低温毛细抽吸两相流体回路(CCPL)的结构设计和数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分析了低温毛细抽吸两相流体回路(CCPL)系统及各部件设计方法,并对其核心部件蒸发器设计进行了详细的阐述,尤其突出了低温与常温毛细抽吸两相流体回路之间的主要不同结构---液体冷却罩(LCS)的设计方法,给出了系统传热极限的计算公式。根据给定设计条件,设计出一个典型的CCPL模型,为数值计算提供参考尺度。
     利用热网络法建立了CCPL的数值模型,并以设计出的CCPL为基础,在系统启动、热负荷改变和冷储液器设点温度改变三种不同运行条件下,计算出系统的温度、压力和流量随时间变化曲线,得出比较满意的结果。
     本文采用VB6.0编制程序界面,开发出CCPL的设计软件,采用3DS Max绘制系统3D模型,并利用粒子系统开发出CCPL的动画演示系统,直观地演示了CCPL中蒸汽的产生、流动以及汽液界面的变化过程。
This paper describes the development of an advanced cryogenic integration device-the cryogenic capillary pumped loop (CCPL), a miniaturized two-phase fluid circulator for thermally linking cryogenic cooling sources to remote cryogenic components. A CCPL utilizes the latent heat of vaporization of a working fluid to transfer heat and the surface tension forces forms in fine-pore wicks to circulate the working fluid. Design procedure for different CCPL configurations and its heat transfer limitations are discussed. Especially the design procedure of liquid cooled shield (LCS) is introduced. Furthermore, a CCPL unit is designed; the unit utilizes nitrogen as the working fluid and operates between 80 and 90K.
    The CCPL numerical model is established by using the nodal or lumped parameter method. In the three different operation cases: start-up from a supercritical state, heat load increase and cold reservoir set point temperature change, the variation curves of temperature, pressure and mass flux varying with time are given. The results of simulations accord with the principles of CCPL and correctly reflect the dynamic characters of CCPL. It is concluded that the model is reasonable and the computed results are satisfying.
    In order to show the dynamic process of CCPL, this paper also designs the program interface of CCPL design software using VB6.0. The 3D model of CCPL is plotted using 3DS Max. Using particle system, the 3D demo animation system is developed; the generation and flow process of vapor in CCPL are displayed.
引文
1. Jane Baumann, Ed Kroliczek, Brent Cullimore, David Bugby. Development of the Cryogenic Capillary Pumped Loop. IECEC-98-1137
    2. James Yun, Ed Krolizek. Operation of Capillary Pumped Loops and Loop Heat Pipes. Swales Aerospace
    3. Gerasimov Y F, Maidanik Y F, Dolgirev YY, Some results of investingation of low-temperature heat pipes operating against gravity field. Eng Phys J 30(4) 581-586(in Russian), 1976
    4. Maidanik Y F, Vershinin V, Kholodov J. Heat Transfer apparatus. Dolgirev.US Patent No.4515209.1985
    5. Stenger F J, Experimental Feasibility Study of WaterFilled Capillary-Pumped Heat-Transfer Loops. NASA TM-X-1310, NASA Lewis Research Center, Cleveland Ohio, 1966
    6. Ku J, Kroliczek E J, Taylor W J, McIntosh R. Functional and Performance Tests Two Capillary Pumped Loop Engineering Models, AIAA Paper No.86-1248, 1986
    7. Butler D, Ottenstein L, Ku J. Flight Testing of the Capillary Pumped Loop Flight Experiment. SAE Paper No.951566, 1995
    8. Butler D, Ottenstein L, Ku J. Design Evolution of the Capillary Pumped Loop (CPAL2) Flight Experiment. SAE Paper No.961431, 1996
    9. Jentung Ku. Recent Advances in Capillary Pumped Loop Technology. Copyright C 1997, American Institute of Aeronautics and Astronautics, Inc.
    10. Fredley J, Pelszynske A. Accommodation of the EOS-AM Instrument Set Using Capillary Pumped Heat Transport Technology. SAE Paper No.921404, 1992
    11. Clayton S, Martin D, Baumann J. Mars Surveyor Thermal Management Using a Fixed Conductance Capillary Pumped Loop. SAE Paper No.972467, 1997
    12.侯增祺,郭舜.毛细抽吸两相流体回路(CPL)的试验研究.航空航天部501设计部,1996
    13.张加迅,侯增祺.CPL储液器的温度调控方案.导弹与航天运载技术2002(3)
    14.张加迅,侯增棋.CPL技术在空间飞行器上的应用.北京:工程热物理学报,2001 22(3)
    15.闵桂荣,郭舜.航天器热控制(第二版).北京:科学出版社,1986
    16.马同泽,侯增祺,吴光銧.热管.北京:科学出版社,1983
    17. Mark Kobel, Jentung Ku. Comprhensive Testing of a Neon Caillary Pumped Loop.
    
    NASA Goddard Space Flight Center, Thermal Engineering Branch
    18. Jentung Ku, Mark Kobel, David Bugby, Edward Kroliczek, Jane Baumann, Brent Cullimore. Flight Testing of a Cryogenic Capillary Pumped Loop. SAE Technical Paper Series 1999-01-2627
    19. David Bugby, Edward Kroliczek, Brent Cullimore, Jane Baumann. Experimental Investigation of a Neon Cryogenic Capillary Pumped Loop. 97277 1403-1408
    20. Cullimore B. Cryogenic Capillary Pumped Loop Final Report. for Phase Ⅰ. NASA/GSFC Contact NAS5-32415, June 1993
    21. Baumann J, Cryogenic Capillary Pumped Loop Final Report for Phase Ⅱ. NASA/GSFC Contact NAS5-32415, June 1997
    22. Muraoka I, Ramos F M, Vlassov V V. Theoretical Analysis of Low Frequency Temperature Oscillation in a Capillary Pumped Loop with Porous Element in the condenser. Instituto Nacional de Pesquisas Espaciais
    23. Muraoka I, Ramos F M, Vlassov V V. Analysis of the operational characteristics and limits of a loop heat pipe with porous element in the condenser. International Journal of Heat and Mass Transfer 44(2001)2287-2297
    24. Muraoka I, Vlassov V V. Numerical Model of the CPL for Micro Gravity Experiment. Instituto Nacional de Pesquisas Espaciais
    25. Pouzet E, Joly J L, Platel V, Grandepeix J Y, Butto C. Dynamic response of a capillary pumped loop subjected to various heat load transient. International Journal of Heat and Mass Transfer 47(2004)2293-2316
    26.侯增祺,郭舜.航天热控新技术——毛细抽吸两相环概述.863课题报告,1990
    27.侯增祺.毛细抽吸两相环模型的试验研究.863课题分课题报告,1990
    28.张加迅,侯增祺.毛细抽吸两相流体环路的研究.航天器工程,1998,7(1)
    29.邓强,马同泽,张正芳,王金亮.两相毛细泵环蒸发器性能的实验研究.工程热物理学报,1998,19(3)
    30.王金亮,马同泽,张正芳.两相毛细泵环中蒸发器的工作特性的实验研究.中国空间科学技术,第5期,1996年10月
    31.王金亮,马同泽,张正芳.两相毛细泵环中反向式蒸发器传热性能的实验研究.工程热物理学报,1997.18(9)
    32.张加迅,侯增祺.反向式毛细芯运行机理的分析.中国空间科学技术,第6期,2000年12月
    33.罗志平.毛细抽吸两相液体回流的动态仿真及3D演示.重庆大学硕士学位论文,2001
    
    
    34.曲伟,张加迅,刘纪福.用一维恒温相界面模型研究毛细芯蒸发器的温度场.中国空间科学技术,第3期,1996年6月
    35.王补宣,杜小泽.表面张力对低Re下细竖管的流动凝结的影响.自然科学进展,1999,9(8)
    36.王补宣,杜小泽.水平和竖直细圆管内的流动凝结换热特性的对比研究.工程热物理学报,2000,21(1)
    37.王补宣,杜小泽.细竖管内的流动凝结的换热特性.上海交通大学学报,1999,33(8)
    38.安刚,李俊明,王补宣.微圆管内流动凝结换热的实验研究.工程热物理学报,2003,24(1)
    39. Chi S W, Cygnarowicz T A, Theoretical Analyses of Cryogenic Heat Pipes, ASME Paper No.70-HT/Spt-6, 1970
    40.美国金属学会.金属手册(第九版,第三卷)性能与选择:不锈钢,工具钢及特殊用途金属材料.北京:机械工业出版社,1991
    41.第一汽车制造厂设备修造分厂编写组.机械工程材料手册.北京:机械工业出版社,1979
    42.陆世英,张延凯等.不锈钢.原子能出版社,1998年
    43. Pohner J, Antoniuk D. Recent Enhancements to Capillary Pumped Loop Systems. AIAA Paper No. 91-1375
    44. Nazeri A, Kim J. Wick Materials by Sol-Gel Processing. Space Technology and Applications International Forum, CONF970115,Albuquerque,New Mexico, 1997, pp.601-605
    45. Tien C L. Minimun meniscius radius of heat pipes wicking material. Int.Jour.Heat and Mass Transfer, Vol 14,No.11,1971
    46.马同泽,汪肇平,赵嘉琪.热管网状毛细芯毛细力及渗透率研究.工程热物理学报,1980.1(2)
    47. Nusselt W. Die Oberflachencondensation des Wasserdamphes. VDI, 1916. 60: 541~569
    48. Rose J W. Condensation heat transfer fundamentals [J]. Trans Ichem E. 1998.76(part A): 143~152
    49. Rohsenow J W. Film condensation[J]. Applied Mechanics Reviews. 1970.23:487~496
    50.王补宣,俞宇枫.小管径竖管外侧的凝结换热[A].王补宣论文集[C].北京:清华大学出版社,1993.137~145
    51. Stephan K, Zhong L C, Stephan P. Influence of capillary pressure on the evaporation of
    
    thin liquid film[J]. Heat and Mass Trans, 1995, 30:467~472
    52.杜小泽,王补宣.基于流型的小直径圆管内流动凝结换热机理.化工学报,2002,53(2):1~4
    53.龙怀祖.管内冷凝传热计算方法探索.石油规划设计,2001.12(1):7~10
    54.E.U.施林德尔.换热器设计手册(第二卷).北京:机械工业出版社,1989.465~515.
    55. Shah R. K, London A. L. Laminar Flow Forced Convection in Ducts. Academic, New York, 1987
    56. Jentung Ku. Overview of Capillary Pumped Loop Technology. Heat Pipes and Capillary Pumped Loop ASME 1993. HTD-Vol.236
    57. Krotiuk W, C.E Marino. Comparison of SINDA85/FLUINT Predictions with Ground Discharge Test Results for a Capillary Pumped Loop Reservoir. SAE Paper No.921043.
    58. Buchko M. Testing Results of Prototype Two-Phase Reservoirs for the CAPL Flight Experiment. AIAA Paper No.921406
    59.徐烈.低温绝热与贮运技术.北京:机械工业出版社,1999
    60.徐烈.绝热技术.北京:国防工业出版社,1990
    61.苗建伟,侯增祺,曹剑峰.环路热管内工质流动特性研究.中国空间科学技术,2001.4:57~64
    62.张加迅,侯增祺.反向式蒸发器芯层内蒸汽的阻力分析计算.中国空间科学技术,1999.2:8~15
    63.洪敏.毛细抽吸两相环蒸发器性能研究.北京空间飞行器总体设计部硕士学位论文,1990
    64. Paulo Couto, Marcia B.H.Mantelli. Design of the Brazilian Cryogenic Heat Pipes.AIAA-2001-3079
    65. Bergles A E, Rohsenow W M. The determination of forced-convection surface-boiling heat transfer. J. Of Heat Transfer, Series C, Vol.86, No.3, 1964
    66. Buss C A. Theory of the ultimate heat transfer limit of cylindrical heat pipe. Int.J. Mass Transfer, Vol.16, No.1.1973
    67.曲伟,伊勇,侯增祺.毛细抽吸两相流体回路(CPL)的控温特性和极限特性分析.节能技术,1998.2:9~13
    68.何祖威,唐胜利,杨晨.热力系统模块化仿真技术.重庆:重庆大学出版社1991,9
    69. Zhang J T, Wang B X. Effect of capillarity at liquid—vapor interface on phase change without surfactant. International Journal of Heat and Mass Transfer 45(2002) 2689-2694
    70. Pei-Xue Jiang, Ze-Pei Ren. Numerical investigation of forced convection heat transfer
    
    in porous media tising a thermal non-equilibrium model. Int. J. of Heat and Fluid Flow 22 (2001) 102-110
    71.杜小泽,王补宣.蒸气在变壁温细坚直圆管内的流动凝结换热特性.中国科学(E辑),2002.32(3):1~8
    72.曲伟,侯增祺,张加迅.零重力条件下管内稳态流动凝结换热特性的研究.中国工程热物理学会传热与传质学学术会议,963071
    73.刘瑜珂,王维城,张立宁.微重力下管内凝结换热性能的研究.中国工程热物理学会传热传质学学术会议论文集(上册),1995.129~136
    74. Henstock W H, Hanratty T J. The interfacial drag and height of the wall layer in the annular flow. AICHE J, 1976, 22:990~1000
    75.田立楠.物性手册查用基础.湖北:科学技术出版社,1985
    76.张家荣,赵廷元.工程常用物质的热物理性质手册.北京:新时代出版,1987.11~12
    77.马庆芳,方荣生,项立成,郭舜.实用热物理性质手册.中国农业机械出版,1986.109~115
    78.刘志刚,刘咸定,赵冠春.工质热物理性质计算程序的编制及应用.北京:科学出版社,1992
    79. Figus C,, Bray Y Le, Bories S, Prat M. Heat and mass transfer with phase change in a porous structure partially heated: continuum model and pore network simulations. Int.J. Heat Mass Transfer 1999.42:2257-2599
    80. Q.Liao, T.S.Zhao. A visual study of phase-change heat transfer in a two-dimensional Porous structure with a partial heating boundary. Int.J. Heat Mass Transfer 2000. 43:1089~1102
    81. T.S.Zhao. Q.Liao. Rapid vaporization of subcooled liquid in a capillary structure. Int.J. Heat Mass Transfer 2002.45: 165~172
    82. Y.Maidanik, Y.Fershtater, V.G.Pastukhov. M.Chernysheva. Experimental and theoretical investingation of startup regimes of two-phase capillary pumped loop. SAE Paper 932305. In: Proceedings of the 23rd International Conference on Environmental Systems, Colorado Springs, Co, 1993
    83. R.Meyer, R.Muller, K.Beckmann, K.A.Goncharov, E.Y.Kotlyarov, Y.F.Maidanik. Investigation of the heat transfers performance of a capillary pumped ammonia loop under gravity. SAE Paper 932304. In: Proceedings of the 23rd International Conference on Environmental Systems, Colorado Springs, Co, 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700