用户名: 密码: 验证码:
弱磁场下铁磁材料磁机械效应的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属磁记忆方法是针对铁磁材料的一种新兴无损检测技术,该方法利用构件的表面磁场分布来评估材料的应力(应变)状态。应力集中将会引起表面磁场的畸变。同其他磁性检测技术相比,该方法不但可以用来准确确定应力集中的部位,而且不需要昂贵的磁化设备,不需要表面处理,检测速度快,设备轻便等优点,为无损评估技术在构件应力状态的评估方面提供了新的方向,因此具有广阔的应用潜力和研究意义。然而,磁记忆基础理论研究的缺乏已严重制约了磁记忆技术的发展。
     实质上,金属磁记忆研究的是地磁场下,机械应力或应变引起的磁性质的变化。该方法的本质是弱磁场下的磁机械效应。而对磁机械效应的研究已有100多年的历史,形成了比较成熟的理论体系。磁机械效应是机械参量引起的磁化强度的变化。本论文针对磁记忆现象机理的模棱两可,结合磁记忆检测的实验结果,基于磁机械效应的部分成果,建立了适合于材料不同的应力状态下的磁化模型。具体来说,本文在以下几个方面进行了探索和研究:
     (1)为了将拉压磁非对称性并入到J-A模型,弥补基本J-A模型在刻画拉压磁性非对称性上的不足,分别考虑了应力退磁项、应力相关的钉扎系数、磁畴耦合系数以及应力依赖的饱和磁致伸缩系数等因素引起的拉压磁性非对称性。并入这些非对称因素后,改进的J-A模型不仅能描述磁性检测中的反转现象和接近现象,更是增加了拉压应力下的磁性非对称性,改善了模型模拟结果的精度,特别是压应力下的磁感模拟结果;
     (2)塑性变形引起磁化变化的机制主要有三点,一就是塑性变形引起了位错的大量增殖,二就是塑性变形引起的磁塑性能,三就是塑性变形引起了残余应力。为了描述磁化随塑性变形的变化,将上述三种机制转化成塑性变形对有效场和模型参数的影响,其中在有效场方面引入了残余应力场和磁塑性场,在模型参数方面主要考虑了塑性变形对钉扎参数、磁畴耦合系数以及规划系数的作用。模拟的结果显示在塑性变形初期,磁化强度出现了“跳水”式的下降,随后随着塑性变形缓慢的减少,这与实验结果非常的吻合;
     (3)循环应力的磁化不仅要考虑磁化随应力历程的变化,还应该考虑疲劳微观损伤对磁化的作用。疲劳过程的各阶段引起磁化变化的机制是不同的:疲劳的第I阶段,是一个循环软化或硬化的阶段,在模拟这一阶段的磁化调整的过程中,考虑了软化或硬化对钉扎系数和磁畴耦合系数两个模型参量的影响;疲劳的第II阶段,是疲劳的稳定阶段,这一阶段的磁记忆参量也处于稳定的水平,从每循环周次的损伤-热和缺陷-铁原子比的角度讨论了这一阶段的不可测度性;疲劳的第III阶段,材料出现了宏观的裂纹,磁记忆参量也出现了较大的变化,这一阶段主要考虑了宏观裂纹位置处形成的强退磁场对磁化的作用;
     (4)断裂引起磁化出现了正负峰的突变,而且突变峰值的量级是其他变形阶段无法比拟的。借助磁偶极子模型模拟了这种突变。基于硬度-位错-磁偶极子分布一致的研究结果上,分别建立了拉伸断裂和拉拉疲劳断裂的位错-磁偶极子模型:拉伸断裂的磁偶极子分布是从远处至断口的线性增加,而拉拉疲劳断裂的磁偶极子分布则只是在断口有密集的存在。建立的模型不仅能很好的模拟拉伸断裂与拉拉疲劳断裂的正负峰值突变,而且很好的解释了拉拉疲劳断裂突变峰值一般大于拉伸断裂峰值的实验现象。
Metal magnetic memory (MMM) method is a novel nondestructive testing(NDT) technology for ferromagnetic material. This method evaluates the stress (orstrain) state of component by testing its distribution of surface magnetic field. Thestress concentration induces the abnormality of the surface magnetic field.Compared to routine magnetic testing methods, the MMM method can not onlylocate the stress concentration accurately, but also this method has followingadvantages: unwanted expensive magnetization devices, unnecessary to clean testedsurface, easy in operation, portable equipment and etc. This method provides a newdirection for the non-destructive evaluation techniques in estimating the stress stateof the component, and so it has promising future. The shortage in the theoreticalresearch of MMM method has become the bottleneck hindering its application.
     In essence, the MMM can be defined as the change in magnetic parameters of amagnetic material resulting from a change in applied stress (or strain) undergeomagnetic field. The nature of MMM is magnetomechanical effect under weakmagnetic field. The research of magnetomechanical effect can be traced back to over100years ago, and the study on it has formed a relatively mature theory system. Themagnetomechanical effect is the change of magnetization of a magnetic materialresulting from a change in applied stress. In this dissertation, aiming at ambiguousmechanism of the MMM phenomenon, combined with the experimental results ofthe MMM test and based on partial results of the magnetomechanical effect, themagnetization models for different stress states are established, respectively. To bemore specific, the main works are as follows:
     (1)To incorporate the asymmetry in magnetic property behavior under tensileand compressive stress in the J-A model and make up defect of basic J-A model indescribing asymmetry, the asymmetry properties caused by stress demagnetizationterm, a variable pinning coefficient, stress-dependence domain coupling coefficientand stress-dependence saturation magnetostriction are incorporated in the basic J-Amodel. It is found that the modified model can not only present the phenomena offield reverse and magnetization approach, but also provides a much betterdescription of asymmetrical magnetic property under tension and compression.Moreover, the accuracy of calculations is improved considerably, particularly in thecompressive stress situation;
     (2) The change of magnetization caused by plastic deformation can beconcluded as following three mechanisms: first, the plastic deformation induces mass multiplication of dislocation; second, the plastic deformation causesmagnetoplastic energy; third, the plastic deformation gives rise to the residual stress.In order to describe the change of magnetization with the plastic deformation, theabove three mechanisms are equivalent to the responses of the effective field andmodel parameters to the plastic deformation, where the effective field incorporatesthe contributions caused by residual stress and magnetoplastic energy, and the modelparameters prime consider the magnetoplastic effect on the pinning coefficient, theinterdomain coupling coefficient and the scaling constant. The computedmagnetization exhibits sharp change in the preliminary stage of plastic deformation,and then decreases slowly with the increase of plastic strain, in agreement withexperimental results;
     (3) Magnetization simulation caused by cyclic stress not only should considercourse of magnetization change with stress, but also take into account the influenceof fatigue damage on magnetization. The magnetization mechanisms are differentfor different fatigue stages: In the stage I of fatigue, cyclic softening or hardeningoccur in material. In the process of simulating the magnetization accommodation,the effects of softening or hardening on the pinning coefficient and the interdomaincoupling coefficient are considered; in the stage II of fatigue, it is a stable stage offatigue and the parameter of MMM testing is also stable. From the views ofdamage-to-heat and defects-to-iron atoms per cycle, the immeasurability isdiscussed; In the stage III of fatigue, macroscopic cracks appear in material and theparameter of MMM testing changes greatly. The leakage magnetic field caused bymacroscopic cracks is considered;
     (4) Peak-to-peak saltation in magnetization occurs at the instant of fracture, andthe magnitude of saltation is without parallel. This saltation is simulated with thehelp of theory of magnetic dipole. Assume that the distribution ofhardness-dislocation-magnetic charge is consistent, based on the test result ofhardness, the models of dislocation-magnetic dipole for tensile fracture andtensile-tensile fatigue fracture are established, respectively: The distribution ofmagnetic charge for tensile fracture is linear increase from distant to the fracturezone, while the distribution of magnetic charge for tensile-tensile fatigue fracture isconverging only at the fracture zone. It is found that the established model can notonly present the saltation of peak-to-peak in magnetization for tensile fracture andtensile-tensile fatigue fracture, but also provides an explanation to the experimentalphenomena that the peak value of saltation for tensile-tensile fatigue fracture ishigher that that for tensile fracture.
引文
[1]陈钘.基于磁记忆效应的应力集中检测方法研究[D].北京:清华大学,2007:1-14.
    [2]石常亮.面向再制造铁磁性构件损伤程度的磁记忆/超声综合无损评估[D]:哈尔滨:哈尔滨工业大学,2011:1-10.
    [3]王晓凤.应力集中引起的磁场畸变的初步研究[D].北京:清华大学,2007:1-5.
    [4]杨恩.非线性应力分布导致的磁场畸变研究[D].北京:清华大学,2005:1-35.
    [5]姜保军.磁测应力技术的现状及发展[J].无损检测,2006,28(7):362-366.
    [6] Dubov A A. Diagnostics of Boiler Tubes with Usage of Metal MagneticMemory[M]. Moscow:Energoatomizdat,1995:6-8.
    [7] Dubov A A. Study of Metal Properties Using Magnetic Memory Method[C].Proceeding of the7th European Conference on Nondestructive Testing. Copenhagen:1998:920-927.
    [8] Dubov A A. Diagnostics of Metal Items and Equipment by Means of MetalMagnetic Memory[C]. Proceeding of the7th Conference on NDT and InternationalResearch Symposium. Shantou, China:1999:181-187.
    [9]李路明,王晓凤,黄松岭.磁记忆现象和地磁场的关系[J].无损检测,2003,25(8):387-406.
    [10] A.A.Doubov. Technical Diagnostics of Equipment and Constructions withResidual Life Assessment Using the Method of Metal Magnetic Memory[C]. In:17th World Conference on Nondestructive testing, Shanghai China,2008:25-28.
    [11] A.A.Doubov. New Standards ISO24497on the Metal Magnetic MemoryMethod[C]. In:17th World Conference on Nondestructive testing,ShanghaiChina,2008:32-40.
    [12]任吉林,邬冠华,宋凯,林俊明,陈开惠.金属磁记忆检测机理的探讨[J].无损检测,2002,24(1):29-31.
    [13]姜寿亭,李卫.凝聚态磁性物理学[M].北京:科学出版社,1994:235-237.
    [14]仲维畅.金属磁记忆法诊断的理论基础[J].无损检测,2001,23(10):424-426.
    [15] D.C.Jiles. Theory of the Magnetomechanical Effect [J].J.phys.D:Appl.phys,1995,28:1537-1546.
    [16] D.C.Jiles,D.L.Atherton. Theory of Ferromagnetic Hysteresis[J]. Journal ofMagnetization and Magnetic materials,1986,61(1-2):48-60.
    [17] D.C.Jiles, D.L.Atherton. Theory of Magnetization Process in Ferromagnetsand Its Application to the Magnetomechanical Effect[J]. J.phys.D:Appl.phys,1984,17(6):1265-1281.
    [18]周俊华,雷银照.正磁致伸缩铁磁材料磁记忆现象的理论探讨[J].郑州大学学报,2003,24(3):101-105.
    [19]袁俊杰,张卫民.裂纹对铁磁性试件磁记忆信号的影响[J].制造业自动化,2007,29:187-190.
    [20] Yang En, Li Luming, Chen Xing. Magnetic Field Aberration Induced byCycle Stress[J]. Journal of Magnetization and Magnetic Materials,2007,312:72-77.
    [21] Lihong Dong, Binshi Xu, Shiyun Dong, Li Song, Qunzhi Chen, Dan Wang.Stress Dependence of the Spontaneous Stray Field Signals of FerromagneticSteel[J].NDT&E International,2009,42:323-327.
    [22] John W.Wilson, Guiyun Tian, Simon Barrans. Residual Magnetic FieldSensing for Stress Measurement[J].Sensors and Actuators A,2007,135(2):381-387.
    [23] Jiancheng Leng, Minqiang Xu, Mingxiu Xu, Jiazhong Zhang. Magnetic FieldVariation Induced by Cyclic Bending Stress[J].NDT&E International,2009,42:410-414.
    [24]王威.钢结构磁力耦合应力检测基本理论及应用技术研究[D].西安:西安建筑科技大学,2005:45-60.
    [25]常福清,刘东旭,刘峰.磁记忆检测中的力-磁关系及其实验观察[J].实验力学,2009,24(4):367-373.
    [26]常福清,刘东旭,刘峰.平面状态下的力磁关系及实验分析[J].燕山大学学报,2009,33(4):352-356.
    [27]赵维义,喻利华,邹畹珍.利用等效应力磁场测平面残余应力[J].华中理工大学学报,1999,27(12):100-101.
    [28]赵维义,喻利华,邹畹珍.等效应离磁场与残余应力测试[J].华中理工大学学报,1999,27(12):98-99.
    [29] Ashok Misra. A Theoretical Model for the Electromagnetic RadiationEmission during Plastic Deformation and Crack Propagation in MetallicMaterials[J].Int J fract,2007,145:99-121.
    [30] R.R.Birss. C.A.Faunce, E.D.Isaac, Magnetomechanical Effect in Iron andIron-Carbon Alloys[J].J.phys.D:Appl.phys,1971,4:1040-1048.
    [31]陈曦,任吉林,王为兰,宋凯.金属磁记忆微观机理试验研究[J].南昌航空工业学院学报,2006,20(3):45-49.
    [32]宋凯,任吉林,任尚坤,唐继红.基于磁畴聚合模型的磁记忆效应机理研究[J].无损检测,2009,29(.6):312-361.
    [33] Dong Lihong, Xu Binshi, Dong Shiyun, Chen Qunzhi,Wang Dan. Variation ofStress-Induced Magnetic Signals During Tensile Testing of FerromagneticSteels[J].NDT&E International,2008,41:184-189.
    [34]孙海涛,张卫民,刘红光,张鹏霞.地磁场环境下铁磁性试件单向静拉伸试验研究[J].理化检验,2005,41(5):222-225.
    [35]张卫民,刘红光,孙海涛.中低碳钢静拉伸时磁记忆效应的实验研究[J].北京理工大学学报,2004,24(7):571-574.
    [36]任尚坤,李新蕾,任吉林,肖清云.金属磁记忆检测技术的物理机理[J].理论研究,2008,22(2):11-17.
    [37] Ivan J.Garshelis. Conditions for Stress Induced Bulk Moments[J].J.appl.phys.,1979,50(3):1680-1682.
    [38] Ashok.Misra, B.G.Varshney. Can a Stress alone Applied to a DemagnetizedFerromagnetic Specimen Produced any Magnetization[J]. Journal of Magnetizationand Magnetic materials,1990,89:159-166.
    [39] Ashok.Misra. Theoretical Study of the Fracture Induced Magnetic Effect inFerromagnetic Materials[J].Physics Letter,1977,62A(4):234-236.
    [40] Vladimir.B.Ginzburg. The Magnetoelastic Properties of a Simplified Modelof a Ferromagnetic Body in Low Magnetic Field[J].IEEE Transactions on Magnetics,1977,13(5):1657-1663.
    [41]刘青昕.油田套管状况测井及套管应力检测方法研究[D].北京:中国地质大学,2006:87-89.
    [42]李路明,王晓凤,黄松岭.磁记忆现象和地磁场的关系[J].无损检测,2003,25(8):387-406.
    [43]仲维畅.铁磁性物体在地磁场中的自发运动磁化[J].无损检测,2004,28(5):9-14.
    [44]黄松岭,李路明,王晓凤,施克仁,陈钘.地磁场在应力致畸变产生过程中的影响[J].清华大学学报,2003,43(2):208-210.
    [45]钟力强,李路明,陈钘.地磁场方向对应力集中引起的磁场畸变的影响[J].无损检测,2009,31(1):1-60.
    [46]于凤云,张川绪,吴淼.检测方向和提离值对磁记忆检测信号的影响[J].机械设计与制造,2006,5:118-120.
    [47]于凤云,张川绪,吴淼.放置方向对磁记忆检测信号的影响[J].煤矿机械,2005,10:149-152.
    [48]王文江,戴光.疲劳断裂试件磁记忆检测结果及分析[J].大庆石油学院学报,2005,29(4):83-143.
    [49]张静,周克印,姚恩涛,吴文亮,董务疆.改进的金属磁记忆检测方法的探讨[J].理化检验,2004,40(4):183-186.
    [50]张静,周克印,路琴.受扭转类零件磁记忆信号的初步研究[J].理化检验,2005,41(12):616-619.
    [51] Xingliang Jian, Xingchao Jian, Guoyong. Experiment on Relationshipbetween the Magnetic Gradient of Low-Carbon Steel and Its Stress[J]. Journal ofMagnetization and Magnetic Materials,2009,321:3600-3606.
    [52]尹大伟,徐滨士,董世运,董丽红,冯晨.不同检测环境下磁记忆信号变化研究[J].兵工学报,2007,28(3):319-323.
    [53]董丽红,徐滨士,董世运,陈群志,王丹,尹大伟.拉伸载荷作用下中碳钢磁记忆信号的机理[J].材料研究学报,2006,20(4):440-444.
    [54] A.A.Doubov. Screening of Welding Quality Using the Metal MagneticMemory[C].In: Welding in World41,1998,196-199.
    [55] A.Doubov. Physical Base of the Method of Metal Magnetic Memory[J].Nondestructive Testing of Materials and Structures,2002,42:1-5.
    [56]张静,周克印.不同应力状态下金属磁记忆检测信号特征[J].合肥工业大学学报,2007,30(3):381-383.
    [57]任吉林,王东升,宋凯.典型铁磁构件磁记忆效应的试验研究[J].无损检测,2005,27(8):409-411.
    [58] Dong Lihong, Xu Binshi, Dong shiyun, Ye Minghui, Chen Qunzhi. Study onMagnetic Memory Signals of Medium Steel Specimens with Surface Crack Precutduring Loading Process[J].RARE NETALS,2006,25(6):431-435.
    [59]陈星,刘昌奎,陶春虎,董世运,王丹,石常亮.金属材料拉伸损伤的磁记忆表征[J].无损检测,2009,31(5):345-348.
    [60]王丹,董世运,徐滨士,陈群志,董丽红.应立即中部位的金属磁记忆检测研究[J].失效分析与预防,2007,2(2):12-15.
    [61]杜波夫阿阿,考罗考利尼科夫.焊接缺陷的金属磁记忆法检测[J].焊管,2008,31(2):44-48.
    [62]张军,王彪.金属磁记忆检测中应力集中区信号的识别[J].中国电机工程学报,2008,28(18):144-148.
    [63]马建坤,张明智,刘海永,杜亚荣.裂纹的磁记忆检测分析[J].机械研究与应用,2007,20(4):119-122.
    [64]任吉林,白鹭,范振中,刘昌奎.航空铁磁材料磁记忆检测新方法[J].航空学报,2009,30(11):2224-2228.
    [65]王朝霞,刘红光.弯曲载荷下压力管道的磁记忆效应研究[J].无损检测,2009,3(3):14-17.
    [66]于凤云.拉应力引起的磁记忆特性及其与检测时间的关系[J].黑龙江科技学院学报,2007,17(2):126-128.
    [67]袁俊杰,张卫民,王朝霞,刘红光.螺纹传动件的金属磁记忆检测方法研究[J].制造业自动化,2006,28:199-203.
    [68]董丽红,徐滨士,董世运,尹大伟.金属磁记忆技术检测低碳钢静载拉伸破坏的实验研究[J].材料工程,2006,3:40-43.
    [69]张卫民,袁俊杰,王朝霞,刘红光.螺纹连接承载过程的力-磁关系研究[J].中国机械工程,2009,20(1):34-37.
    [70]董世运,徐滨士,董丽红,王丹.金属磁记忆检测技术用于再制造毛坯寿命预测的试验研究[J].中国表面工程,2006,19(5):71-75.
    [71]王丹,董世运,徐滨士,陈群志,董丽红.静载拉伸45钢材料的金属磁记忆信号分析[J].材料工程,2008,8:77-80.
    [72]刘桂良.磁记忆检测技术在典型钢结构无损检测中的研究[D].哈尔滨:哈尔滨工程大学,2006:35-70.
    [73]石常亮,董世运,徐滨士,王丹,刘昌奎.18CrNi4A钢静载拉伸时磁记忆检测试验[J].装甲兵工程学院学报,2007,21(5):19-22.
    [74] M.Roskosz, P.Gawrilenko. Analysis of Change in Residual Magnetic Field inLoaded Notched Samples[J].NDT&E International,2008,41:570-576.
    [75] Haiyan Xing, Jiazhong Zhang, Minqiang Xu, Rixin Wang, Dabo Wu. FatigueProperty of Steel Q235Based on Metal Magnetic Testing[C]. In:2006ASMEInternational Mechanical Engineering Congress and Exposition, Chicago, IIIinois,USA,2006:1-3.
    [76]刘昌奎,陶春虎,陈星,张兵,董世运.金属磁记忆检测技术定量评估构件疲劳损伤研究[J].材料工程,2009,8:33-37.
    [77]刘昌奎,陶春虎,陈星,董世运.基于金属磁记忆技术的18CrNi4A钢缺口试件疲劳损伤模型[J].航空学报,2009,30(9):1641-1647.
    [78]苏兰海,马祥华,陈工,陈香军,王长松.铁磁材料零件疲劳损伤磁记忆检测方法的实验[J].测试技术学报,2009,23(2):145-150.
    [79]陈香军,马祥华,苏兰海,屈明友.铁磁构件疲劳损伤的磁记忆效应[J].理化检验,2008,44(10):536-539.
    [80]尹大伟,徐滨士,董世运,董丽红.中碳钢疲劳试验的磁记忆检测[J].机械工程学报,2007,43(3):60-65.
    [81] Changliang Shi, Shiyun Dong, Peng He, Binshi Xu. Influence of StressConcentration Factor on Magnetic Memory Effect of Steel Sample under DynamicTension Load[C]. In:17th World Conference on Nondestructive Testing, Shanghai,China,2008:25-28.
    [82] Shi Changliang, Dong Shiyun, Xu Binshi, He Peng. Stress ConcentrationDegree Affects Spontaneous Magnetic Signals of Ferromagnetic Steel underDynamic Tension Load[J]. NDT&E International,2010,43:8-12.
    [83]袁俊杰,张卫民,刘红光,王朝霞.动载荷作用下铁磁性试件的磁记忆效应[J].北京理工大学学报,2006,26(9):785-788.
    [84]王翔,陈铭,徐滨士.48MnV钢拉压疲劳过程中的磁记忆信号变化[J].中国机械工程,2007,18(15):1862-1864.
    [85] Haiyan Xing, Minqiang Xu, Jiazhong Zhang. Early Damage Stress StateMMM Testing[C]. in:2005ASME International Mechanical Engineering Congressand Exposition, Orlando, Florida, USA,2005:1-3.
    [86] R C.Smith, M J.Dapino, T R.Braun and A P.Mortensen, A HomogenizedEnergy Framework for Ferromagnetic Hysteresis[J]. IEEE Trans.Magn,2006,42:1747-1769.
    [87] Antonio DeSimone, Richard D.James. Aconstrained Theory ofMagnetoelasticity[J]. Journal of Mechanicals and Physics of Solids,2002,50:283-320.
    [88] N.I.Glavaska, A.A.Rudenko, I.N.Glavatskiy. V.A.Lvov, Statistical Model ofMagnetostrain Effect in Martensite[J].Journal of Magnetization and Magneticmaterials,2003,265:142-151.
    [89] Biorn Kiefer, Dimitris C.Lagoudas. Magnetic Field-Induced MartensiticVariant Reorientation in Magnetic Shape Memory Alloys[J]. PhilosophicalMagazine,2005,1-34.
    [90] Yongmao Pei, Daining Fang. A Model for Giant Magnetostrain andMagnetization in the Martensitic Phase of NiMnGa Alloys[J].SMART MATERIALSAND STRUCTURES.2007,16:779-783.
    [91]丁辉,张寒,李晓红,文习山.磁记忆检测裂纹类缺陷的理论模型[J].无损检测,2002,24(2):78-85.
    [92]王朝霞,张卫民,宋金刚,李文春,陈克.弱磁场下管件表面磁场的分布特征[J].无损检测,2007,29(8):437-439.
    [93]刘红光,张卫民,王朝霞,袁俊杰.基于磁记忆法的焊接缺陷检测技术研究[J].北京理工大学学报,2007,27(9):811-814.
    [94] Willian Gilbert.De Magnete[M]. New York:Fleury Mottelay TranslationPublished NY,1958:1-10.
    [95] J.A.Ewing. Magnetic Induction in Iron and Other Metals[M].D.Van NostrandCliffs:NJ, NY,1892:1-15.
    [96] C.Kittel and J.K.Galt. Ferromagnetic Domain Theory[J]. Solid StatePhysics,1956,3:437-564.
    [97] Bozorth R M and Williams H J. Effect of Small Stress on MagneticProperties[J].Rev.Mod.Phys,1945,17(1):72-80.
    [98] Cullity B D. Introduction to Magnetic Materials[M]. Reading MA: AddisonWesley,1972:25-45.
    [99] William Fullek Brown. Irreversible Magnetic Effect of Stress[J].Physicalreview,1949,75(1):147-154.
    [100] Brugel L and Rimet G, Interpretation of the Irreversible Effects of StrainIncluded Together with a Model of Hysteresis[J]. J.Physique,1966,27:589-598.
    [101] B.Augustyniak, M.J.Sablik, F.J.G.Landgral, D.C.Jiles, M.Chmielewski,L.Piotrowski, A.J.Moses. Lack of Magnetoacoustic Emission in Iron with6.5%Silicon[J]. Journal of Magnetism and Magnetic Materials,2008,320:2530-2533.
    [102] Craik D and Wood M J, Magnetization Changes Induced by Stress in aConstant Applied Field[J].J.Phys.D:Appl. Phys,1971,4:1009-1016.
    [103] Birss R R, Faunce C A and Isaac E D, Magnetomechanical Effects in Ironand Iron-Carbon Alloys[J]. J.phys.D:Appl.Phys,1971,4:1040-1048.
    [104] Schneider C S and Charlesworth M. Magnetoelastic Process in Steels[J]. J.Appl. Phys,1985,57(8):4198-4200.
    [105] Finbow D C. The Shape of Magnetization Curves Pproduced by Stress inConstant Small Magnetic Fields in Iron and Some Steels[J]. Phys.Status.Solidi,1970,3(3):743-754.
    [106] Schneider C S and Richardson J M. Biaxial Magnetoelasticity in Steels[J].J. Appl. Phys,1982,53(11):8136-8138.
    [107] Schneider C S and Semcken E A. Vibration Induced Magnetization[J]. J.Appl. Phys,1981,52(3):2425-2427.
    [108] Pitman K C. The Influence of Stress on Ferromagnetic Hysteresis[J]. IEEETrans.Magn,1990,26(5):1978-1980.
    [109] Ruuskanen P and Kettunen P. Reversible ComponentsBr of the StressInduced Change in Magnetization As A Function of Magnetic Field Strength andStress Amplitude[J]. J.Magn.Magn.Mater,1991,98(3):349-358.
    [110] Schneider C S, Cannell P Y and Watts K T. Magnetoelasticity for LargeStress[J]. IEEE Trans.Magn,1992,28(5):2626-2631.
    [111] Maylin M G and Squire P T. The Effect of Stress on Induction, DifferentialPermeability and Barkhausen Count in a Ferromagnet[J]. IEEE Trans.Magn,1993,29(6):3499-3501.
    [112] Maylin M G and Squire P T. Departures From the Law of Approach to thePrincipal Anhysteretic in A Ferromagnet[J]. J.Appl.Phys,1993,73(6):2948-2955.
    [113] Makar J M and Atherton D L. Effects of Uniaxial Stress on the Reversible andIrreversible Permeabilities2%Mn Pipeline Steel[J]. IEEE Trans.Magn,1994,30(4):1380-1387.
    [114] Makar J M and Atherton D L. Effects of Stress on the Magnetostriction of2%Mn Pipeline Steel[J]. IEEE Trans.Magn,1994,30(4):1388-1394.
    [115] Jiles D C and Devine M K. Recent Developments in Modeling the StressDerivative of Magnetization in Ferromagnetic Materials[J]. J.Appl.Phys,1994,76(10):7015-7017.
    [116] Jiles D C and Devine M K. The Law of Approach As A Means of Modelingthe Effect of Time Dependent Stress on Magnetization in Hysteresis Systems[J].J.Magn.Magn.Mater,1995,140-144(3):1881-1882.
    [117] J.M.Makar, B.K.Tanner. The Effect of Plastic Deformation and ResidualStress on Permeability and Magnetostriction of Steels[J]. J.Magn.Magn.Mater.,2000,222:291-303.
    [118] J.M.Makar, B.K.Tanner. The in Situ Measurement of Effect of the Effect ofPlastic Deformation on the Magnetic Properties of Steel part I-Hysteresis Loops andMagnetistriction[J]. J.Magn.Magn.Mater.,1998,184:193-208.
    [119] J.M.Makar, B.K.Tanner. The in Situ Measurement of Effect of the Effect ofPlastic Deformation on the Magnetic Properties of Steel Part II-PermeabilityCurves[J]. J.Magn.Magn.Mater.,1998,187:353-365.
    [120] M Kuroda, s Yamanaka. K Yamada, Y Isobe. Evaluation of Residual Stressesand Plastic Deformation for Iron-Based Materials by Leakage Magnetic FluxSensors[J]. Journal of Alloys and Compounds,2001,314:232-239.
    [121] B.Szpunar, J.A.Szpunar. Influence of Stresses on the Hysteresis Curve inConstructional Steel[J]. IEEE Trans.Magn,1984,20(5):1882-1884.
    [122] C.G. Stefanita. D.L.Atherton and L.Clapham, Plastic Versus ElasticDeformation Effects on Magnetic Barkhausen Noise in Steel[J]. Acta Mater.,2000,48:3545-3551.
    [123] S.Takahashi, H.Hatafuku and S.Izumisawa. The Influence of PlasticDeformation on Magnetization Processes In Ni3Fe[J]. IEEE Trans.Magn,1987,23(5):3083-3085.
    [124] S.Takahashi, J.Echigoya and Z.Motoki. Magnetization Curves of PlasticallyDeformed Fe Metal and Alloys[J]. J.Appl.Phys,2000,87(2):805-813.
    [125] Shigeyuki Hayashi. Magneto-Plastic Effect in the Ferromagnetic Crystals[J].Bull.Yamagata Univ.,2001,26(2):127-135.
    [126] X.Kleber, A.Vincent. On the Role of Residual Internal Stress andDislocation on Barkhausen Noise in Plastically Deformed Steel[J]. NDT&EInternational,2004,37:439-455.
    [127] Ralph C.Smith, Marcelo J.Dapino. A homogenized Energy Model for theDirect Magnetomechanical Effect[J]. IEEE Transactions on Magnetics,2006,42(8):1944-1957.
    [128] E.C.Stoner and E.P. Wohlfarth. A Mechanism of Magnetic Hysteresis inHeterogeneous Alloys[J]. Phil.Trans.Roy.Soc.,1948,240A(826):599-642.
    [129] A.Globus. Universal Hysteresis Loop for Soft Ferromagnetic Material[C]. InProc.Europ.Physical.Society, Conference on Soft Magnetic Material,1975,2:233-237.
    [130] A.Globus. P.Duplex and M.Guyot, Determination of Initial MagnetizationCurve from Crystallites Size and Effective Anisotropy Field[J]. IEEE Trans.Magn,1971,17:617-622.
    [131] A.Globus. Universal Hysteresis Loop for Ferrimagnetic Polycrystals[C]. InProc.Int.Conf.Magnetism, Amsterdam, The Netherlands, Sept.1976:943-944.
    [132] I.D.Mayergoyz. The Classical Preisach Model of Hysteresis andReversibility [J]. J.Appl.Phys,1991,69:4602-4604.
    [133] Carl S.Schneider. Domain Cooperation in Ferromagnetic Hysteresis[J].J.Appl.Phys,2001,89(2):1281-1286.
    [134] Carl S.Schneider. Anisotropic Cooperative Theory of CoaxialFerromagnetoelasticity[J]. Physica B,2004,343:65-74.
    [135] Carl S.Schneider. Cooperative Anisotropic Theory of FerromagneticHysteresis[J]. Thends in Materials Science Research,2006,1:1-48.
    [136] H Hauser. Energetic Model of Ferromagnetic Hysteresis[J]. J.Appl.Phys.,1994,75(5):2584-2597.
    [137] H Hauser, Energetic Model of Ferromagnetic Hysteresis: IsotropicMagnetization[J]. J.Appl.Phys.,2004,96(5):2753-2767.
    [138] H Hauser, Energetic Model of Ferromagnetic Hysteresis2: MagnetizationCalculations of (110)[001]FeSi Steels by Statistic Domain Behavior[J]. J.Appl.Phys.,1995,77(6):2625-2633.
    [139] Lihong Dong, Xu Binshi, Dong Shuiyun, Chen Qunzhi, Wang Dan.Monitoring Fatigue Crack Propagation of Ferromagnetic Materials withSpontaneous Abnormal Magnetic Signals[J]. International Journal of Fatigue,2008,30:1599-1605.
    [140] Y.Chen, D.C.Jiles. The Magnetomechanical Effect under Torsional Stress ina Cobalt Ferrite Composite[J]. IEEE Transactions on Magnetics,2000,36(5):3244-3247.
    [141] D.L.Atherton, D.C.Jiles. Effects of Stress on the Magnetization of Steel[J].IEEE Transactions on Magnetics,1983,19(5):2021-2023.
    [142] B.Zhu, C.C.H.Lo, S.J.Lee, D.C.Jiles. Micromagnetic Modeling of the Effectof Stress on Magnetic Properties[J]. Journal of Applied Physics,2001,89(11):7009-7011.
    [143] M.J.Sablik. A Model for Asymmetry in Magnetic Property Behavior underTensile and Compressive Stress in Steel[J]. IEEE Transactions on Magnetics,1997,33(5):3958-3960.
    [144] C.C.H.Lo, S.J.Lee, L.Li, L.C.Kerdus and D.C.Jiles. Modeling Stress Effecton Magnetic Hysteresis and Barkhausen Emission Using a Hysteretic-StochasticModel[J]. IEEE Transactions on Magnetics,2002,38(5):2418-2420.
    [145] Zdzislaw Wlodarshi. The Jiles-Atherton Model with Variable PinningParameter[J]. IEEE Transactions on Magnetics,2003,38(4):1990-1992.
    [146]那顺桑,李杰,艾立群.金属材料力学性能[M].北京:冶金工业出版社,2011:1-20.
    [147] K.Lubitz. Magnetic Studies of the Dislocation Structure of Iron SingleCrystals Deformed at295K[J]. Applied Physics,1974,4:51-61.
    [148] J.M.Makar, B.K.Tanner. The Effect of Plastic Deformation and ResidualStress on the Permeability and Magnetostriction of Steels[J].Journal of Magnetismand magnetic materials,2000,222:291-304.
    [149] Ping Wang, Shougao Zhu, Guiyun Tian, Haitao Wang, John Wilson and XinWang. Stress Measurement Using Magnetic Barkhausen Noise and Metal MagneticMemory Testing[J]. Measur. Sci.,2010,21:1-6.
    [150] S.Takahashi, J.Echigoya, Z.Motoki.Magnetization Curves of PlasticallyDeformed Fe Metal and Alloys[J]. Journal of Applied Physics,2000,87(2):805-813.
    [151] C.C.H.Lo, E.kinser, D.C.Jiles. Modeling the Interrelating Effects of PlasticDeformation and Stress on Magnetic Properties of Materials[J]. Journal of AppliedPhysics,2003,93(10):6626-6628.
    [152] Z.D.Wang, B.Deng, K.Yao. Physical Model of Plastic Deformation onMagnetization in Ferromagnetic Materials[J]. Journal of Applied Physics,2011,109(1):1-6.
    [153] M.J.Sablik, S,Rios, F.J.G.Landgraf, T.Yonamine, M.F.de Campos. Modelingof Sharp Change in Magnetic Hysteresis Behavior of Electrical Steel at SmallDeformation[J]. Journal of Applied Physics,2005,97(2):518-520.
    [154] M.J.Sablik, F.J.G.Landgraf, R.Magnabosco, M.Fukuhara, M.F.de Campos.Fitting the Flow Curve of a Plastically Deformed Silicon Steel for the Prediction ofMagnetic Properties[J]. Journal of Magnetism and Magnetic Materials,2006,304:155-158.
    [155] B.Szpunar, J.A.Szpunar. Influence of Stresses on the Hysteresis Curve inConstructional Steel[J]. IEEE Transactions on Magnetics,1984,20(5):1882-1884.
    [156] H.Mughrabi. Dislocation wall and cell structures and long-range internalstresses in deformed metal crystals[J]. Acta Metallurgica,1983,31(9):1367-1379.
    [157] M.J.Sablik, Taeko Yonamine, Dernando J.G.Landgraf. Modeling PlasticDeformation Effects in Steel on Hysteresis Loops With the Same Maximum FluxDensity[J]. IEEE Transactions on Magnetics,2004,40(5):3219-3226.
    [158] D.C.Jiles, D.L.Atherton. Theory of Ferromagnetic Hysteresis[J]. J.Appl.Phys.,1984,55(6):2115-2120.
    [159] J.Pala, O.Stupakov, J.Bydzovsky, I.Tomas, V.Novak. Magnetic Behaviour ofLow-Carbon Steel in Parallel and Perpendicular Direction to Tensile Deformation[J].Journal of Magnetism and Magnetic Materials,2007,310:57-62.
    [160] E.S.Gorkunov, S.M.Zadvorkin, S.V.Smirnov, S.Yu.Mitropol Skaya,D.I.Vichuzhanin. Correlation Between the Stress-strain State Parameters andMagnetic Characteristics of Carbon Steels[J]. The Physics of Metals andMetallography,2007,103(3):311-316.
    [161]徐明秀.基于磁记忆技术的铁磁性材料旋转弯曲疲劳损伤诊断研究[D]:哈尔滨:哈尔滨工业大学,2008:10-15.
    [162] Tae-Kyu Lee. Fatigue Damage Evolution With Non-Destructive MagneticProperties Measurement Method Using Scanning SQUID Microscopy
    [D]:University of Colifornia, Berkeley,2005:1-50.
    [163] Takaaki Suzuki, Eiji Matsumoto. Comparison of Jiles-Atherton and PreisachModels Extend to Stress Dependence in Magnetoelastic Behaviours of aFerromagnetic Material[J].Journal of Materials Processing Technology,2005,161:141-145.
    [164] T.Suzuki, E.Matsumoto. Stress Magnetization Effect Derived From Magnet-ization and Magnetostriction Curve under Tensile Stress[J]. J.Stud.Appl.Electr-omagn.Mech.,2003,14:47-54.
    [165] Edward Della Torre. A Preisach Model for Accommodation. IEEETRANSACTION ON MAGNETICS,1994,30(5):2701-2707.
    [166] S.Palit Sagar, N.Parida, S.Das, G.Dobmann, D.K.Bhattacharya.MagneticBarkhausen Emission to Evaluate Fatigue Damage in a Low Carbon StructuralSteel[J]. International Journal of Fatigue,2005,27:317-322.
    [167]吴犀甲.金属材料寿命的演变过程[M].合肥:中国科学技术大学出版社,2009:3-6.
    [168] C.C.H.Lo, F.Tang, Y.Shi, D.C.Jiles, A.B.Biner. Monitoring Fatigue Damagein Materials Using Magnetic Measurement Techniques[J]. Journal of AppliedPhysics,1999,85(8):4595-4597.
    [169] C.C.H.Lo, F.Tang, D.C.Jiles, A.B.Biner. Evaluation of Fatigue DamageUsing a Magnetic Measurement Technique[J]. IEEE Tran.Magn,1999,35(5):3977-3979.
    [170] Y.Bi, M.R.Govindaraju, D.C.Jiles. The Dependence of Magnetic Propertieson Fatigue in A533B Nuclear Pressure Vessel Steels[J]. IEEE Tran.Magn,1999,33(5):3928-3930.
    [171] Koh Yaegashi. Evaluation of Dislocation Structure in Tensile and FatigueDeformed Steels by Magnetic Measurement[J]. ISIJ International,2008,48(4):461-466.
    [172] M.Lindgren, T.Lepisto. Effect of Cyclic Deformation on Barkhausen Noisein a Mild Steel[J]. NDT&E Internation,2003,36:401-409.
    [173] M.Soultan, X.Kleber, J.Chicois, A.Vincent. Mechanical Barkhausen NoiseDuring Fatigue of Iron[J]. NDT&E Internation,2006,39:493-498.
    [174] T Erber, S A Guralnick, R D Desai, W Kwok. Piezomagnetism andFatigue[J]. J.Phys. D:Appl.Phys,1997,30:2818-2836.
    [175] S A Guralnick, S.Bao, T Erber. Piezomagnetism and Fatigue: II[J]. J.Phys.D:Appl.Phys,2008,30:1-11.
    [176] S.Bao, W.L.Jin, M.F.Huang, Y.Bai. Piezomagnetic Hysteresis As aNon-Destructive Measure of the Metal Fatigue Process[J]. NDT&E Internation,2010,41(11):706-712.
    [177] T.Erber, S.A. Guralnick, S.C.Michels. Hysteresis and Fatigue[J].Annals ofPhysics,1993,227:157-192.
    [178] Morrow Jod. Cyclic Plastic Strain Energy and Fatigue of Metals[J](SpecialTechnical Publ.378)(Philadelphia,PA:ASTM),1965:5-8.
    [179] Halford GR.Thesis Department of Theory.Appl.Mechanics[D].University ofIllinois,Urbana.1966:12-18.
    [180] Palmgren A. Die lebensdauer von kugellagern[J]. Z. Verein Deutsch.Ingen,1924,68:339–341.
    [181] Miner M A. Cumulative Damage in Fatigue [J]. J. Appl. Mech.1945,12:159-164.
    [182] Xu Mingxiu, Xu Minqiang, Li Jianwei, Xing Haiyan[J]. MMM fieldCharacterization at early fatigue damage based on modified J-A model. J. Cent.South Univ. Technol.2011,17(3):549-553.
    [183]徐章遂,徐英,王建斌,谢颖.裂纹漏磁定量检测原理与应用[M].北京:国防工业出版社,2005:30-40.
    [184] V.Frid, A.Rabinovitch, D.Bahat. Fracture Induced ElectromagneticRadiation[J]. J.Phys.D:Appl Phys.,2003,36:1620-1628.
    [185] A.Misra. On the Magnetism Produced in Unmagnetized Iron Specimens atBreakage under Tension[J].Indian Journal of Pure&Applied Physics,1973,11(6):419-421.
    [186] A.Misra. Electromagnetic Effect at Metallin Fracture[J].Nature,1975,254(3):133-134.
    [187] B.Srilashmi, A.Misra. Electromagnetic Radiation During Opening andShearing Modes of Fracture in Commercially Pure Aluminium at ElevatedTemoerature[J].Materials Science and Engineering A,2005,404:99-107.
    [188] Arbind Kumar, A.Misra. Shape Anisotropy of Magnetic Field GenerationDuring Tensile Fracture in Steel[J].Journal of Magnetism and Magnetic Materials,2005,285:71-78.
    [189] Z.D.Wang, K.Yao, B.Deng, K.Q.Ding. Theoretical Studies of MetalMagnetic Memory Technique on Magnetic Flux Leakage Signals[J].NDT&EInternational,2010,43:354-359.
    [190] Z.D.Wang, K.Yao, B.Deng, K.Q.Ding. Quantitative Study of MagneticMemory Signal Versus Local Stress Concentration[J]. NDT&E International,2010,43:513-518.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700