FK506通过减少瘢痕形成促进周围神经再生的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
FK506是1984年从链霉菌中分离出的大环内酯类抗生素,英文名tacrolimus,广泛应用于器官移植术,近年来被发现具有强大的促神经再生作用。
     目的
     第一部分:通过建立大鼠坐骨神经横断伤修复模型,探讨FK506对神经吻合口瘢痕形成的影响及其与神经再生、神经功能恢复之间的关系。
     第二部分:通过FK506对大鼠皮肤成纤维细胞的作用研究,探讨其减少神经吻合口瘢痕形成的机制。
     方法
     第一部分:
     1.建立大鼠坐骨神经横断伤修复模型,FK506按手术后4mg/kg/d灌胃;动物分组(每组15只)如下:模型组:手术后生理盐水灌胃6周;灌胃2周组:手术后FK506灌胃2周+生理盐水灌胃4周;灌胃4周组:手术后FK506灌胃4周+生理盐水灌胃2周;灌胃6周组:手术后FK506灌胃6周;正常对照组:未手术生理盐水灌胃6周。
     2.手术后6周取坐骨神经行MASSON染色观察胶原纤维增生情况及测量瘢痕面积(mm2)。
     3.手术后6周取坐骨神经行HE(Hematoxylin eosin,苏木精伊红)染色观察有髓神经纤维密度及结缔组织情况并测量有髓神经纤维密度、平均轴突直径、髓鞘厚度。
     4.手术后6周取坐骨神经行超薄切片、醋酸铀-硝酸铅双染后,透射电镜下观察再生神经纤维超微结构。
     5.手术后6周,神经标本取材完毕后,切取两侧腓肠肌,测定腓肠肌湿重恢复率(术侧与各自对侧正常肌肉比较,%)。
     6.手术后6周,采用de Medinaceli方法,测定坐骨神经功能指数(Sciatic Functional Index, SFI)。
     7.手术后6周,测定复合肌肉动作电位(compound muscle active potential, CMAP)波幅、潜伏期。
     8.有髓神经纤维密度及SFI与瘢痕面积进行相关性分析。
     第二部分:
     1.获取大鼠皮肤成纤维细胞并培养,5mg晶体颗粒状FK506溶解在DMSO(Dimethyl sulfoxide,二甲基亚砜)中,并保存于-20℃。含不同浓度FK506的培养基于每次实验前配制。实验分组如下:对照组:细胞以不含胎牛血清的DMEM(Dulbecco's modified Eagle's medium,达尔伯克(氏)改良伊格尔(氏)培养基)培育8小时;DMSO组:细胞以含DMSO的DMEM培育8小时;FK50612.5μM组:细胞以含12.5μM FK506的DMEM培育8小时;FK50625μM组:细胞以含25μM FK506的DMEM培育8小时;FK50650μM组:细胞以含50μM FK506的DMEM培育8小时;FK50675μM组:细胞以含75μM FK506的DMEM培育8小时;FK506100μM组:细胞以含100μM FK506的DMEM培育8小时;JNK(c-Jun N-terminal kinase, c-Jun氨基末端激酶)抑制剂预处理组:SP600125(40μM)预处理30分钟,继以不含胎牛血清的DMEM培育8小时;ERK(extracellular-signal regulated kinase,细胞外信号调节激酶)抑制剂预处理组:PD98059(60μM)预处理30分钟,继以不含胎牛血清的DMEM培育8小时;
     JNK抑制剂预处理+FK50650μM组:SP600125(40μM)预处理30分钟,继以含50μM FK506的DMEM培育8小时;
     ERK抑制剂预处理+FK50650μM组:PD98059(60μM)预处理30分钟,继以含50μM FK506的DMEM培育8小时。
     2. CCK-8(Cell Counting Kit-8,细胞计数试剂盒-8)检测不同干预对成纤维细胞活性的影响。
     3. Hoechst33342荧光染色观察细胞凋亡形态。
     4.流式细胞分析技术检测细胞凋亡。
     5. Western blot法检测蛋白水平的表达。
     结果
     第一部分:
     1.FK506明显减少神经纵截面胶原纤维含量和神经横截面瘢痕面积。
     2.FK506明显增加神经横截面有髓纤维密度、平均轴突直径、髓鞘厚度。
     3.FK506明显增加有髓神经纤维的成熟度。
     4.FK506显著增加腓肠肌湿重恢复率。
     5.FK506显著改善坐骨神经功能指数,用药组较模型组恢复提前。
     6.FK506显著缩短复合肌肉动作电位潜伏期、提高复合肌肉动作电位波幅。
     7.相关性分析提示有髓神经纤维密度及坐骨神经功能都与瘢痕面积存在完全负相关关系。
     第二部分:
     1.FK506浓度依赖性的降低大鼠皮肤成纤维细胞存活率
     2.FK506诱导大鼠皮肤成纤维细胞产生凋亡特征性的形态学变化。
     3.FK506浓度依赖性的诱导大鼠皮肤成纤维细胞凋亡,并且凋亡能被JNK抑制剂SP600125或ERK抑制剂PD98059削弱。
     4.FK506浓度依赖性的增高大鼠皮肤成纤维细胞p-JNK(phosphorylation of c-Jun N-terminal kinase,磷酸化c-Jun氨基末端激酶)、p-ERK(phosphorylation of extracellular-signal regulated kinase,磷酸化细胞外信号调节激酶)、胞浆细胞色素C及活化的caspase-3表达。
     5.JNK抑制剂SP600125或ERK抑制剂PD98059预处理显著降低p-JNK或p-ERK、以及活化的caspase-3的表达。
     结论
     第一部分:
     1.FK506能明显减少神经损伤修复后神经内胶原纤维的含量和瘢痕的面积。
     2.FK506能显著提高神经损伤修复后神经再生的速度和再生神经的质量。
     3.FK506能明显加快神经功能的恢复。
     4.FK506通过减少瘢痕形成促进周围神经再生和加快神经功能恢复。
     第二部分:
     1.FK506显著降低大鼠皮肤成纤维细胞存活率;
     2.FK506显著增高大鼠皮肤成纤维细胞凋亡率;
     3.FK506诱导大鼠皮肤成纤维细胞凋亡的机制可能与FK506激活JNK.ERK信号通路,使JNK和ERK磷酸化水平升高有关,而这两条信号通路激活后,经过或不经过线粒体途径,最终都引起caspase-3的活化从而导致细胞凋亡。
FK506(tacrolimus) is a macrolide antibiotic isolated from streptomycete in1984and has extensive application in the area of organ transplantation. Recent years, it has been demonstrated that FK506has powerful effect of promoting nerve regeneration.
     Objective
     Part Ⅰ
     Sciatic nerve injury in rat model was established, in order to investigate whether FK506intensively promotes peripheral nerve regeneration and functional recovery by directly inhibiting scar formation of nerval anastomotic stoma.
     Part II
     To investigate whether FK506reduces scar formation of nerval anastomotic stoma through inducing fibroblast apoptosis.
     Methods
     Part Ⅰ
     1. establishing the model of rat sciatic nerve injury, then the rats received intragastric administration of FK506according to the dose of4mg/kg/d. The rats were divided into5groups (n=15):
     model group:intragastric administration with physiologic saline for6weeks after operation;
     2weeks group:intragastric administration with FK506for2weeks and then with physiologic saline for4weeks after operation;
     4weeks group:intragastric administration with FK506for4weeks and then with physiologic saline for2weeks after operation;
     6weeks group:intragastric administration with FK506for6weeks after operation;
     control group:intragastric administration with physiologic saline for6weeks without operation.
     2. At6weeks after operation, MASSON staining of rat sciatic nerve was performed to observe collagen fibrils and scar formation. Scar areas was measured by Image-pro plus5.0analysis software.
     3. At6weeks after operation, HE staining of rat sciatic nerve was performed to observe the density of medullated nerve fibers and connective tissue formation. The density of medullated nerve fibers, average axonal diameter and thickness of medullary sheath were measured.
     4. At6weeks after operation, ultrathin section of rat sciatic nerve was performed to observe the ultramicrostructure of regenerated axon.
     5. At6weeks after operation, the recovery rate of gastrocnemius wet weight was calculated (operation side/normal side,%).
     6. At6weeks after operation, Sciatic Functional Index (SFI) was determined by de Medinaceli process.
     7. At6weeks after operation, the latency and wave amplitude of CMAP (compound muscle active potential) were detected.
     8. Dependablity between medullated nerve fibers or SFI and scar areas was analyzed.
     Part II
     1. Primary cultures of rat skin fibroblasts were obtained from male Sprague-Dawley newborn rats1-2days after birth and then subcultured. Supplied as a crystalline solid, FK506was dissolved in DMSO (Dimethyl sulfoxide) and stored at-20℃. The culture media containing different concentrations of FK506were freshly prepared for each experiment. Fibroblasts were treated with different stimulus:
     control group:fibroblasts were cultured with DMEM (Dulbecco's modified Eagle's medium) free of FBS (fetal bovine serum) for8hours;
     DMSO group:fibroblasts were cultured with DMEM containing DMSO for8hours;
     12.5μM FK506group:fibroblasts were cultured with DMEM containing12.5μM FK506for8hours;
     25μM FK506group:fibroblasts were cultured with DMEM containing25μM FK506for8hours;
     50μM FK506group:fibroblasts were cultured with DMEM containing50μM FK506for8hours;
     75μM FK506group:fibroblasts were cultured with DMEM containing75μM FK506for8hours;
     100μM FK506group:fibroblasts were cultured with DMEM containing100μM FK506for8hours;
     JNK (c-Jun N-terminal kinase) inhibitor pretreatment group: fibroblasts were pretreated with SP600125(40μM) for30min, then cultured with DMEM free of FBS for8hours;
     ERK (extracellular-signal regulated kinase) inhibitor pretreatment group:fibroblasts were pretreated with PD98059(60μM) for30min, then cultured with DMEM free of FBS for8hours;
     JNK inhibitor pretreatment and50μM FK506group:fibroblasts were pretreated with SP600125(40μM) for30min, then cultured with DMEM containing50μM FK506for8hours;
     ERK inhibitor pretreatment and50μM FK506group:fibroblasts were pretreated with PD98059(60μM) for30min, then cultured with DMEM containing50μM FK506for8hours.
     2. CCK-8(Cell Counting Kit-8) assay was used to evaluate the inhibitory activity of FK506on cultured fibroblasts.
     3. Hoechst33342staining was used to observe apoptotic fibroblasts.
     4. Flow cytometry was used to detect apoptosis percentage of cultured fibroblasts.
     5. Western blotting was used to detect expression level of apoptosis associated proteins.
     Results
     Part Ⅰ
     1. FK506significantly reduced the formation of collagen fibrils and the scar areas of nerval anastomotic stoma.
     2. FK506significantly increased the density of medullated nerve fibers, average axonal diameter and thickness of medullary sheath.
     3. FK506significantly increased degree of maturity of medullated nerve fibers.
     4. FK506significantly increased the recovery rate of gastrocnemius wet weight.
     5. FK506significantly improved SFI.
     6. FK506significantly shortened the latency and elevated the wave amplitude of CMAP.
     7. Complete negative correlations existed between medullated nerve fibers or SFI and scar areas.
     Part II
     1. FK506reduced rat skin fibroblasts viability in a dose-dependent manner.
     2. FK506induced characteristic morphological changes of apoptosis in rat skin fibroblasts.
     3. FK506induced significant apoptosis of rat skin fibroblasts in a dose-dependent manner, and the apoptosis could be weakened by JNK inhibitor SP600125or ERK inhibitor PD98059.
     4. FK506increased the expressions of p-JNK (phosphorylation of c-Jun N-terminal kinase), p-ERK (phosphorylation of extracellular-signal regulated kinase), cytosolic cytochrome c and cleaved-caspase-3in a dose-dependent manner.
     5. Pretreatment with JNK inhibitor SP600125or ERK inhibitor PD98059significantly reduced the expressions of p-JNK or p-ERK and cleaved-caspase-3.
     Conclusions
     Part Ⅰ
     1. FK506could significantly decrease the formation of collagen fibrils and the scar areas of nerval anastomotic stoma following repair of peripheral nerve injury.
     2. FK506could significantly increase the speed of nerve regeneration and the quality of regenerated nerve fibers following repair of peripheral nerve injury.
     3. FK506could significantly accelerate the neurofunctional recovery.
     4. FK506intensively promotes peripheral nerve regeneration and functional recovery by directly inhibiting scar formation of nerval anastomotic stoma.
     Part II
     1. FK506significantly decreased the viability of rat skin fibroblasts.
     2. FK506significantly increased apoptotic percentage of rat skin fibroblasts.
     3. FK506activated both JNK and ERK with or without mitochondrial cytochrome c release, followed by the cleavage of caspase-3, subsequently leading to the apoptosis of rat skin fibroblasts.
引文
1. Lundborg G. A 25-year perspective of peripheral nerve surgery:evolving neuroscientific concepts and clinical significance. J Hand Surg,2000,25A: 391-398.
    2. Yan Y, Sun HH, Hunter DA, Mackinnon SE, Johnson PJ. Efficacy of Short-Term FK506 Administration on Accelerating Nerve Regeneration. Neurorehabilitation and neural repair,2012, XX(X):1-11.
    3. Jifeng H, Dezhong L, Qiongjiao Y, Huayong Z, Shipu L. Evaluation of PRGD/FK506/NGF conduits for peripheral nerve regeneration in rats. Neurology India,2010,58(3):384-91.
    4. Li X, Wang W, Wei G, Wang G, Zhang W, Ma X. Immunophilin FK506 loaded in chitosan guide promotes peripheral nerve regeneration. Biotechnology letters,2010, 32(9):1333-7.
    5. Rustemeyer J, Dicke U. Allografting combined with systemic FK506 produces greater functional recovery than conduit implantation in a rat model of sciatic nerve injury. Journal of reconstructive microsurgery,2010,26(2):123-9.
    6.张振伟,廖坚文.FK506局部缓释膜片促进周围神经再生的临床应用研究.中华手外科杂志,2004,9:134-136.
    7. Becker DB, Jensen JN, Myckatyn TM, et al. Effects of FKBP-12 ligands following tibial nerve injury in rats. J Reconstr Microsurg,2000,16(8):613-620.
    8. Fansa H, Keilhoff G, Horn T, et al. Stimulation of Schwann cell proliferation and axonal regeneration by FK506. Restor Neurol Neurosci,2000,16:77-86.
    9.吴志伟,陈峥荣.FK506对人胚雪旺细胞体外迁移活性的影响.中国临床医学,2005,12:265-269.
    10. Lagoda G, Xie Y, Sezen SF, Hurt KJ, Liu L, Musicki B, Burnett AL. FK506 Neuroprotection After Cavernous Nerve Injury is Mediated by Thioredoxin and Glutathione Redox Systems. The journal of sexual medicine,2011,8:3325-3334.
    11. Gold BG, Densmore V, Shou W, et al. Immunophilin FK506-binding protein 52(not FK506-binding proteinl2) mediates the neurotrophic action of FK506. J Pharmacol Exp Therap,1999,289:1202-1210.
    12. Sulaiman OA, Voda J, Gold BG, Gordon T. FK506 increase peripheral nerve regeneration after chronic axotomy but not after chronic Schwann cell denervation. Exp Ther,2002,175:127-137.
    13. Li Q, Shen TG, Wu YM, Li J, Wang G. Experimental study of electrophysiologic effects of regenerative nerve fibres affected by control releasing FK506. China journal of orthopaedics and traumatology,2010,23(11):841-4.
    14. O'Kane S, Ferguson MW. Transforming growth factor betas and wound healing. Int J Biochem Cell Biol,1997,29:63-78.
    15. Atkins S, Smith KG, Loescher AR, Boissonade FM, O'Kane S, Ferguson MW, et al. Scarring impedes regeneration at sites of peripheral nerve repair. Neuroreport, 2006,17:1245-9.
    16. Albayrak BS, Ismailoglu O, Ilbay K, et al. Doxorubicin for prevention of epineurial fibrosis in a rat sciatic nerve model:outcome based on gross postsurgical, histopathological, and ultrastructural findings. Journal of neurosurgery, Spine, 2010,12(3):327-33.
    17. Ngeow WC. Scar less:a review of methods of scar reduction at sites of peripheral nerve repair. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.2010,109(3):357-366.
    18. Sunderland S. Nerve and nerve injury. New York:Churchill Livingston,1987, p: 173-176.
    19. Bora FJ. Peripheral nerve repair in cats. The fascicular stitch. J Bone Joint Surg, 1967,49:659-66.
    1.裴国献,顾立强,于立新等.异体手移植二例报告.中华医学杂志,2000,80(6):417-421.
    2. Rustemeyer J, Dicke U. Allografting combined with systemic FK506 produces greater functional recovery than conduit implantation in a rat model of sciatic nerve injury. J Reconstr Microsurg,2010,26:123-129.
    3. Sosa Ⅰ, Reyes O, Kuffler DP. Immunosuppressants:neuroprotection and promoting neurological recovery following peripheral nerve and spinal cord lesions. Exp Neurol,2005,195:7-15.
    4. Lundborg G. A 25-year perspective of peripheral nerve surgery:evolving neuroscientific concepts and clinical significance. J Hand Surg,2000,25A: 391-398.
    5. Sunderland S. Nerve and nerve injury. New York: Churchill Livingston,1987, p: 173-176.
    6. Lane JM, Bora FW, Pleasure D. Neuroma scar formation in rats following peripheral nerve transection. J Bone Joint Surg Am,1978,60:197-203.
    7. O'Kane S, Ferguson MW. Transforming growth factor betas and wound healing. Int J Biochem Cell Biol,1997,29:63-78.
    8. Atkins S, Smith KG, Loescher AR, Boissonade FM, O'Kane S, Ferguson MW, et al. Scarring impedes regeneration at sites of peripheral nerve repair. Neuroreport,2006, 17:1245-9.
    9. Albayrak BS, Ismailoglu O, Ilbay K, ea al. Doxorubicin for prevention of epineurial fibrosis in a rat sciatic nerve model:outcome based on gross postsurgical, histopathological, and ultrastructural findings.Journal of neurosurgery, Spine,2010, 12(3):327-33.
    10. Ngeow WC. Scar less:a review of methods of scar reduction at sites of peripheral nerve repair. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics,2010,109(3):357-366.
    11. Graham W, Patakey P, Calabretta A, Munger B, Buda M. Enhancement of peripheral nerve regeneration with triamcinolone after neurorrhaphy. Surg Forum, 1973,24:457-461.
    12. Eather TF, Pollock M, Myers DB. Proximal and distal changes in collagen content of peripheral nerve that follow transection and crush lesions. Exp Neurol, 1986,92:299-310.
    13. Bora FJ. Peripheral nerve repair in cats. The fascicular stitch. J Bone Joint Surg, 1967,49:659-66.
    14. Sobol JB, Lowe III JB, Yang RK, Sen SK, Hunter DA, Mackinnon SE. Effects of delaying FK506 administration on neuroregeneration in a rodent model. Journal of Reconstructive Microsurgery,2003,19(2):113-8.
    15. Gold BG, Gordon HS, Wang MS. Efficacy of delayed or discontinuous FK506 administrations on nerve regeneration in the rat sciatic nerve crush model:lack of evidence for a conditioning lesion-like effect. Neuroscience Letters,1999,267(1): 33-6.
    1. Blasinska A, Drobnik J. Effects of nonwoven mats of Di-O-butyrylchitin and related polymers on the process of wound healing. Biomacromolecules,2008,9: 776-782.
    2. Costantini LC, Isacson O. Immunophilin ligands and GDNF enhance neurite branching or elongation from developing dopamine neurons in culture. Exp Neurol, 2000,164(1):60-70.
    3. Navarro X, Udina E, Ceballos D. Effects of FK506 on nerve regeneration and reinnervation after graft or tube repair of long nerve gaps. Muscle Nerve,2001, 24(7):905-915.
    4. Chunasuwankul R, Ayrout C, Dereli Z, Gal A, Lanzetta M, Owen E. Low dose discontinued FK506 treatment enhances peripheral nerve regeneration. Int. Surg, 2002,87:274-278.
    5. Yildiz KH, Gezen F, Is M, Cukur S, Dosoglu M. Mitomycin C,5-fluorouracil, and cyclosporin A prevent epidural fibrosis in an experimental laminectomy model. Eur Spine J,2007,16(9):1525-30.
    6. Yu Sun, Lei Wang, Sixin Sun, Bo Liu, Naiqing Wu, Xiaojian Cao. The effect of 10-hydroxycamptothecine in preventing fibroblast proliferation and epidural scar adhesion after laminectomy in rats. European Journal of Pharmacology,2008,593: 44-48.
    7. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell,2000,103: 239-52.
    8. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science,2002,298:1911-2.
    9. Nahed El-Najjar, Manal Chatila, Hiba Moukadem. Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis,2010,15:183-195.
    10. Engelbrecht AM, Niesler C, Page C, Lochner A. p38 and JNK have distinct regulatory functions on the development of apoptosis during simulated ischaemia and reperfusion in neonatal cardiomyocytes. Basic Res Cardiol,2004,99:338-350.
    11. Dougherty CJ, Kubasiak LA, Prentice H, Andreka P, Bishopric NH, Webster KA. Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress. Biochem J,2002,362:561-571.
    12. Sheng-Huei Yang, Zchong-Zcho Wu, Ching-Ming Chienl. JNK and ERK mitogen-activated protein kinases mediate THDA-induced apoptosis in K562 cells. Cell Biol Toxicol,2008,24:291-302.
    13. Cheol Park, Cheng-Yun Jin, Gi-Young Kim. Induction of apoptosis by esculetin in human leukemia U937 cells through activation of JNK and ERK. Toxicology and Applied Pharmacology,2008,227:219-228.
    14. Kuei-Li Lin, Jung-Chen Su, Ching-Ming Chien. aphtho[1,2-b]furan-4,5-dione induces apoptosis and S-phase arrest of MDA-MB-231 cells through JNK and ERK signaling activation. Toxicology in Vitro,2010,24:61-70.
    15. Eguchi R, Fujimori Y, Takeda H, Tabata C, Ohta T, Kuribayashi K, Fukuoka K, Nakano T. Arsenic trioxide induces apoptosis through JNK and ERK in human mesothelioma cells. Journal of Cellular Physiology,2011,226(3):762-8.
    16. Van den Brink MRM, Kapeller R, Pratt JC, Chang J-H and Burakoff S J. The extracellular signal-regulated kinase pathway is required for activation-induced cell death of T cells. J Biol Chem,1999,274:11178-11185.
    17. Kinga Szydlowska, Agata Gozdz, Michal Dabrowski. Prolonged activation of ERK triggers glutamate-induced apoptosis of astrocytes:neuroprotective effect of FK506. Journal of neurochemistry,2010,113:904-918.
    18. Cai J, Yang J, Jones DP. Mitochondrial control of apoptosis:the role of cytochrome c. Biochimica et Biophysica Acta,1998,1366:139-149.
    19. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell,1997,90:405-413.
    20. Park JW, Choi YJ, Suh SI, Baek WK, Suh MH, Jin IN, Min DS, Woo JH, Chang JS, Passaniti A, Lee YH, Kwon TK. Bcl-2 overexpression attenuates resveratrol-induced apoptosis in U937 cells by inhibition of caspase-3 activity. Carcinogenesis,2001,22:1633-1639.
    1. Lundborg G. A 25-year perspective of peripheral nerve surgery:evolving neuroscientific concepts and clinical significance. JH and Surg,2000,25A: 391-398.
    2. Udina E, Voda J, Gold BJ, et al. Comparative dose-dependence study of FK506 on transected mouse sciatic nerve repaired by allograft or xenograft. J Peripher Nerv Syst,2003,8(3):145-154.
    3. Udina E, Verdu E, Navarro X. Effects of the immunophilin ligand FK506 on nerve regeneration in collagen guides seeded with Schwann cells in rats. Neurosci Lett, 2004,357(2):99-102.
    4. Lagoda G, Jin L, Lehrfeld TJ, et al. FK506 and Sildenafil Promote Erectile Function Recovery after Cavernous Nerve Injury Through Antioxidative Mechanisms. J Sex Med,2007,4(1):908-916.
    5. Jan Rustemeyer and Ursula Dicke. Allografting combined with systemic FK506 produces greater functional recovery than conduit implantation in a rat model of sciatic nerve injury. J Reconstr Microsurg,2010,26:123-130.
    6. Chen B, Song Y, Liu Z. Promotion of nerve regeneration in peripheral nerve by short-course FK506 after end-to-side neurorrhaphy. J Surg Res,2009, 152:303-310.
    7. Gold BG, Storm-Dickerson T, Austin DR. The immunosuppressant FK506 increases functional recovery and nerve regeneration following peripheral nerve injury. Restorative neurology and neuroscience,1994,6(4):287-296.
    8. Wang MS, Gold BG. FK506 increases the regeneration of spinal cord axons in a predegenerated peripheral nerve autograft. Journal of Spinal Cord Medicine,1999, 2(4):287-96.
    9. Wang MS, Zeleny-Pooley M, Gold BG. Comparative dose-dependence study of FK506 and cyclosporin A on the rate of axonal regeneration in the rat sciatic nerve. Journal of Pharmacology & Experimental Therapeutics,1997,282(2):1084-93.
    10. Navarro X, Udina E, Ceballos D, Gold BG. Effects of FK506 on nerve regeneration and reinnervation after graft or tube repair of long nerve gaps. Muscle & Nerve,2001,24(7):905-915.
    11. Doolabh VB, Mackinnon SE. FK506 accelerates functional recovery following nerve grafting in a rat model. Plastic & Reconstructive Surgery,1999, 103(7):1928-36.
    12. Grand AG, Myckatyn TM, Mackinnon SE, Hunter DA. Axonal regeneration after cold preservation of nerve allografts and immunosuppression with tacrolimus in mice. Journal of Neurosurgery,2002,96(5):924-32.
    13. Madsen JR, MacDonald P, Irwin N, Goldberg DE, Yao GL, Meiri KF, Rimm IJ, Stieg PE, Benowitz LI. Tacrolimus (FK506) increases neuronal expression of GAP-43 and improves functional recovery after spinal cord injury in rats. Experimental Neurology,1998,154(2):673-83.
    14. Song YX, Muramatsu K, Kurokawa Y, et al. Functional recovery of rat hind-limb allografts. J Reconstr Microsurg,2005,7:471-476.
    15. Sucher R, Lin CH. Mouse hind limb transplantation:a new composite tissue allotransplantation model using nonsuture supermicrosurgery. Transplantation, 2010,12:1374-1380.
    16. Chabas JF, Alluin O, Rao G, et al. FK506 induces changes in muscle properties and promotes metaboscnsitive nerve fiber regeneration. J Neurotrauma,2009,1: 97-108.
    17. Han HS, Zheng SJ, Li X, et al. Assessment of nerve regeneration across nerve allografts treated with tacrolimus. Artif Cells Blood Substit Immobil Biotechnol, 2008,5:465-474.
    18. Udina E, Gold BG, Navarro X. Comparison of continuous and discontinuous FK506 administration on autograft or allograft repair of sciatic nerve resection. Muscle Nerve,2004,6:812-822.
    19. Terzis JK, Konofaos P. Low-Dose FK506 after contralateral C7 transfer to the musculocutaneous nerve using two different tubes:a study in rats. Ann Plast Surg, 2010,5:622-631.
    20. Snyder AK, Fox IK. Neuroregenerative effects of preinjury FK506 administration. Plastic Reconstr Surg,2006,2:360-367.
    21. Rustemever J, Van de Wal R. Administration of low-dose FK 506 accelerates histomorphometric regeneration and functional outcomes after allograft nerve repair in a rat model. J Cranio Maxillo Fac Surg,2010,2:134-140.
    22. Rustemeyer J, Dicke U. Allografting combined with systemic FK506 produces greater functional recovery than conduit implantation in a rat model of sciatic nerve injury. J Reconstr Microsurg,2010,2:123-129.
    23. Li X, Wang W, Wei G, Wang G, et al. Immunophilin FK506 loaded in chitosanguide promotes peripheral nerve regeneration. Biotechnol Lett,2010,32(9): 1333-1337.
    24.张家俊,张振伟,廖坚文等.局部应用FK506缓释膜片对大鼠坐骨神经缝合术后脊髓神经元的影响.中华手外科杂志,2005,21(3):177-178.
    25. Steele MH, Metzinger SE. The Role of Topically Administered FK506 (Tacrolimus) at the Time of Facial Nerve Repair Using Entubulation Neurorrhaphy in a Rabbit Model. Annals of Plastic Surgery,2004,52(4):407-413.
    26.张振伟,廖峰文.FK506缓释膜片促进外周神经再生的实验报告.中华显微外科杂志,2002,25(2):44-46.
    27.张桂生,于晋辉.FK506缓释膜应用于同种异体神经移植的实验研究.中华手外科杂志,2007,23(2):8-10.
    28.焦兆德,陈景明.FKS06缓释膜片在异体神经移植修复周围神经缺损中的应 用研究Taishan Medical Collge,2006,27(5):292-295.
    29.韦庆军,赵劲民.FK506对同种异体神经移植后神经再生的影响.广西医学杂志,2006,6:821-823.
    30. Grand AG, Myckatyn TM, Mackinnon SE, et al. Axonal regeneration after cold preservation of nerve allografts and immunosuppression with tacrolimus in mice. J Neurosurg,2002,5:924-932.
    31. Hontanilla B, Auba C, Arcocha J, et al. Nerve regeneration through nerve autografts and cold preserved allografts using tacrolimus (FK506) in a facial paralysis model:a topographical and neurophysiological study in monkeys. Neurosurgery,2006,4:768-779.
    32. Li XX, Wang W. Immunophilin FK506 loaded in chitosan guide promotes peripheral nerve regeneration. Biotechnol Lett,2010,9:1333-1337.
    33.柯于海,张振伟.不同时段应用他克莫司纳米微球缓释颗粒促进同种异体神经移植再生的实验研究.中华手外科杂志,2010,4:230-233.
    34. Jablecki J, Kaczmarzyk L, et al. First Polish forearm transplantation: report after 17 months. Transplant Proc,2009,41(2):549-553.
    35. Jones JW, Gruber SA, Barker JH, et al . Successful hand transplantation. One-year follow-up. N Engl J. Med 2000,343(7):468-473.
    36.裴国献,顾立强,于立新等.异体手移植二例报告.中华医学杂志,2000,80(6):417-421.
    37.顾立强,陈国奋,相大勇等.免疫抑制剂FK506加速周围神经损伤修复后功能恢复的初步临床报告.中华创伤骨科杂志,2001,3(3):191-193.
    38.张振伟,廖坚文.FK506局部缓释膜片促进周围神经再生的临床应用研究.中华手外科杂志,2004,9:134-136.
    39. Brenner MJ, Moradzadeh A, Myckatyn TM, et al. Role of timing in assessment of nerve regeneration. Microsurgery,2008,4:265-272.
    40. Guo S, Han Y. Human facial allotransplantation: a 2-year follow-up study. Lancet,2008,9639:631-638.
    41. Lyons WE, George EB, Dawson TM, Steiner JP, Snyder SH. Immunosuppressant FK506 promotes neurite outgrowth in cultures of PC 12 cells and sensory ganglia. Proceedings of the National Academy of Sciences of the United States of America, 1994,91(8):3191-5.
    42. Costantini LC, Isacson O. Immunophilin ligands and GDNF enhance neurite branching or elongation from developing dopamine neurons in culture. Experimental Neurology,2000,164(1):60-70.
    43. Fansa H. Keilhoff G. Horn T. Altmann S. Wolf G. Schneider W. Stimulation of Schwann cell proliferation and axonal regeneration by FK 506. Restorative neurology and neuroscience.16(2):77-86,2000.
    44.吴志伟,陈峥荣.FK506对人胚雪旺细胞体外迁移活性的影响.中国临床医学,2005,12:265-269.
    45. Gold BG . Densmore V . Shou W . Matzuk MM . Gordon HS . Immunophilin FK506-binding protein 52 (not FK506-binding protein 12) mediates the neurotrophic action of FK506. Journal of Pharmacology & Experimental Therapeutics,1999,289(3):1202-10.
    46. Sulaiman OA . Voda J . Gold BG . Gordon T . FK506 increases peripheral nerve regeneration after chronic axotomy but not after chronic schwann cell denervation. Experimental Neurology,2002,175(1):127-137.
    47. Udina E, Ceballos D, Verdu E, Gold BG, Navarro X. Bimodal dose-dependence of FK506 on the rate of axonal regeneration in mouse peripheral nerve. Muscle & Nerve,2002,26(3):348-55.
    48. Yang RK, Lowe JB, Sobol JB, Sen SK, Hunter DA, Mackinnon SE. Dose-dependent effects of FK506 on neuroregeneration in a rat model. Plastic & Reconstructive Surgery,2003,112(7):1832-40.
    49. Chunasuwankul R, Ayrout C, Dereli Z, Gal A, Lanzetta M, Owen E. Low dose discontinued FK506 treatment enhances peripheral nerve regeneration. International Surgery,2002,87(4):274-8.
    50. Sobol JB, Lowe III JB, Yang RK, Sen SK, Hunter DA, Mackinnon SE. Effects of delaying FK506 administration on neuroregeneration in a rodent model. Journal of Reconstructive Microsurgery,2003,19(2):113-8.
    51. Sulaiman OA, Voda J, Gold BG, Gordon T. FK506 increases peripheral nerve regeneration after chronic axotomy but not after chronic schwann cell denervation. Experimental Neurology,2002,175(1):127-37.
    52. Gold BG, Gordon HS, Wang MS. Efficacy of delayed or discontinuous FK506 administrations on nerve regeneration in the rat sciatic nerve crush model:lack of evidence for a conditioning lesion-like effect. Neuroscience Letters,1999,267(1): 33-6.
    53. Jones JW, Gruber SA, Barker JH, Breidenbach WC. Successful hand transplantation. One-year follow-up. New England Journal of Medicine,2000, 343(7):468-73.
    54. Gold BG, Zeleny MP, Wang MS, et al. A nonimmunosuppressant FKBP-12 ligand encreases nerve regeneration. Exp Neural,1997,147(2):269-278.
    55. Goto T, Kino T, Hatanaka H, Nishiyama M, Okuhara M, Kohsaka M, Aoki H, Imanaka H. Discovery of FK-506, a novel immunosuppressant isolated from Streptomyces tsukubaensis. Transplantation proceedings,1987,19(5 Suppl 6):4-8.
    56. Goto T, Kino T, Hatanaka H, Okuhara M, Kohsaka M, Aoki H, Imanaka H. FK506:historical perspectives. Transplantation proceedings,1991,23(6):2713-7.
    57. Schwartz M, Sela BA, Eshhar N. Antibodies to gangliosides and myelin autoantigens are produced in mice following sciatic nerve injury. Journal of neurochemistry,1982,38(5):1192-5.
    58. de Medinaceli L, Church AC, Wang YN. Posttraumatic autoimmune reaction in peripheral nerve:effect of a single injury. Experimental neurology,1985,88(2): 372-84.
    59. Ansselin AD, Pollard JD. Immunopathological factors in peripheral nerve allograft rejection:quantification of lymphocyte invasion and major histocompatibility complex expression. Journal of the neurological sciences,1990, 96(1):75-88.
    60. Becker DB, Jensen JN, Myckaty TM, Doolabh VB, Hunter DA, Mackinnon SE. Effects of FKBP-12 ligands following tibial nerve injury in rats. Journal of Reconstructive Microsurgery,2000,16(8):613-20.
    61. Bavetta S, Haml PJ, Burnstock G, Lieberman AR, Anderson PN. The effects of FK506 on dorsal column axons following spinal cord injury in adult rats: neuroprotection and local regeneration. Experimental Neurology,1999,158(2): 382-93.
    62. Gold BG. Neuroimmunophilin ligands:evaluation of their therapeutic potential for the treatment of neurological disorders. Expert Opinion on Investigational Drugs,2000,9(10):2331-42.
    63. Steiner JP, Hamilton GS, Ross DT, Valentine HL, Guo H, Connolly MA, Liang S, Ramsey C, Li JH, Huang W, Howorth P, Soni R. Neurotrophic immunophilin ligands stimulate structural and functional recovery in neurodegenerative animal models. Proceedings of the National Academy of Sciences of the United States of America,1997,94(5):2019-24.
    64. Steiner JP, Connolly MA, Valentine HL, Hamilton GS, Dawson TM, Hester L, Snyder SH. Neurotrophic actions of nonimmunosuppressive analogues of immunosuppressive drugs FK506, rapamycin and cyclosporin A. Nature Medicine, 1997,3(4):421-8.
    65. Costantini LC, Chaturvedi P, Armistead DM, McCaffrey PG, Deacon TW, Isacson O. A novel immunophilin ligand:distinct branching effects on dopaminergic neurons in culture and neurotrophic actions after oral administration in an animal model. Neurobiology of Disease,1998,5(2):97-106.
    66. Winter C, Schenkel J, Zimmermann M, Herdegen T. MAP kinase phosphatase 1 is expressed and enhanced by FK506 in surviving mamillary, but not degenerating nigral neurons following axotomy. Brain Research,1998,801(1-2):198-205.
    67.许建中,李起鸿.生长相关蛋白-43与周围神经损伤及再生.中华创伤杂志,1999,15:391-392.
    68. Gold BG, Yew JY, Zeleny-Pooley M, et al. The immunosuppressant FK506 in creases GAP-43 m RNA levels in axot omized sensory neurons. Neurosci Lett, 1998,241:25-28.
    69. Dowson TM, Steiner JP, Lyons WE, et al. The immunophilins FK506 binding protein and cyclophilin, are discretely localized in the brain relationship to calcineurin. Neuroscience,1994,2:569-580.
    70. Cameron AM, Steinet JP, Sabatini DM, et al. Immunophilin FK506 binding protein associated with inositol 1,4,5-trisphosphate receptor modulates calcium flux. Proc Nati Acad Sci,1995,92(5):1784-1788.
    71. Wang T, Li BY, Danielson PD, et al. The immunophilin FKBP 12 functions as a common inhibitor of the TGF-β family type I receptors. Cell,1996,86(3): 435-444.
    72. Fansa H, Keilhoff G, Horn T, Altmann S, Wolf G, Schneider W. Stimulation of Schwann cell growth and axon regeneration of peripheral nerves by the immunosuppressive drug FK 506. Handchirurgie, Mikrochirurgie, Plastische Chirurgie,1999,31(5):323-9; discussion 330-2.
    73. Gold BG. FK506 and the role of the immunophilin FKBP-52 in nerve regeneration. Drug Metabolism Reviews,1999,31(3):649-63.
    74. Guo X, Dawson VL, Dawson TM. Neuroimmunophilin ligands exert neuroregeneration and neuroprotection in midbrain dopaminergic neurons. European Journal of Neuroscience,2001,13(9):1683-93.
    75. Tai PM, Albors HC, Faber L, et al. Association of a 59-kDa immunophilin with the glucocorticoid recept r complex. Science,1992,256:1315-1318.
    76. Klettner A, Herdegen T. The immunophilin-ligands FK506 and V-10367 mediate neuroprotection by the heat shock response. Br J Pharmacol,2003,5:1004-1012.
    77. Muramoto M, Yamazaki T, Nishimura S, et al. Detailed in vitro pharmacological analysis of FK506-induced neuroprotection. Neuropharmacology,2003,3:394-403.
    78.杨俊,张振伟.FK506在异体神经移植过程中对雪旺细胞和巨噬细胞的影响.中华创伤骨科杂志,2006,5:448-452.
    79. Shimamura M, Sato N, Sata M, et al. Expression of hepatocyte growth factor and c-Met after spinal cord injury in rats. Brain Res,2007,1151:188-194.
    80.潘峰,祝成亮.脊髓损伤后低剂量FK506对伤段组织电解质水含量失衡的早期保护作用.中国矫形外科杂志,2007,18:1415-1417.
    81.潘峰,陈安民.他克莫司对周围神经损伤后脊髓组织中肝细胞生长因子表达的影响.中国矫形外科杂志,2009,8:628-631.
    82. Yang J, Wu L, Qin JQ. Recent advances in proliferation of Schwann cells. Bio Eng for Med Sci,2004,27(4):229-233.
    83. Yang J, Luo Y, Qiu XZ, et al. FK506 promotes apoptosis of macrophages activated by homogenate of allogenic nerve. First Mil Med Univ,2005,25(1): 66-70.
    84.黄军铭,倪江东,肖东民等.他克莫司对周围神经损伤后激活巨噬细胞分泌IL-1的实验研究.中国医师杂志,2007,9(2):281-282.
    85. Freeman EE, Grosskreutz CL. The effects of FK506 on retinal ganglion cells after optic nerve crush. Investigative Ophthalmology & Visual Science,2000,41(5): 1111-5.
    86. Allen C, Eisenberg A, Mrsic J, Maysinger D. PCL-b-PEO micelles as a delivery vehicle for FK506:assessment of a functional recovery of crushed peripheral nerve. Drug Delivery,2000,7(3):139-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700