解析的角度揭示了3-D模糊控制器在空间上具有全局滑模变结构特点以及与传统模糊控制器存在着一个空间等价关系,并且根据这个空间等价关系,揭示了3-D模糊控制本身固有的一些属性。
     在3-D模糊控制器数学解析模型的基础上,研究了3-D模糊控制系统的稳定性问题。利用3-D模糊控制器在空间域上的全局滑模变结构特性,研究了3-D模糊控制系统的Lyapunov稳定性,给出了全局稳定性条件以及据此设计控制器参数的方法。利用3-D模糊控制与传统模糊控制的空间等价关系以及离散时间系统的某些特点,研究了离散时间3-D模糊逻辑控制系统的BIBO稳定性,给出了全局BIBO稳定性条件以及据此设计控制器参数的方法。两个例子的仿真研究分别验证了依据不同稳定性条件所设计的控制器参数的有效性。
     针对空间分布更为复杂的多控制源空间分布系统,提出了基于分解协调的3-D模糊控制策略,使得3-D模糊控制能够处理一般的空间分布系统的控制问题。基于分解协调的3-D模糊控制采用了分层结构。首先处于底层的分解模块利用系统的局部影响特性,将空间域分解成多个子区域,进而将复杂多控制源空间分布系统分解成多个相对简单的单控制源空间分布子系统。在中间层,每个子系统均采用3-D模糊控制器。在顶层,针对子系统之间不可忽略的较强耦合,协调模块对空间邻近子系统之间进行局部协调,形成了协调式3-D模糊控制。将基于分解协调的3-D模糊控制应用于RTCVD系统,仿真结果表明了该控制方法的有效性。
Many of industrial processes and systems are inherently characterized by the presence of strong spatial variations, however, in the actual application the spatial distribution is usually ignored and the traditional control methods developed for lumped parameter systems are used. With the development of modern industry, higher requirements are brought forward for those industrial processes, including safety regulation, increasingly stringent environmental regulation, tighter product quality, and energy specification. For the spatially distributed systems that commonly exist in the industrial processes, control methods used for traditional lumped parameter systems couldn’t satisfy the actual control requirement any more, thus, research on the control theory of spatially distributed systems has become one of the highlights in the modern control theory. Classical distributed parameter control methods were developed for spatially distributed systems during the past several decades. Since the methods require the precise mathematical models of the systems to be controlled and expect the control designers to grasp plentiful, complicated mathematical knowledge involved in the theory of distributed parameter systems, they are difficultly employed in the practical engineering applications. In contrast, fuzzy logic control has achieved worldwide success in countless commercial products and applications, because it has two practical advantages: no requirement of the mathematical model of the system, and satisfactory nonlinear controller developed by utilizing human control knowledge and experience without a complicated mathematics. However, due to the inherent two-dimensional feature of the traditional fuzzy set, the traditional fuzzy logic controller cannot solve the control problem of spatially distributed systems effectively. Fuzzy logic control for spatially distributed system is still an open problem. Thus, on the basis of the spatial distribution nature, this dissertation begins with new fuzzy set and new fuzzy logic control strategy, and then concentrates on the study on the fuzzy logic control for spatially distributed systems.
     The main contents are as follows:
     A novel three-dimensional fuzzy set, called as spatial fuzzy set, is proposed, since traditional two-dimensional fuzzy set is not able to express the spatial information effectviely. The spatial fuzzy set is inherently defined to express the spatial information, and has three coordinates: one is for the universe of discourse of the variable, another is for the spatial information, and a third is for the membership degree. Additionally, the set-theoretic operation of spatial fuzzy sets is introduced, and then spatial input variable and spatial fuzzification,two concepts extended from the spatial fuzzy set, are given. In terms of the feature of spatial distribution, a novel fuzzy logic control strategy based on spatial fuzzy set is proposed. The fuzzy logic control strategy can make a fuzzy logic controller control a spatially-distributed field by emulating human knowledge and experience from the point of view of the entire space domain. As a tentative application of the fuzzy logic control strategy based on spatial fuzzy set, an interval-valued fuzzy logic controller is designed. An example is illustrated to verify the effectiveness of the controller by simulation experiments.
     A three domain fuzzy logic controller (3-D FLC) is proposed based on the spatial fuzzy set for the spatially distributed systems with one control source. The controller is designed under the framework of the fuzzy logic control strategy based on spatial fuzzy set, and it has a self-contained structure. Similar to the traditional FLC, the 3-D FLC consists of spatial fuzzification, 3-D fuzzy rule inference, and defuzzifier, however, it has its unique nature:①it takes the spatially distributed inputs from multiple sensors in the space domain and expresses the spatial information with the help of the spatial fuzzy set.②it processes the inference mechanism which can cope with the spatial information.③rules will not increase as sensors increase for spatial measurement. The 3-D FLC is designed with a simple configuration. Additionally, the spatial fuzzy set as well as the 3-D rule inference has certain physical meanings, and the involved computation is not complicated. Thus, 3-D FLC can be further investigated analytically. An example is finally illustrated to verify the effectiveness of the controller by simulation experiments.
     The analytical mathematical model of the 3-D two-term fuzzy logic controller is derived, and then controller structure is explained with the help of the existing conventional control techniques. The graphic analytical method (rule base plane decomposition) for the traditional two-term fuzzy logic controller is used for the analytical model derivation. The derived results expose that on the one hand, the 3-D FLC has a global sliding mode structure over the spatial domain; on the other hand, it has a spatial equivalent structure with the traditional fuzzy logic controller over the space domain. In terms of the spatial equivalent structure, some properties of the controller are further presented.
     The stability issue of the 3-D fuzzy logic control system is discussed, based on the analytical mathematical model of the 3-D FLC. In virtue of the global sliding mode feature of 3-D FLC, the Lyapunov stability of fuzzy logic control system is investigated, where a global stability condition is derived and an approach for designing the controller parameters is given. Utilizing the spatial equivalent structure and some feature of discrete time systems, the BIBO stability of discrete time fuzzy logic control system is investigated, where a global BIBO stability condition is derived and an approach for designing the controller parameters is given. Two examples are presented respectively to demonstrate the effectiveness of the two kinds of controller parameter designs by simulation experiments.
     A 3-D fuzzy logic control strategy based on decomposition and coordination is proposed for the spatially distributed systems with multiple sources. It extends the 3-D FLC to solve the control problem of the general spatially distributed systems. The control system has a hierarchical structure with three hierarchies. Firstly, the decomposition module decomposes the whole space domain into sub-space domains and decomposes the complex spatially-distributed process with multiple sources into several relatively simple subsystems. Then, on the middle layer, a 3-D FLC is used for each subsystem. Finally, on the top layer, the coordination module carries out a strategy of local coordination among adjacent subsystems, and formulates a coordinated 3-D fuzzy logic control. The proposed control method is successfully applied to a Rapid Thermal Chemical Vapor Deposition (RTCVD) system, and the simulation results demonstrate its effectiveness.
引文
Abonyi, J., Babuka, R., Szeifert, F., (2001), Fuzzy Modeling With Multivariate Membership Functions: Gray-Box Identification and Control Design, IEEE Transactions on Systems, Man, and Cybernetics, 31(5): 755-767.
    Adomaitis, R.A., (1995), RTCVD model reduction: a collocation on empirical eigenfunctons approach, Technical report, Institute for Systems Research, University of Maryland, USA.
    Adomaitis, R.A., (2003), A reduced-basis discretization method for chemical vapor deposition reactor simulation, Mathematical and Computer Modelling, 38:159-175.
    Akar, M., Ozguner, U., (2000), Decentralized techniques for the analysis and control of Takagi-Sugeno fuzzy systems, IEEE Transactions on Fuzzy Systems, 8(6): 691-704.
    Akbarzadeh-T, M.-R., (1998), Fuzzy control and evolutionary optimization of complex systems, PhD Dissertation, The University of New Mexico, USA.
    Alvarez-Ramirez, J., Puebla, H., Ochoa-Tapia, J.A., (2001), Linear boundary control for a class of nonlinear PDE processes, Systems & Control Letters, 44: 395-403.
    Aracil, J., Gordillo, F., (2004), Describing function method for stability analysis of PD and PI fuzzy controllers, Fuzzy Sets and Systems, 143(2): 233-249.
    Aracil, J., Gordillo, F., ASlamo, T., (1998), Global stability analysis of second-order fuzzy control systems, in: R. Palm, D. Driankov, H. Hellendorn (Eds.), Advances in Fuzzy Control, Springer, Berlin, pp. 11-31.
    Aracil, J., Ollero, A., GarcFGa-Cerezo, A., (1989), Stability indices for the global analysis of expert control systems, IEEE Transactions on Systems, Man, and Cybernetics, 19(5): 998-1007.
    Assawinchaichote, W., Nguang, S.K., Shi, P., (2004), H-infinity output feedback control design for uncertain fuzzy singularly perturbed systems: An LMI approach, Automatica, 40(12): 2147-2152.
    Bailey-Kellogg, C., Zhao, F, (2001), Influence-based model decomposition for reasoning about spatially distributed physical systems, Artificial Intelligence, 130: 125-166.
    Baker, J., Armaou, A., Christofides, P.D., (2000), Nonlinear Control of Incompressible Fluid Flow: Application to Burgers’ Equation and 2D Channel Flow, Journal of Mathematical Analysis and Applications, 252(1): 230-255.
    Balas, M.J., (1982), Reduced-order feedback control of distributed parameter systems via singular perturbation methods, Journal of Mathematical Analysis and Applications, 87: 281-294.
    Balas, M.J., (1983), The Galerkin method and feedback control of linear distributed parameter systems, Journal of Mathematical Analysis and Applications, 91: 527-546.
    Balas, M.J., (1986), Finite dimensional control of distributed parameter systems by Galerkin approximation of infinite dimensional controller, Journal of Mathematical Analysis and Application, 114:17-36.
    Balas, M.J., (1988), Finite-dimensional controllers for linear distributed parameter systems: exponential stability using residual model filters, Journal of Mathematical Analysis and Application, 133: 283-296.
    Balas, M.J., (1998), Stable feedback control of linear distributed parameter systems: time and frequency domain conditions, Journal of Mathematical Analysis & Applications, 225: 144-167.
    Bamieh, B., Paganini, F., Dahleh, M.A., (2002), Distributed Control of Spatially Invariant Systems, IEEE Transactions on Automatic Control, 47(7): 1091-1107.
    Baturone, I., Moreno-Velo, F.J., Sanchez-Solano, S., Ollero, A., (2004), Automatic design of fuzzy controllers for car-like autonomous robots, IEEE Transactions on Fuzzy Systems, 12(4): 447-465.
    Bitzer, M., Zeitz, M., (2002), Design of a nonlinear distributed parameter observer for a pressure swing adsorption plant, Journal of process control, 12(4): 533-543.
    Boubaker, O., Babary, J.P., (2003), On SISO and MIMO variable structure control of nonlinear distributed parameter systems: application to fixed bed reactors, Journal of process control, 13: 729-737.
    Bouslama, F., Ichikawa, A., (1992), Application of limit fuzzy controllers to stability analysis, Fuzzy Sets and Systems, 49: 103-120.
    Braae, M., Rutherford, D.A., (1979a), Section of parameters for a fuzzy logic control, Fuzzy Sets and Systems, 2:185-199.
    Braae, M., Rutherford, D.A., (1979b), Theoretical and linguistic aspects of the fuzzy logic controller, Automatica, 15: 553-577.
    Byrnes, C.I., Gilliam, D.S., Lauko, I.G., Shubov, V.I., (1997), Output regulation for parabolic distributed parameter systems: set point control, Proceedings of the 36th Conference on Decision & Control, San Diego, California USA, pp. 2225-2230.
    Byrnes, C.I., Lauko, I.G., Gilliam, D.S., Shubov, V.I., (2000), Output regulation for linear distributed parameter systems, IEEE Transactions on Automatic Control, 45(12): 2236-2252.
    Cao, C.T., (1993), Fuzzy compensator for stick-slip friction, Mechatron., 3(6): 783-794.
    Cao, S.G., Rees, N.W., Feng, G., (1996), Stability analysis of fuzzy control systems, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 26(1): 201-204.
    Cao, S.G., Rees, N.W., Feng, G., (1997), Analysis and design for a class of complex control systems—Part II: Fuzzy controller design, Automatica, 33: 1029-1039.
    Cao, S.G., Rees, N.W., Feng, G., (1999), Analysis and design of fuzzy control systems using dynamic fuzzy state space models, IEEE Transactions on Fuzzy Systems, 7(2): 192-200.
    Carvajal, J., Chen, G., Ogmen, H., (2000), Fuzzy PID controller: Design, performance evaluation, and stability analysis, Information Sciences, 123: 249-270.
    Chateau, P.D., Zachmann, D.W., (1986), Schaum's outline of theory and problems of partial differential equations, Schaum's outline series, New York: McGraw-Hill.
    Chen, C.C., Chang, H.C., (1992), Accelerated disturbance damping of an unknown distributed system by nonlinear feedback, AIChE Journal, 38(9): 1461-1476.
    Chen, C.L., Chang, M.H., (1998), Optimal design of fuzzy sliding mode control: A comparative study, Fuzzy Sets and Systems, 93(1): 37-48.
    Chen, G.R., (1996), Conventional and fuzzy PID controllers: An overview, International Journal of Intelligent Control and Systems, 1(2): 235-246.
    Chen, G.R., (2004), Stability of nonlinear systems, in: K. Chang, (Ed.), Encyclopedia of RF and Microwave Engineering, Wiley, pp. 4881-4896.
    Chen, G.R., Ying, H., (1997), BIBO stability of nonlinear fuzzy PI control systems, Journal of Intelligent and Fuzzy Systems, 5: 245256.
    Chen, J.Y., (2001), Rule regulation of fuzzy sliding mode controller design: Direct adaptive approach, Fuzzy Sets and Systems, 120(1): 159-168.
    Chen, Y.Y., (1987), Stability analysis of fuzzy control—A Lyapunov approach, in Procedings of IEEE International Conference on Systems, Man, and Cybernetics, Las Vegas, NV, pp. 1027-1031.
    Chen, Y.Y., (1989), The global analysis of fuzzy dynamic systems, PhD Dissertation, University of California, Berkeley, USA.
    Choi, B., Kwak, S., Wang, H., (2005), Stability analysis of a simple-structured fuzzy logic controller, Journal of Intelligent and Robotic Systems, 42(2): 169-178.
    Christofides, P.D., (1998), Robust control of parabolic PDE systems, Chemical Engineering Science, 53 (16): 2949-2965.
    Christofides, P.D., (2001a), Control of Nonlinear Distributed Process Systems: Recent Developments and Challenges, AIChE Journal, 47(3): 514-518.
    Christofides, P.D., (2001b), Nonlinear and Robust Control of Partial Differential Equation Systems: Methods and Applications to Transport-Reaction Processes, Boston: Birkh?user.
    Christofides, P.D., Daoutidis, P., (1996a), Nonlinear control of diffusion-convection-reaction processes, Computers & Chemical Engineering, 20: 1071-1076.
    Christofides, P.D., Daoutidis, P. (1996b), Feedback control of hyperbolic PDE systems, AIChE Journal, 42(11), 3063-3086.
    Chiu, T., Christofides, P.D., (1999), Nonlinear Control of Particulate Processes, AIChE Journal, 45:1279-1297.
    Deglas, M., (1984), Invariance and stability of fuzzy systems, Journal of Mathematical Analysis and Applications, 99(2): 299-319.
    Deng, H., Li, H.X., Chen, G.R., (2005), Spectral approximation based intelligent modeling for distributed thermal process, IEEE Transactions on Control Systems Technology, 13(5): 686 -700.
    Desoer, C.A., Vidyasagar, M., (1975), Feedback systems: Input-output properties, New York: Academic Press.
    Doumanidis, C., (1997), In-process control in thermal rapid prototyping, IEEE Control Systems Magazine, 17(4): 46-54.
    Doumanidis, C.C., Fourligkas, N., (2001), Temperature distribution control in scanned thermal processing of thin circular parts, IEEE Transactions on Control Systems Technology, 9(5): 708-717.
    El-Farra, N.H., Christofides, P.D., (2001), Integrating Robustness, Optimality, and Constraints in Control of Nonlinear Processes, Chemical Engineering Science, 56(5): 1841-1869.
    El-Farra, N.H., Christofides, P.D., (2004), Coordinated Feedback and Switching for Control of Spatially-Distributed Processes, Computers and Chemical Engineering, 28: 111-128.
    Feng, G., (2001), Approaches to quadratic stabilization of uncertain fuzzy dynamic systems, IEEE Transactions on Circuits and Systems I, 48(6): 760-769.
    Feng, G., (2002), An approach to adaptive control of fuzzy dynamic systems, IEEE Transactions on Fuzzy Systems, 10(2): 268-275.
    Feng, G., (2004), H-infinity controller design of fuzzy dynamic systems based on piecewise Lyapunov functions, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 34(1): 283-292.
    Feng, G., (2006), Survey on Analysis and Design of Model-Based Fuzzy Control Systems, IEEE Transactions on Fuzzy Systems, 14(5): 676-697.
    Feng, G., Cao, G., Rees, N.W., Chak, C.K., (1997), Design of fuzzy control systems with guaranteed stability, Fuzzy Sets and Systems, 85(1): 1-10.
    Fromion, V., Monaco, S., Normand-Cyrot, D., (2001), The weighted incremental norm approach: from linear to nonlinear H∞control, Automatica, 37: 1585-1592.
    Glower, S., Munighan, J., (1997), Designing fuzzy controllers from a variable structures standpoint, IEEE Transactions on Fuzzy Systems, 5(1): 138-144.
    Gorzalcznay, M.B., (1987), A method of inference in approximated reasoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems, 21: 1-17.
    Guerra, R.E., Braess, G.S., Haber, R.H., Alique, A., Alique, J.R., (2003), Using circle criteria for verifying
    asymptotic stability in PI-like fuzzy control systems: application to the milling process, IEE Proceedings-Control Theory and Applications, 150(6): 619-627.
    Ha, Q.P., Nguyen, Q.H., Rye, D.C., Durrant-Whyte, H.F., (2001), Fuzzy sliding mode controllers with applications, IEEE Transactions on Industrial Electronics, 48(1): 38-46.
    Hagras, H.A., (2004), A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots, IEEE Transactions on Fuzzy Systems, 12(4): 524-539.
    Hong, S.K., Langari, R., (2000), Robust fuzzy control of a magnetic bearing system subject to harmonic disturbances, IEEE Transactions on Control Systems Technology, 8(2): 366-371.
    Hoo, K.A.,Zheng, D., (2001), Low-order control-relevant models for a class of distributed parameter systems, Chemical Engineering Science, 56: 6683-6710.
    Hwang, Y.R., Tomizuka, M., (1994), Fuzzy smoothing algorithms for variable structure systems, IEEE Transactions on Fuzzy Systems, 2(4): 277-284.
    Kandel, A., Luo, Y., Zhang, Y.Q., (1999), Stability analysis of fuzzy control systems, Fuzzy Sets and Systems, 105(1):33-48.
    Karnik, N.N., Mendel, J.M., Liang, Q., (1999), Type-2 Fuzzy Logic Systems, IEEE Transactions on Fuzzy Systems, 7: 643-658.
    Kaufmann, A., Gupta, M.M., (1975), Introduction to fuzzy arithmetic, New York: Van Nostrand.
    Khalil, H.K., (1996), Nonlinear systems, 2nd Edition, New Jersey: Prentice-Hall.
    Kickert, W.J.M., Mamdani, E.H., (1978), Analysis of a fuzzy logic controller, Fuzzy Sets and Systems, 1: 29-44.
    Kiendl, H., Rüger, J.J., (1995), Stability analysis of fuzzy control systems using facet functions, Fuzzy Sets and Systems, 70: 275-285.
    Kim, S.W., Lee, J.J., (1995a), Design of a fuzzy controller with fuzzy sliding surface, Fuzzy Sets and Systems, 71: 359-367.
    Kim, W.C., Ahn, S.C., Kwon, W.H, (1995b), Stability analysis and stabilization of fuzzy state space models, Fuzzy Sets and Systems, 71(1): 131-142.
    Kim, S.W., Cho, Y.W., Park, M., (1996), A multirule-base controller using the robust property of a fuzzy controller and its design method, IEEE Transactions on Fuzzy Systems, 4: 315-327.
    King, B., Hovakimyan, N., (2003), An adaptive approach to control of distributed parameter systems. Proceeding of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii USA, pp. 5715-5720.
    Kiszka, J.B., Gupta, M.M., Nikiforuk, P.N., (1985), Energetistic stability of fuzzy dynamic systems, IEEE Transactions on Systems, Man, and Cybernetics, 15(6): 783-792.
    Kravaris, C., Arkun, Y., (1991), Geometric Nonlinear Control-An Overview, Procedings of 4th International Conference on Chemical Process Control, Padre Island, TX, pp. 477-516.
    Kroll, A., (1996), Identification of functional fuzzy models using multidimensional reference fuzzy sets, Fuzzy sets and Systems, 80(2): 149-158.
    Lee, C.C., (1990), Fuzzy logic in control systems: fuzzy logic controlling.Ⅰ ,” IEEE Transactions on Systems, Man, and Cybernetics, 20(2): 404-418.
    Lee, M.L., Chung, H.Y., Yu, F.M., (2003), Modeling of hierarchical fuzzy systems, Fuzzy Sets and Systems, 138: 343-361.
    Li, H.X., (1997a), A comparative design and tuning for conventional fuzzy control, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 27(5): 884-889.
    Li, H.X., Gatland, H.B., (1995), A new methodology for designing a fuzzy logic controller, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 25(3): 505-512.
    Li, H.X., Gatland, H.B., (1996), Conventional fuzzy logic control and its enhancement, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 26(5): 791-797.
    Li, H.X., Gatland, H.B., Green, A.W., (1997b), Fuzzy variable structure control, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 27(2): 306-312.
    Li, H.X., TSO, S.K., (1998), Duality of conventional fuzzy logic control, International Journal of Intelligent control and Systems, 2(4): 577-596.
    Li, H.X., Zhang, L., Cai, K.Y., Chen, G.R., (2005), An improved robust fuzzy-PID controller with optimal fuzzy reasoning, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 35(6): 1283-1294.
    Lian, R.J., Huang, S.J., (2001), A mixed fuzzy controller for MIMO systems, Fuzzy Sets and Systems, 120:73-93.
    Lin, J., Lewis, F.L., (2003), Two-time scale fuzzy logic controller of flexible link robot arm, Fuzzy Sets and Systems, 139(1): 125-149.
    Lions, J.L., (1971), Optimal control of systems governed by partial differential equations, New York: Springer Verlag.
    Lo, J.C., Lin, M.L., (2004), Observer-based robust H-infinity control for fuzzy systems using two-step procedure, IEEE Transactions on Fuzzy Systems, 12(3): 350-359.
    Lu, S.H., Fong, I.K., (2000), Stability robustness of linear normal distributed parameter systems, Systems & Control Letters, 41: 317-323.
    Malki, H.A., Li, H., Chen, G.R., (1994), New design and stability analysis of fuzzy proportional-derivative control systems, IEEE Transactions on Fuzzy Systems, 2: 245-254.
    Malki, H.A., Misir, D, Feigenspanet, D, Chen, G.R., (1997), Fuzzy PID control of a flexible-joint robot arm with uncertainties from time-varying loads. IEEE Transactions on Control Systems Technology, 5(3): 371-378.
    Mamdani, E.H., Assilian, S., (1974), An experiment in linguistic synthesis with a fuzzy logic controller, International Journal of Man-Machine Studies, 7 (1): 1-13.
    Mendel, J.M., (2001), Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, New Jersey: Prentice Hall.
    Mendel, J.M., (2003), Type-2 Fuzzy Sets: Some Questions and Answers, IEEE Connections, Newsletter of the IEEE Neural Networks Society, 1: 10-13.
    Mendel, J.M., John, R.I., (2002), Type-2 Fuzzy Sets Made Simple, IEEE Transactions on Fuzzy Systems, 10: 117-127.
    Misir, D, Malki, H.A., Chen, G.R., (1996), Design and analysis of a fuzzy proportional-integral-derivative controller, Fuzzy Sets and Systems, 79(3): 297-314.
    Mohan, B.M., Patel, A.V., (2002), Analytical Structures and Analysis of the Simplest Fuzzy PD Controllers, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 32(2): 239-248.
    Palazoglu, A., Karakas, A., (2000), Control of nonlinear distributed parameter systems using generalized invariants, Automatica, 36: 697-703.
    Palm, R., (1994), Robust-control by fuzzy sliding mode, Automatica, 30(9): 1429-1437.
    Park, T.Y., Yoon, H.M., Kim, O.Y., (1999), Optimal control of rapid thermal processing systems by empirical reduction of modes, Industrial & Engineering Chemistry Research, 38: 3964-3975.
    Raju, G.V.S., Zhou, J., Kisner, R.A., (1991), Hierarchical fuzzy control, International Journal of Control, 54(5): 1201-1216.
    Ray, K.S., Majumder, D.D., (1984a), Application of circle criteria for stability analysis of linear SISO and MIMO systems associated with fuzzy logic controller, IEEE Transactions on Systems, Man, and Cybernetics, 14 (2): 345-349.
    Ray, K.S., Ghosh, A.M., Majumder, D.D., (1984b), L2-stability and the related design concept for SISO linear system associated with fuzzy logic controller, IEEE Transactions on Systems, Man, and Cybernetics, 14(6): 932-939.
    Ray, W. H., (1981), Advanced process control, New York: McGraw-Hill.
    Reddy, J.N., (1993), Introduction to the Finite Element Method, New York: McGraw-Hill.
    Reinschke, J., Smith, M.C., (2003), Designing robustly stabilising controllers for LTI spatially distributed systems using coprime factor synthesis, Automatica, 39: 193-203.
    Rubio, F. R., Berenguel, M., Camacho, E.F., (1995), Fuzzy logic control of a solar power plant, IEEE Transactions on Fuzzy Systems, 3(4): 459-468.
    Sadek, I.S., Bokhari, M.A., (1998), Optimal control of a parabolic distributed parameter system via orthogonal polynomials, Optimal control of applications & methods, 19: 205-213.
    Sagias, D.I., Sarafis, E.N., Siettos, C.I., Bafas, G.V., (2001), Design of a model identification fuzzy adaptive controller and stability analysis of nonlinear processes, Fuzzy Sets and Systems, 121(1): 169-179.
    Schiesser, W. E., (1991), The numerical methods of lines integration of partial differential equations, San Diego: Academic Press.
    Scott, A.C., (1969), A nonlinear Klein-Gordon equation, American Journal of Physics, 37: 52-61.
    Shang, H., Forbes, J.F., Guay, M., (2005), Feedback control of hyperbolic distributed parameter systems, Chemical Engineering Science, 60: 969-980.
    Shvartsman, S.Y., Kevrekidis, I.G., (1998), Nonlinear Model Reduction for Control of Distributed Parameter Systems: A Computer Assisted Study, AlChE Journal, 44: 1579-1595.
    Siler, W., Ying, H., (1989), Fuzzy Control Theory: a linear Case, Fuzzy Sets and Systems, 33:275-290.
    Sira-Ramirez, H., (1989), Distributed sliding mode control in systems described by quasilinear partial differential equations, Systems and Control Letters, 13: 117-181.
    Slotine, J.J.E., Li, W., (1991), Applied Nonlinear Control. Englewood cliffs, New Jersey: Prentice-Hall.
    Sooraksa, P., Chen, G.R., (1998), Mathematical modeling and fuzzy control of a flexible-link robot arm, Mathl. Comput. Modeling, 27(6): 93-93.
    Stewart, G.E., Gorinevsky, D.M., Dumont, G.A., (2003), Feedback controller design for a spatially-distributed system: the paper machine problem, IEEE Transactions on Control Systems Technology, 11(5): 612-628.
    Su, J.P., Chen, T.M., Wang, C.C., (2001), Adaptive fuzzy sliding mode control with GA-based reaching laws, Fuzzy Sets and Systems, 120(1): 145-158.
    Sugeno, M., (1999), On Stability of Fuzzy Systems Expressed by Fuzzy Rules with Singleton Consequents, IEEE Transactions on Fuzzy Systems, 7(2): 201-224.
    Tanaka, K., Hori, T., Wang, H.O., (2003), A multiple Lyapunov function approach to stabilization of fuzzy control systems, IEEE Transactions on Fuzzy Systems, 11(4): 582-589.
    Theodoropoulou, A., Adomaitis, R.A., Zafiriou, E., (1998), Model Reduction for Optimization of Rapid Thermal Chemical Vapor Deposition Systems, IEEE Transactions on Semiconductor Manufacturing, 11(1): 85-98.
    Thomas, J.W., (1995), Numerical partial differential equations, New York: Springer.
    Tong, R. M., (1978), Analysis and Control of Fuzzy Systems Using Finite Discrete Relations, International Journal of Control, 27:431-440.
    Torra, V., (2002), A review of the construction of hierarchical fuzzy systems, International Journal of Intelligent Systems, 17:531-543.
    Varma, A., Morbidelli, M., (1997), Mathematical methods in chemical engineering, New York: Oxford University Press.
    Wang, L.X., (1993), Stable adaptive fuzzy control of nonlinear systems, IEEE Transactions on Fuzzy Systems, 1(2): 146-155.
    Wang, L.X., (1997), A course in fuzzy systems and control, Upper Saddle River, New Jersey: Prentice-Hall.
    Wang, L.X., (1999), Analysis and design of hierarchical fuzzy systems, IEEE Transactions on Fuzzy Systems, 7(5): 617-624.
    Wang, P.K.C., (1968), Theory of stability and control for distributed parameter systems (a bibliography), International Journal of Control, 7(2):101-116.
    Wu, W., (2000), Finite difference output feedback control of a class of distributed parameter processes, Industrial & Engineering Chemistry Research, 39: 4250-4259.
    Xiao, J., Xiao, J.Z., Xi, N., Tummala, R., Mukherjee, R., (2004), Fuzzy controller for wall-climbing microrobots, IEEE Transactions on Fuzzy Systems, 12(4): 466-480.
    Yi, S.Y., Chung, M.Y., (1997), A robust fuzzy logic controller for robust manipulators with uncertainties, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 27: 706-713.
    Ying, H., (1987), Analytical relationship between the fuzzy PID controllers and the linear PIDcontroller, Technical report, Department of Biomedical Engineering, The University of Alabama at Birmingham.
    Ying, H., Siler, W., Buckley, J.J., (1990), Fuzzy control theory: a nonlinear case, Automatica, 26:513-520.
    Ying, H., (1993a), The simplest fuzzy controllers using different inference methods are different nonlinear proportional-integral controllers with variable gains, Automatica, 29:1579-1589.
    Ying, H., (1993b), A fuzzy controller with linear control rules is the sum of a global two-dimensional multilevel relay and a local nonlinear proportional-integral controller, Automatica, 29:499-505.
    Ying, H., (1994), Analytical structure of a two-input two-output fuzzy controller and its relation to pi and multilevel relay controllers, Fuzzy Sets and Systems, 63:21-33.
    Ying, H., (1996), Structure decomposition of the general MIMO fuzzy systems, International Journal of Intelligent Control and Systems, 1:327-337.
    Ying, H., (1999), Analytical structure of the typical fuzzy controllers employing trapezoidal input fuzzy sets and nonlinear control rules, Information Sciences, 116:177-203.
    Ying, H., (2000), Fuzzy control and modeling: analytical foundations and applications, New York: IEEE Press.
    Yoshida, M., Matsumoto, S., (1996), Controller design for parabolic distributed parameter systems using finite integral transform techniques, Journal of Process Control, 6(6): 359-366.
    Yoshida, M., Takeda, T., Maruko, M., Matsumoto, S., (2003), Control of the temperature distribution in two dimensional space of an annular type non-isothermal adsorber, Journal of Process Control, 13: 831-838.
    Zadeh, L.A., (1965), Fuzzy sets, Information and Control, 8: 338-353.
    Zadeh, L.A., (1973), Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transactions on Systems, Man, and Cybernetics, 3(1): 28-44.
    Zadeh, L.A., (1975), The concept of a linguistic variable and its application to approximate reasoning -1, Information Sciences, 8: 199-249.
    Zheng, D., Hoo, K.A., (2002), Low-order model identification for implementable control solutions of distributed parameter systems, Computers and Chemical Engineering, 26: 1049-1076.
    陈建勤, 吕剑虹, 陈来九, (1994), 模糊控制系统的闭环模型及稳定性分析, 自动化学报, 20(1): 1-10, 1994.
    丁永生, 应浩, (2000), 解析模糊控制理论:模糊控制系统的结构和稳定性分析, 控制与决策, 15(2): 129-135.
    窦磊, (2006), 分布参数系统若干近似计算方法应用研究, 博士论文, 南京理工大学, 南京.
    林伟, 刘明扬, 陈云峰, 赵怡, (1981), 分布参数控制系统, 北京:国防工业出版社.
    钱学森, 宋健, (1980), 工程控制论, 北京: 科学出版社.
    宋健, 于景元, (1980), 人口发展过程的预测, 中国科学, 9: 920-932.
    王康宁, (1986), 分布参数控制系统, 北京: 科学出版社.
    张学铭, (1980), 分布参数系统最优控制过程数学理论, 济南: 山东科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700