新型吸收式制冷循环构建理论及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展和人们生活质量的提高,制冷与采暖消耗的能源占全社会能耗的比例越来越大;另一方面,大量的工业余热、废热没有加以利用,造成严重浪费。因此,研究余热驱动且对环境友好的吸收式制冷系统受到人们越来越多的关注。
     为了提高吸收式制冷系统的竞争力,需要提高其性能。采用新型吸收式制冷循环是提高吸收式制冷系统性能的一种主要方式。传统上,构建新型制冷循环主要依赖研究人员的灵感,循环构建过程漫长而低效。考虑到制冷过程本身的特点,本文提出了制冷能力分析方法,并将其用于吸收式制冷循环性能的分析及新循环的构建。
     针对中低温变温余热利用不充分的技术难题,本文通过制冷能力理论分析,发现传统单效吸收式制冷循环吸收器出口溶液具有潜在扩散制冷能力,并发现可以通过改变传统单效吸收式制冷循环吸收器出口溶液的理论终态温度,以实现将潜在制冷能力转化为现实扩散制冷能力。在上述研究思路突破的基础上,构建了一种结构形式简单、能高效利用该类热源的新型吸收式制冷循环,并进行了详细的理论研究。理论研究结果显示,在所研究的工况范围内,新循环单位质量热源流体的制冷量比传统单效循环高20%以上。
     针对低温余热难以高效利用的技术难题,本文以制冷能力分析方法为基础,通过合理利用或者改变溶液的现实扩散制冷能力,根据不同工况的需求,分别构建了两个新型O.x效吸收式制冷循环。理论研究表明:新构建的循环比传统循环具有更高的效率,这对于低温热源的高效利用具有重要的意义。
     针对中温余热难以高效利用的技术难题,本文以制冷能力分析方法为基础,分别通过改变吸收器进口溶液的制冷剂质量分数和吸收器出口溶液理论终态温度以改变溶液现实扩散制冷能力的方式,构建了两个1.x效吸收式制冷循环。理论研究表明,在所研究工况范围内,新提出的1.x效吸收式制冷循环的COP比传统单效循环可以提高20%左右。
     为了验证所提出的新循环及其所采用的理论模型,本文设计并搭建了1.x效喷射吸收复合制冷循环实验装置。实验研究表明,理论模拟结果与实验结果符合较好。当蒸发温度为5℃、吸收温度和冷凝温度为40℃、发生温度为135.3℃的时候,新循环的COP比传统单效循环的COP提高24%左右,当发生温度为127℃、冷凝温度和吸收温度为40℃、蒸发温度为10℃时,新循环的COP能达到1,比传统单效循环COP高30%左右,从而在实验上验证了新循环具有比传统循环更高的效率。
With economic development and improvement of people's life quality, the energy consumed by the refrigeration and heating makes up a growing percentage of the total energy consumed by the whole society; On the other hand, a lot of industrial waste heat has not been utilized. This leads to the researches on absorption refrigeration systems which can be driven by waste heat and are friendly to environment have attracted more and more attentions.
     The competitive power of absorption refrigeration systems can be improved by improving their performance. Using the novel absorption refrigeration cycles is one of the most important methods to improve their performance. Conventionally, constructing the novel absorption refrigeration cycles mainly depends on the talent of the researchers. It would take a long time and be not efficient. Considering the characteristic of the process of the cooling, this paper proposes a new method named as cooling availability and uses it to analyze the absorption refrigeration cycles and construct novel absorption refrigeration cycles.
     For the technical problem of that variable-temperature waste heat at medium-low temperature are not made full use, this paper finds that there are potential diffusion cooling availability which belong to the solution out from the absorber of conventional single effect cycle. The potential diffusion cooling availability can be converted to real diffusion cooling availability by decreasing the equivalent surrounding temperature of the solution. Based on the above breakthrough of research approach, a new novel absorption refrigeration cycle with simple structure is constructed in this paper. This cycle can make efficient use of the variable-temperature waste heat. Then the detail theoretical analysis on the new cycle is presented. Simulation results show that the cooling per unit mass of the heating fluid of the new cycle is always20%higher than that of conventional single effect cycle at all simulated working conditions.
     For the technical problem of that it is difficult to make efficient use of the waste heat at low temperature, this paper constructs two new novel0.x effect absorption refrigeration cycles based on cooling availability analysis method by making rational use of the real diffusion cooling availability of the solution or changing the real diffusion cooling availability to match different working conditions. The simulation results show that the performance of the new cycles are better than that of conventional cycles at most simulated working conditions. This is very important to make efficient use of the waste heat at low temperature.
     For the technical problem of that it is difficult to make efficient use of the waste heat at medium temperature, this paper constructs two novel1.x effect absorption refrigeration cycles based on cooling availability analysis method by changing the real diffusion cooling availability of the solution by changing the concentration of the solution into absorber or ideal absorption temperature of the solution out from absorber respectively. The simulation results show that the COP of the1.x effect absorption refrigeration cycles is20%higher than that of conventional single effect cycle at some simulated working conditions.
     To validate the performance of the proposed new cycles and theory model used in this paper, an experimental system of the ejector-absorption combined refrigeration cycle based on conventional double effect absorption refrigeration cyccle is designed and built.The ejector-absorption combined refrigeration cycle is one type of1.x effect absorption refrigeration cycle proposed in this paper. The experimental research shows that the experimental results coincide well with the simulation results. What is more, when evaporation temperature is5℃, absorption temperature and condensation temperature are40℃, if the generation temperature reaches to135.3℃, the COP of the new cycle is about0.9and24%higher than that of conventional single effect cycle, when generation temperature is127℃, absorption temperature and condensation temperature are40℃, if the evaporation temperature reaches to10℃, the COP of the ejector-absorption combined refrigeration system is about1and30%higher than that of conventional single effect cycle. Then the performance of the constructed new cycles being better than that of conventional cycle is proved by experiment.
引文
[1]关于加强制冷空调领域节能环保共性科学技术问题研究的建议[R].中国科学院院士咨询报告,北京:2009.
    [2]Alefeld G, Rademacher R. Heat conversion systems[M]. CRC PressI Llc,1994.
    [3]Srikhirin P, Aphornratana S, Chungpaibulpatana S. A review of absorption refrigeration technologies[J]. Renewable and sustainable energy reviews,2001,5(4):343-372.
    [4]Radermacher R, Klein S A. Absorption chillers and heat pumps[M]. CRC PressI Llc,1996.
    [5]陈曙辉,陈光明,郑飞.吸收式制冷工质的发展[J].制冷学报,1998,(2):45-52.
    [6]徐士鸣.吸收式制冷循环及制冷工质研究进展(Ⅱ)一新型吸收式制冷工质系[J].流体机械,1999,27(3):52-57.
    [7]Sun J, Fu L, Zhang S. A review of working fluids of absorption cycles[J]. Renewable and Sustainable Energy Reviews,2012,16(4):1899-1906.
    [8]Ziegler F, Riesch P. Absorption cycles. A review with regard to energetic efficiency[J]. Heat Recovery Systems and CHP,1993,13(2):147-159.
    [9]Kang Y T, Kunugi Y, Kashiwagi T. Review of advanced absorption cycles:performance improvement and temperature lift enhancement [J]. International journal of refrigeration, 2000,23(5):388-401.
    [10]陈光明,何一坚.中国吸收制冷研究最新进展[C].2007年浙江省暖通空调动力学术年会论文集.2007:5-18.
    [11]Balamurugan P, Mani A. Experimental studies on heat and mass transfer in tubular generator for R134a-DMF absorption refrigeration system[J]. International Journal of Thermal Sciences,2012.
    [12]Lee S, Bohra L K, Garimella S, et al. Measurement of absorption rates in horizontal-tube falling-film ammonia-water absorbers[J]. International Journal of Refrigeration,2012, 35(3):613-632.
    [13]Gutierrez-Urueta G, Rodriguez P, Ziegler F, et al. Extension of the characteristic equation to absorption chillers with adiabatic absorbers[J]. International Journal of Refrigeration, 2012,35(3):709-718.
    [14]Gosney W.B. Principle of refrigeration[M]. Cambridge University Press,1982.
    [15]高田秋一[日]著,耿慧彬,戴永庆,郑玉清等译.吸收式制冷机[M].北京:机械工业出版社,1985.
    [16]Chinnappa J C V. Experimental study of the intermittent vapour absorption refrigeration cycle employing the refrigerant-absorbent systems of ammonia water and ammonia lithium nitrate[J]. Solar Energy,1961,5(1):1-18.
    [17]Sargent S L, Beckman W A. Theoretical performance of an ammonia-sodium thiocyanate intermittent absorption refrigeration cycle[J]. Solar Energy,1968,12(2):137-146.
    [18]Swartman R K, Ha V, Swaminathan C. Comparison of ammonia-water and ammonia-sodium thiocyanate as the refrigerant-absorbent in a solar refrigeration system[J]. Solar Energy,1975,17(2):123-127.
    [19]Kaushik S C, Kumar R. Thermodynamic study of a two-stage vapour absorption refrigeration system using NH3 refrigerant with liquid/solid absorbents [J]. Energy Conversion and Management,1985,25(4):427-431.
    [20]Sun D W. Comparison of the performances of NH3-H2O, NH3-LiNO3 and NH3-NaSCN absorption refrigeration systems[J]. Energy conversion and management,1998,39(5): 357-368.
    [21]Antonopoulos K A, Rogdakis E D. Performance of solar-driven ammonia-lithium nitrate and ammonia-sodium thiocyanate absorption systems operating as coolers or heat pumps in Athens[J]. Applied Thermal Engineering,1996,16(2):127-147.
    [22]Crepinsek Z, Goricanec D, Krope J. Comparison of the performances of working fluids for absorption refrigeration systems[C]. The International Conference on Energy Planning, Energy Saving, Environmental Education.Canary Islands,Spain.2009,59-64.
    [23]Cerezo J, Best R, Romero R J. A study of a bubble absorber using a plate heat exchanger with NH3-H2O, NH3-LiNO3 and NH3-NaSCN[J]. Applied Thermal Engineering,2011, 31(11):1869-1876.
    [24]Wu W, Zhang X, Li X, Shi W, Wang B. Comparisons of different working pairs and cycles on the performance of absorption heat pump for heating and domestic hot water in cold regions[J]. Applied Thermal Engineering,2012,48(15):349-358.
    [25]Moreno-Quintanar G, Rivera W, Best R. Comparison of the experimental evaluation of a solar intermittent refrigeration system for ice production operating with the mixtures MH3/LiNO3 and NH3/LiNO3/H2O[J]. Renewable Energy,2012,38(1):62-68.
    [26]Oronel C, Amaris C, Valles M, Bourouis M. Experiments on the characteristics of saturated boiling heat transfer in a plate heat exchanger for ammonia/lithium nitrate and ammonia/(lithium nitrate+water)[C]. Thermal Issues in Emerging Technologies Theory and Applications (ThETA),2010 3rd International Conference on. IEEE,2010:217-225.
    [27]Zhu L, Gu J. Thermodynamic analysis of a novel thermal driven refrigeration system[J]. World Academy of Science, Engineering and Technology,2009,56:351-355.
    [28]Shiflett M B, Yokozeki A. Absorption cycle utilizing ionic liquid as working fluid:U.S. Patent Application 11/346,028[P].2006-2-2.
    [29]Shiflett M, Yokozeki A. Absorption Cycle Utilizing Ionic Liquid as Working Fluid: WIPO Patent 2006084262[P].2006-8-11.
    [30]Shiflett M, Yokozeki A. Absorption Cycle Utilizing Ionic Liquids and Water as Working Fluids:WIPO Patent 2007070607[P].2007-6-22
    [31]Yokozeki A, Shiflett M B. Vapor-liquid equilibria of ammonia+ionic liquid mixtures[J]. Applied Energy,2007,84(12):1258-1273.
    [32]Yokozeki A, Shiflett M B. Ammonia solubilities in room-temperature ionic liquids[J]. Industrial & engineering chemistry research,2007,46(5):1605-1610.
    [33]Shiflett M B, Yokozeki A. Absorption cycle utilizing ionic liquid as working fluid[C]. Proceedings of the 22nd IIR International Congress of Refrigeration; Beijing, China, August.2007:21-26.
    [34]Patil K R, Chaudhari S K, Katti S S. Thermodynamic design data for absorption heat transformers-part Ⅲ. Operating on water-lithium iodide [J]. Heat Recovery Systems and CHP,1991,11(5):361-369.
    [35]Won S H, Lee W Y. Thermodynamic design data for double effect absorption heat pump systems using water-lithium chloride-cooling[J]. Heat Recovery Systems and CHP,1991, 11(1):41-48.
    [36]Barragan Reyes R M, Gomez V M A, Garcia-Gutierrez A. Performance modelling of single and double absorption heat transformers[J]. Current Applied Physics,2010,10(2): S244-S248.
    [37]Stephan K, Schmitt M, Hebecker D, Bergmann T. Dynamics of a heat transformer working with the mixture NaOH-H2O[J]. International journal of refrigeration,1997, 20(7):483-495.
    [38]Iyoki S, Ohmori S, Uemura T. Heat capacities of the water-lithium bromide-lithium iodide system[J]. Journal of Chemical and Engineering Data,1990,35(3):317-320.
    [39]Iyoki S, Iwasaki S, Kuriyama Y, et al. Solubilities of the two ternary systems water+lithium bromide+lithium iodide and water+lithium chloride+lithium nitrate at various temperatures[J]. Journal of Chemical and Engineering Data,1993,38(3): 396-398.
    [40]Iyoki S, Yamanaka R, Uemura T. Physical and thermal properties of the water-lithium bromide-lithium nitrate system[J]. International journal of refrigeration,1993,16(3): 191-200.
    [41]Jian S, Lin F, Shigang Z. Performance calculation of single effect absorption heat pump using LiBr+LiNO3+H2O as working fluid[J]. Applied Thermal Engineering,2010,30(17): 2680-2684.
    [42]Adegoke C O, Gosney W B. Vapour pressure data for 2LiBr+ZnBr2-H2O solutions[J]. International Journal of Refrigeration,1991,14(1):39-45.
    [43]Adegoke C O. Solubility of the water-lithium-bromide-zinc-bromide combination[J]. International journal of refrigeration,1993,16(1):45-48.
    [44]Weil, S A. Correlation of the LiSCN-LiBr-H2O thermodynamic properties[C]. In: Symposium on Absorption Airconditioning Systems, Institute of Gas Technology. Chicago, American.1968:11-16.
    [45]Yoon J I, Kwon O K. Cycle analysis of air-cooled absorption chiller using a new working solution[J]. Energy,1999,24(9):795-809.
    [46]Saravanan R, Maiya M P. Thermodynamic comparison of water-based working fluid combinations for a vapour absorption refrigeration system[J]. Applied thermal engineering,1998,18(7):553-568.
    [47]Iyoki S, Uemura T. Performance characteristics of the water-lithium bromide-zinc chloride-calcium bromide absorption refrigerating machine, absorption heat pump and absorption heat transformer[J]. International journal of refrigeration,1990,13(3): 191-196.
    [48]Yoki S, Uemura T. Vapour pressure of the water-lithium bromide system and the water-lithium bromide-zinc bromide-lithium chloride system at high temperatures[J]. International journal of refrigeration,1989,12(5):278-282.
    [49]Ally M R. Computer simulation of absorption heat pump using aqueous lithium bromide and ternary nitrate mixtures[J]. NASA STI/Recon Technical Report N,1988,89:10249.
    [50]Lee H R, Koo K K, Jeong S, et al. Thermodynamic design data and performance evaluation of the water+lithium bromide+lithium iodide+lithium nitrate+lithium chloride system for absorption chiller[J]. Applied thermal engineering,2000,20(8):707-720.
    [51]Riffat S B, James S E, Wong C W. Experimental analysis of the absorption and desorption rates of HCOOK/H2O and LiBr/H2O[J]. International journal of energy research,1998,22(12):1099-1103.
    [52]Flamensbeck M, Summerer F. Riesch P, et al. A cost effective absorption chiller with plate heat exchangers using water and hydroxides[J]. Applied thermal engineering,1998, 18(6):413-425.
    [53]Romero R J, Rivera W, Pilatowsky I, et al. Comparison of the modeling of a solar absorption system for simultaneous cooling and heating operating with an aqueous ternary hydroxide and with water/lithium bromide[J]. Solar energy materials and solar cells,2001, 70(3):301-308.
    [54]De Lucas A, Donate M, Rodriguez J F. Vapour pressures, densities, and viscosities of the (water+lithium bromide+potassium acetate) system and (water+lithium bromide+sodium lactate) system[J]. The Journal of Chemical Thermodynamics,2006,38(2):123-129.
    [55]De Lucas A, Donate M, Rodriguez J F. Absorption of water vapor into new working fluids for absorption refrigeration systems[J]. Industrial & engineering chemistry research, 2007,46(1):345-350.
    [56]Yokozeki A, Shiflett M B. Water solubility in ionic liquids and application to absorption cycles[J]. Industrial & Engineering Chemistry Research,2010,49(19):9496-9503.
    [57]Anthony J L, Maginn E J, Brennecke J F. Solution thermodynamics of imidazolium-based ionic liquids and water[J]. The Journal of Physical Chemistry B,2001, 105(44):10942-10949.
    [58]Jing L, Danxing Z, Lihua F, et al. Vapor Pressure Measurement of the Ternary Systems H2O+LiBr+[Dmim]Cl, H2O+LiBr+[Dmim]BF4, H2O+LiCl+[Dmim]Cl, and H2O+LiCl+[Dmim]BF4[J]. Journal of Chemical & Engineering Data,2010,56(1): 97-101.
    [59]Saravanan R, Maiya M P. Influence of thermodynamic and thermophysical properties of water-based working fluids for bubble pump operated vapour absorption refrigerator[J]. Energy conversion and management,1999,40(8):845-860.
    [60]Srinivas G, Sekar S, Saravanan R, et al. Studies on a water-based. absorption heat transformer for desalination using MED[J]. Desalination and Water Treatment,2009, 1(1-3):75-81.
    [61]Sneader W. Drug discovery:a history [M]. Chichester, England, John Wiley and Sons, 2005.
    [62]Zellhoefer G. F. Solubility of halogenated hydrocarbon refrigerants in organic solvents[J]. Industrial and Engineering Chemistry,1937,29(5):548-551.
    [63]Copley M J, Zellhoefer G F, Marvel C.S. Hydrogen bonds involving the C-H link. IV. The effect of solvent association on solubility[J]. Journal of American Chemistry Society, 1938,60(11):2666-2673.
    [64]Zellhoefer G. F, Copley M J, Marvel C S. Hydrogen bonds involving the C-H link. The solubility of haloforms in donor solvents[J]. Journal of American Chemistry Society,1938, 60(6):1337-1343.
    [65]Copley M J, Zellhoefer G. F, Marvel C S. Hydrogen bonds involving the C-H link. V. The solubility of methylene chloride in donor solvents[J]. Journal of American Chemistry Society,1938,60(11):2714-2716.
    [66]Zellhoefer G. F, Copley M J. The heat of mixing of haloforms and polyethylene glycol ethers [J]. Journal of American Chemistry Society,1938,60(6):1343-1345.
    [67]Copley M J, Holley C E. Hydrogen bonding by negatively substituted CH groups. VI. Acetylenic compounds[J]. Journal of American Chemistry Society,1939,61(6): 1599-1600.
    [68]Copley M J, Marvel C S, Ginsberg E. Hydrogen bonding by S-H.Ⅶ. Aryl mercaptans[J]. Journal of American Chemistry Society,1939,61(6):3161-3162.
    [69]Copley M J, Zellhoefer G F, Marvel C S. Hydrogen bonds involving the C-H link.Ⅷ. The solubility of completely halogenated methanes in organic solvents[J]. Journal of American Chemistry Society,1939,61(12):3550-3552.
    [70]Copley M J, Ginsberg E, Zellhoefer G. F. Hydrogen bonding and the solubility of alcohols and amines in organic solvents.ⅩⅢ[J]. Journal of American Chemistry Society,1941, 63(1):254-256.
    [71]Albright L F, Doody T C, Buclez P C, Pluche C R. Solubility of refrigerants 11.21 and 22 in organic solvents containing an oxygen atom[J]. ASHRAE Transactions,1961,66: 423-433.
    [72]Dan P D, Murthy S S. A comparative thermcdynamic study of fluorocarbon refrigerant based vapour absorption heat pumps[J]. International Journal of Energy Research,1989, 13(1):1-21.
    [73]Kumar S, Prevost M, Bugarel R. Comparison of various working pairs for absorption refrigeration systems:application of R21 and R22 as refrigerants[J]. International journal of refrigeration,1991,14(5):304-310.
    [74]Jelinek M, Levy A, Borde I. The performance of a triple pressure level absorption cycle (TPLAC) with working fluids based on the absorbent DMEU and the refrigerants R22, R32, R124, R125, R134a and R152a[J]. Applied Thermal Engineering,2008,28(11): 1551-1555.
    [75]Eiseman B J. Why refrigerant 22 should be favored for absorption refrigeration[J]. ASHRAE Journal,1959:45-51.
    [76]Ileri A. Yearly simulation of a solar-aided R22-DEGDME absorption heat pump system[J]. Solar energy,1995,55(4):255-265.
    [77]Agarwal R S, Agarwal A K, Bin Gadhi S M. Performance analysis of R22 DMF turbo absorption refrigeration system[J]. Energy Conversion and Management,1987,27(2): 211-217.
    [78]Fatouh M, Srinivasa Murthy S. Performance of an HCFC22-based vapour absorption refrigeration system[J]. International Journal of Refrigeration,1995,18(7):465-476.
    [79]陈光明,赵冠春.新型吸收系统工质对R22-DEF的H-T-X关系计算[J].工程热物理学报,1988,9(1):22-24.
    [80]Fatouh M, Murthy S S. HCFC22-based vapour absorption refrigeration system:Part Ⅰ: Parametric studies[J]. International journal of energy research,1996,20(4):297-312.
    [81]Fatouh M, Murthy S S. HCFC22-based vapour absorption refrigeration systems. Part Ⅱ: Influence of component effectiveness[J]. International journal of energy research,1996, 20(5):371-384.
    [82]Fatouh M, Murthy S S. HCFC22-based absorption cooling systems, part Ⅲ:Effects of different absorbers and condenser temperatures[J]. International journal of energy research,1996,20(6):483-494.
    [83]Jelinek M, Borde I. Single-and double-stage absorption cycles based on fluorocarbon refrigerants and organic absorbents[J]. Applied Thermal Engineering,1998,18(9-10): 765-771.
    [84]Borde I, Jelinek M, Daltrophe N C. Working fluids for an absorption system based on R124 (2-chloro-1,1,1,2,-tetrafluoroethane) and organic absorbents[J]. International journal of refrigeration,1997,20(4):256-266.
    [85]Borde I, Jelinek M, Daltrophe N C. Working substances for absorption heat pumps based on R32[C]. Proceedings of ⅩⅨ International Congress of Refrigeration. The Hague, Netherland,1995,80-87.
    [86]Borde I, Jelinek M, Daltrophe N C. Absorption system based on the refrigerant R134a[J]. International journal of refrigeration,1995,18(6):387-394.
    [87][Jelinek M, Borde I. Working fluids for absorption heat pumps based on R125 (pentafluoroethane) and organic absorbents[C]. International Sorption Heat Pumps Conference, Munich,1999,205-208.
    [88]Wahlstrom A, Vamling L. Solubility of HFC32, HFC125, HFC134a, HFC143a, and HFC 152a in a pentaerythritol tetrapentanoate ester[J]. Journal of Chemical & Engineering Data,1999,44(4):823-828.
    [89]Jelinek M, Levy A, Borde I. The performance of a triple pressure level absorption cycle (TPLAC) with working fluids based on the absorbent DMEU and the refrigerants R22, R32, R124, R125, R134a and R152a[J]. Applied Thermal Engineering,2008, (11-12): 1551-1555.
    [90]Levy A, Jelinek M, Borde I, et al. Performance of an advanced absorption cycle with R125 and different absorbents[J]. Energy,2004,29(12):2501-2515.
    [91]Songara A K, Fatouh M, Murthy S S. Thermodynamic studies on HFC134a-DMA double effect and cascaded absorption refrigeration systems[J]. International journal of energy research,1998,22(7):603-614.
    [92]Arivazhagan S, Murugesan S N, Saravanan R, et al. Simulation studies on R134a-DMAC based half effect absorption cold storage systems[J]. Energy conversion and management, 2005,46(11):1703-1713.
    [93]Tharves Mohideen S, Saravanan R, Renganarayanan S. Influence of absorber mass transfer effectiveness on performance of R134a-DMAC based single, double and half-effect absorption cooling systems[J]. International journal of energy technology and policy,2008,6(5):566-580.
    [94]Suresh M, Mani A. Heat and mass transfer studies on a compact bubble absorber in R134a-DMF solution based vapour absorption refrigeration system[J]. International Journal of Refrigeration,2012.
    [95]Yokozeki A. Theoretical performances of various refrigerant-absorbent pairs in a vapor-absorption refrigeration cycle by the use of equations of state[J]. Applied Energy, 2005,80(4):383-399.
    [96]陈光明,尹执中,王剑峰,郑飞,蒋浩波.使用非共沸混合制冷剂的吸收式制冷剂特性[J].制冷学报,1998,19(1):1-5.
    [97]陈曙辉,郑飞,王剑峰,陈光明.HCFC22替代工质的吸收制冷特性[J].工程热物理学报,1999,20(4):410-412.
    [98]陈曙辉,陈光明,郑飞,张红线.采用替代工质的吸收式制冷运行特性[J].低温工程,1999,112(6):22-30.
    [99]高婉丽,赵小明,刘志刚.HFC32+HFC227ea/DMF吸收式制冷循环热力性能分析[J].工程热物理学报,2010,31(4):545-548.
    [100]Zhong Y, Chen G. Theoretical and experimental study of a new absorption refrigeration cycle[J]. ASHRAE Transactions,2004,110:508-514.
    [101]He Y, Hong R, Chen G. Heat driven refrigeration cycle at low temperatures[J]. Chinese Science Bulletin,2005,50(5):485-489.
    [102]He Y, Chen G. Experimental study on an absorption refrigeration system at low temperatures[J]. International journal of thermal sciences,2007,46(3):294-299.
    [103]高旭.基于深度冷冻的混合制冷剂吸收式制冷循环的理论与实验研究[D].博士学位论文.浙江大学,2011.
    [104]Shiflett M B, Yokozeki A. Solubility and diffusivity of hydrofluorocarbons in room temperature ionic liquids[J]. AIChE Journal,2006,52(3):1205-1219.
    [105]Shiflett M B, Harmer M A, Junk C P, et al. Solubility and diffusivity of difluoromethane in room-temperature ionic liquids[J]. Journal of Chemical & Engineering Data,2006, 51(2):483-495.
    [106]Shiflett M B, Yokozeki A. Solubility differences of halocarbon isomers in ionic liquid [emim][Tf2N][J]. Journal of Chemical & Engineering Data,2007,52(5):2007-2015.
    [107]Dong L, Zheng D, Wu X. Working Pair Selection of Compression and Absorption Hybrid Cycles through Predicting the Activity Coefficients of Hydrofluorocarbon+Ionic Liquid Systems by the UNIFAC Model[J]. Industrial & Engineering Chemistry Research, 2012,51(12):4741-4747.
    [108]Kim Y J, Kim S, Joshi Y K, et al. Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid[J]. Energy, 2012.
    [109]Aker J E, Squires R G, Albright L F. An evaluation of alcohol-salt mixtures as absorption refrigeration solutions[J]. ASHRAE Trans,1965,71(2):14.
    [110]Kaushik S C, Gandhi S M, Agarwal R S, et al. Computer simulation studies of A double effect generation absorption air conditioning system using water salt and alcohol salt mixtures[J]. International journal of energy research,1987,11(2):233-243.
    [111]Kaushik S C, Gadhi S M B, Agarwal R S, Kumar Y. Feasibility studies on an alcohol-salt mixture for absorption refrigeration systems[J]. Energy Conversion and Management,1991,31(5):459-469
    [112]lyoki S, Tanaka K, Uemura T. Theoretical performance analysis of absorption refrigerating machine, absorption heat-pump and absorption heat transformer using alcohol as working medium[J]. International Journal of Refrigeration,1994,17(3): 180-190.
    [113]Saravanan R, Maiya M P. Comparison of methanol based working fluid combinations for a bubble pump operated vapour absorption refrigerator[J]. International journal of energy research,1998,22(8):715-731.
    [114]Safarov J T. Study of thermodynamic properties of binary solutions of lithium bromide or lithium chloride with methanol[J]. Fluid phase equilibria,2005,236(1):87-95.
    [115]Safarov J T. Vapor pressure of heat transfer fluids of absorption refrigeration machines and heat pumps:Binary solutions of lithium nitrate with methanol[J]. The Journal of Chemical Thermodynamics,2005.37(12):1261-1267.
    [116]Safarov J T. Study of thermodynamic properties of binary solutions of lithium bromide or lithium chloride with methanol[J]. Fluid phase equilibria,2005,236(1):87-95.
    [117]Lopez E R, Garcia J, Coronas A, et al. Experimental and predicted excess enthalpies of the working pairs (methanol or trifluoroethanol+polyglycol ethers) for absorption cycles[J]. Fluid phase equilibria,1997,133(1):229-238.
    [118]Lopez E R, Garcia J, Fernandez J. Excess properties of some methanol+amide systems proposed as working fluids for absorption machines[J]. Journal of Chemical & Engineering Data,1999,44(2):309-313.
    [119]Safarov J T. Vapor Pressure Measurements of Binary Solutions of CaCl2 with Methanol and Ethanol at T=(298.15 to 323.15) K Using a Static Method[J]. Journal of Chemical & Engineering Data,2006,51(2):360-365.
    [120]Verevkin S, Safarov J, Bich E, et al. Study of vapour pressure of lithium nitrate solutions in ethanol[J]. The Journal of Chemical Thermodynamics,2006,38(5):611-616.
    [121]Li M Y, Wang L S, Wang K P, et al. Experimental measurement and modeling of solubility of LiBr and LiNO3 in methanol, ethanol,1-propanol,2-propanol and 1-butanol[J]. Fluid Phase Equilibria,2011,307(1):104-109.
    [122]Safarov J T. Investigation of Vapor Pressure of Binary Solutions of ZnCl2+C2H5OH at T=(298.15 to 323.15) K using a Static Method[J]. Zeitschrift fur Physikalische Chemie, 2005,219(10/2005):1421-1429.
    [123]Iyoki S, Koshiyama H, Uemura T. Studies on the Ethanol-Lithium Iodide Absorption Refrigerating Machine-Measurements of Physical and Thermal Properties [J].1982.
    [124]Nowaczyk U, Steimle F. Thermophysical properties of new working fluid system for absorption processes[J]. International Journal of Refrigeration,1992,15(1):10-15.
    [125]Boer D, Valles M, Coronas A. Performance of double effect absorption compression cycles for air-conditioning using methanol-TEGDME and TFE-TEGDME systems as working pairs[J]. International journal of refrigeration,1998,21(7):542-555.
    [126]Medrano M, Bourouis M, Coronas A. Double-lift absorption refrigeration cycles driven by low-temperature heat sources using organic fluid mixtures as working pairs[J]. Applied energy,2001,68(2):173-185.
    [127]Genssle A, Stephan K. Analysis of the process characteristics of an absorption heat transformer with compact heat exchangers and the mixture TFE-E181[J]. International journal of thermal sciences,2000,39(1):30-38.
    [128]Yin J, Shi L, Zhu M S, Han Lz. Performance analysis of an absorption heat transformer with different working fluid combinations[J]. Applied energy,2000,67(3):281-292.
    [129]尹娟,史琳,朱明善,韩礼钟.不同工质对吸收式变热器热力性能的影响[J].制冷学报.2000,21(3):19-24.
    [130]杨汉强,张晓冬,赵宗昌.TFE/NMP吸收式制冷机的(?)分析.化工学报,2002,53(4):384-389.
    [131]Xu S, Liu Y, Zhang L. Performance research of self regenerated absorption heat transformer cycle using TFE-NMP as working fluids[J]. International journal of refrigeration,2001,24(6):510-518.
    [132]刘艳丽,徐士鸣.摇摆状态下垂直管内TFE/NMP降膜吸收数值模拟[J].化工学报,2005,56(3):417-423.
    [133]刘艳丽,徐士鸣.摇摆状态下垂直管内TFE/NMP降膜吸收理论研究[J].制冷学报.2004,25(1):9-14.
    [134]刘艳丽,徐士鸣,韩巍,王兵.摇摆状态下垂直管内TFE/NMP降膜吸收实验研究[J].大连理工学报.2004,44(1):65-69.
    [135]Coronas A, Valles M, Chaudhari S K, Patil K R. Absorption heat pump with the TFE-TEGDME and TFE-H2O-TEGDME systems[J]. Applied Thermal Engineering,1996, 16(4):335-345.
    [136]Bourouis M, Nogues M, Boer D, Coronas A. Industrial heat recovery by absorption/compression heat pump using TFE-H2O-TEGDME working mixture[J]. Applied thermal engineering,2000,20(4):355-369.
    [137]张莉,徐士鸣.TFE-H2O-TEGDME三元工质热物性参数表达式[J].大连理工大学学报,2005,45(4):631-536.
    [138]王建召,郑丹星.以TFE-[BMIm][Br]为工质对的吸收式制冷循环性能分析[J].工程热物理学报,2008,29(11):1814-1816
    [139]Kim K S, Shin B K, Lee H. et al. Refractive index and heat capacity of 1-butyl-3-methylimidazolium bromide and 1-butyl-3-methylimidazolium tetrafluoroborate, and vapor pressure of binary systems for 1-butyl-3-methylimidazolium bromide+trifluoroethanol and 1-butyl-3-methylimidazolium tetrafluoroborate+trifluoroethanol[J]. Fluid Phase Equilibria,2004,218(2):215-220.
    [140]梁世强,赵杰,王立,淮秀兰.离子液体型新吸收式工质对吸收式制冷循环[J].工程热物理学报,2010,31(10):1627-1630.
    [141]赵杰,梁世强,王立,淮秀兰.[bmim] Cl-CH3OH作为吸收式制冷工质对潜能的分析[J].化工学报.2009,60(12):2957-2962.
    [142]Fukuta M, Yanagisawa T, Iwata H, et al. Performance of compression/absorption hybrid refrigeration cycle with propane/mineral oil combination[J]. International journal of refrigeration,2002,25(7):907-915.
    [143]Al-Dadah R K, Jackson G, Rezk A. Solar powered vapor absorption system using propane and alkylated benzene AB300 oil[J]. Applied Thermal Engineering,2011,31(11): 1936-1942.
    [144]Chekir N, Bellagi A. Performance improvement of a butane/octane absorption chiller[J]. Energy,2011,36(10):6278-6284.
    [145]Ben Ezzine N, Garma R, Bourouis M, et al. Experimental studies on bubble pump operated diffusion absorption machine based on light hydrocarbons for solar cooling[J]. Renewable Energy,2010,35(2):464-470.
    [146]Alonso D, Cachot T, Hornut J M. Performance simulation of an absorption heat transformer operating with partially miscible mixtures[J]. Applied energy,2002,72(3): 583-597.
    [147]Alonso D, Cachot T, Hornut J M. Experimental study of an innovative absorption heat transformer using partially miscible working mixtures[J]. International journal of thermal sciences,2003,42(6):631-638.
    [148]Uemura T, Higuchi Y, Saito Y, et al. Studies on the MonoMethylamine-Water Absorption Refrigerating Machine[J]. Refrigeration,1967,42(471):2-13.
    [149]Romero R J, Guillen L, Pilatowsky I. Monomethylamine-water vapour absorption refrigeration system[J]. Applied thermal engineering,2005,25(5):867-876.
    [150]Pilatowsky I, Rivera W, Romero R J. Thermodynamic analysis of monomethylamine-water solutions in a single-stage solar absorption refrigeration cycle at low generator temperatures[J]. Solar energy materials and solar cells,2001,70(3): 287-300.
    [151]Tyagi K P. Methylamine-sodium thiocyanate vapour absorption refrigeration[J]. Heat Recovery Systems and CHP,1992,12(3):283-287.
    [152]Blanchard L A, Hancu D, Beckman E J, et al. Green processing using ionic liquids and CO2[J]. Nature,1999,399(6731):28-29.
    [153]Shiflett M B, Yokozeki A. Solubilities and diffusivities of carbon dioxide in ionic liquids:[bmim][PF6] and [bmim][BF4][J]. Industrial & engineering chemistry research, 2005,44(12):4453-4464.
    [154]黄宇,杨琴,罗二仓,胡剑英.一种二氧化碳-离子液体吸收式制冷系统性能的分析研究[J].制冷技术.2009,37(6):47-52.
    [155]杨琴,黄宇,罗二仓,胡剑英.以跨临界CO2-离子液体[bmim] PF6为工质对的吸收式制冷循环性能分析.低温工程,2009,169(3):5-10.
    [156]Cai W, Sen M, Paolucci S. Dynamic modeling of an absorption refrigeration system using ionic liquids[C]. Proceedings of 2007 International Mechanical Engineering Congress and Exposition, Seattle, WA.2007.
    [157]Martin A, Bermejo M D. Thermodynamic analysis of absorption refrigeration cycles using ionic liquid+supercritical CO2 pairs[J]. The Journal of Supercritical Fluids,2010, 55(2):852-859.
    [158]Muldoon M J, Aki S N V K, Anderson J L, et al. Improving carbon dioxide solubility in ionic liquids[J]. The Journal of Physical Chemistry B,2007,111(30):9001-9009.
    [159]黄乃宝.溴冷机中碳钢、铜及其合金的腐蚀机理研究[D].大连理工大学,2003.
    [160]黄乃宝,梁成浩.溴化锂吸收式制冷机中铜及其合金的缓蚀剂研究发展[J].制冷技术,2002,22(4):28-30.
    [161]梁成浩,郭建伟.溴化锂吸收式制冷机中缓蚀剂的应用与发展[J].腐蚀与防护,2000,21(5):206-209.
    [162]扈显琦.溴化锂吸收式制冷机的新型缓蚀剂研究[D].大连理工大学,2006.
    [163]Reiner R H, Zaltash A. Evaluation of ternary ammonia-water fluids for GAX and regenerative absorption cycles[J]. ORNL/CF-91/263, ORNL, Oak Ridge, Tennessee, 1991.
    [164]Reiner R H, Zaltash A. Corrosion Screening of Potential Fluids for Ammonia/Water Absorption Cycles[J]. ORNL/CF-92/41, Oak Ridge Natl. Lab, Oak Ridge, Tennessee, 1992.
    [165]Reiner R H, Zaltash A. Densities and viscosities of ternary ammonia/water fluids[R]. Oak Ridge National Lab, TN (United States),1993.
    [166]Balamuru V G, Ibrahim O M, Barnett S M. Simulation of ternary ammonia-water-salt absorption refrigeration cycles[J]. International journal of refrigeration,2000,23(1): 31-42.
    [167]Steiu S, Salavera D, Bruno J C, et al. A basis for the development of new ammonia-water-sodium hydroxide absorption chillers[J]. International Journal of Refrigeration,2009,32(4):577-587.
    [168]孙韶华,吴裕远,李跃智等.NH3-H2O-LiBr三元混合溶液性能的实验研究[C].第六届全国低温工程与制冷工程大会会议论文集,2003,410-413.
    [169]陈燕,吴裕远,孙韶华等.NH3-H2O-LiBr三元溶液体系气液相平衡特性实验研究[J].上海交通大学学报,2005,39(8):1218-1221.
    [170]Ahlby L, Hodgett D, Radermacher R. NH3/H2O-LiBr as working fluid for the compression/absorption cycle[J]. International journal of refrigeration,1993,16(4): 265-273.
    [171]禹志强,吴铁晖,吴裕远等.氨-水和氨-水-澳化锂在吸收式制冷机中的对比实验研究[J].西安交通大学学报,2009,43(3):46-49,69.
    [172]何树青,吴铁晖,吴裕远等.新型无溶液泵氨水吸收式制冷空调系统及其性能分析[J].西安交通大学学报,2007,41(9):1062-1065.
    [173]王永涛,吴裕远,禹志强等.NH3-H2O-LiBr吸收式制冷机吸收和蒸发性能的实验研究[J].西安交通大学学报,2011,45(3):40-43,116.
    [174]Daiguji H, Hihara E, Saito T. Mechanism of absorption enhancement by surfactant [J]. International journal of heat and mass transfer,1997,40(8):1743-1752.
    [175]Kang Y T, Kashiwagi T. Heat transfer enhancement by Marangoni convection in the NH3-H2O absorption process[J]. International Journal of Refrigeration,2002,25(6): 780-788.
    [176]Saidur R, Leong K Y, Mohammad H A. A review on applications and challenges of nanofluids[J]. Renewable and Sustainable Energy Reviews,2011,15(3):1646-1668.
    [177]Lee J K, Koo J, Hong H, et al. The effects of nanoparticles on absorption heat and mass transfer performance in NH3/H2O binary nanofluids[J]. International Journal of Refrigeration,2010,33(2):269-275.
    [178]洪大良,唐黎明,陈光明等.一个高效的两级吸收式制冷新循环[J].太阳能学报,2010,31(9):1141-1145.
    [179]CAC, Compound Absorption Chiller project performed for DOE by Battelle Memorial Institute,1985.
    [180]万忠民,杜健嵘,舒水明等.新型太阳能降压吸收式制冷空调系统特性的理论分析[J].制冷学报,2007,28(1):49-53.
    [181]万忠民,舒水明,胡兴华等.新型高效太阳能吸收式制冷循环[J].华中科技大学学报(自然科学版),2006,34(9):85-87.
    [182]Mamiya G. Multi-stage absorption refrigeration:U.S. Patent 3,742,728[P].1973-7-3.
    [183]Venegas M, Izquierdo M, De Vega M, et al. Thermodynamic study of multistage absorption cycles using low temperature heat[J]. International journal of energy research, 2002,26(8):775-791.
    [184]Mostofizadeh C, Kulick C. Use of a new type of heat transformer in process industry[J]. Applied thermal engineering,1998,18(9):857-874.
    [185]尹娟,史琳,朱明善等.二次提升型吸收式变热器热力性能分析[J].清华大学学报(自然科学版),2000,40(10):88-91.
    [186]Zhao Z, Zhou F, Zhang X, Li S. The thermodynamic performance of a new solution cycle in double absorption heat transformer using water/lithium bromide as the working fluids[J]. International journal of refrigeration,2003,26(3):315-320.
    [187]Wang J F, Gao G C, Chen G M. An improved absorption refrigeration cycle driven by unsteady thermal sources below 100℃[J]. International Journal of Energy Research,2000, 24(7):633-640.
    [188]王剑锋,高广春,陈光明等.低品位不稳定热源驱动的吸收制冷循环研究[J].低温工程,1999,21(2):24-38.
    [189]陈光明,张绍志,王勤.深度制冷方法及其装置[P].中国发明专利,ZL02110664.9,2002.
    [190]Zhong Y, Chen G. Theoretical and experimental study of a new absorption refrigeration cycle[J]. ASHRAE Transactions,2004,110:508-514.
    [191]He Y, Hong R, Chen G. Heat driven refrigeration cycle at low temperatures[J]. Chinese Science Bulletin,2005,50(5):485-489.
    [192]He Y, Chen G. Experimental study on an absorption refrigeration system at low temperatures[J]. International journal of thermal sciences,2007,46(3):294-299.
    [193]何一坚,高旭,陈光明,唐黎明.串联型双吸收器低温制冷机[P].中国发明专利,ZL201110008893.0,2011.
    [194]何一坚,高旭,陈光明,唐黎明.双吸收器低温制冷机[P].中国发明专利,ZL201110009170.2,2011.
    [195]Tozer R M, James R W. Fundamental thermodynamics of ideal absorption cycles[J]. International journal of refrigeration,1997,20(2):120-135.
    [196]Vliet G C, Lawson M B, Lithgow R A. Water-lithium bromide double-effect absorption cooling cycle analysis. ASHRAE Trans (88)1982 811-822.
    [197]Vliet G C, Lawson M B, Lithgow R A. Water-lithium bromide double-effect absorption cooling analysis[R]. Texas Univ, Austin (USA). Center for Energy Studies,1980.
    [198]Arun M B, Maiya M P, Murthy S S. Performance comparison of double-effect parallel-flow and series flow water-lithium bromide absorption systems[J]. Applied thermal engineering,2001,21(12):1273-1279.
    [199]张宝怀,王酣愚,陈亚平等.双效复叠氨水吸收式制冷循环与传统循环特性比较[C].中国工程热物理学会第十一届年会论文集工程热力学与能源利用(下册):540-543.
    [200]张宝怀,陈亚平,施明恒等.双效氨水吸收式制冷循环的性能[J].化工学报,2007,58(4):829-834.
    [201]徐士鸣.中压双效复叠吸收式制冷循环研究[J].大连理工大学学报,2000,40(3):309-312.
    [202]Ezzine N B, Barhoumi M, Mejbri K, et al. Solar cooling with the absorption principle: first and Second Law analysis of an ammonia-water double-generator absorption chiller[J]. Desalination,2004,168:137-144.
    [203]Hanna W T, Wilkinson W H, Ball D A, et al. The Battelle Dual-Cycle Absorption Heat Pump[C]. Directly Fired Heat Pumps Conference, Bristol, England.1984.
    [204]王珍涛,徐士鸣,陈石等.两级复合吸收式制冷循环研究[J].流体机械,2001,29(8):47-50.
    [205]Grossman G, Wilk M, DeVault R C. Simulation and performance analysis·of triple-effect absorption cycles[R]. Oak Ridge National Lab, TN (United States),1993.
    [206]Kaita Y. Simulation results of triple-effect absorption cycles[J]. International journal of refrigeration,2002,25(7):999-1007.
    [207]郑飞,陈光明,王剑锋等.三效溴化锂吸收制冷循环的参数优化[J].新能源,2000,22(6):13-17.
    [208]郑飞,陈光明,王剑锋等.三效吸收制冷循环的性能分析和优化[J].工程热物理学报,2000,21(3):281-284.
    [209]戴永庆,耿惠彬,陆震,姚国琦,王禾.溴化锂吸收式制冷技术及应用[M].北京:机械工业出版社,1996.44-47,52.
    [210]王建召.吸收式循环构型及含咪唑类离子液体工质对的研究[D].北京化工大学,2009.
    [211]Grossman G, Zaltash A, DeVault R C. Simulation and performance analysis of a 4-effect lithium bromide-water absorption chiller[R]. Oak Ridge National Lab, TN (United States),1995.
    [212]DeVault R C, Biermann W J. Seven-effect absorption refrigeration:U.S. Patent 4,827,728[P].1989-5-9.
    [213]Erickson D C. One-and-a-half effect absorption cycle:U.S. Patent 5,016,444[P]. 1991-5-21.
    [214]Inoue N. Static characteristics of various absorption cycle[J]. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers,2011,20:297-308.
    [215]Wang J, Zheng D. Performance of one and a half-effect absorption cooling cycle of H2O/LiBr system[J]. Energy Conversion and Management,2009,50(12):3087-3095.
    [216]Altenkirch E,Tenckhoff B. Absorption kaelte maschine Zur kontinuierlichen erzeugung von kaelte und waerme oder acuh von arbeit,German Patent 278076,1911.
    [217]Phillips B A. Development of a High-Efficiency, Gas-Fired, Absorption Heat Pump for Residential and Small-Commercial Applications:Phase Ⅰ Final Report--Analysis of Advanced Cycles and Selection of the Preferred Cycle[J]. ORNL/Sub/86-24610/1, Oak Ridge Natl. Lab, Oak Ridge, Tennessee,1990.
    [218]Zheng D, Deng W, Jin H, et al. α-h Diagram and principle of exergy coupling of GAX cycle[J]. Applied thermal engineering,2007,27(11):1771-1778.
    [219]郑丹星,邓文宇,金红光等.GAX循环的a-h图热力学分析[J].工程热物理学报,2005,26(3):369-372.
    [220]Jawahar C P, Saravanan R. Generator absorber heat exchange based absorption cycle-A review[J]. Renewable and Sustainable Energy Reviews,2010,14(8):2372-2382.
    [221]Herold K E, He X, Erickson D C, et al. The branched GAX absorption heat pump cycle[C]. Proceedings of Absorption Heat Pump Conference, Tokyo, Japan,1991, 127-132.
    [222]Zaltash A, Grossman G. Simulation and performance analysis of basic GAX and advanced GAX cycles with ammonia water and ammonia water LiBr absorption fluids[C[. In:Proceedings of the international absorption heat pump conference; 1996.
    [223]Staicovici M D. Polybranched regenerative GAX cooling cycles[J]. International journal of refrigeration,1995,18(5):318-329.
    [224]Rane M V, Erickson D C. Advanced absorption cycle:vapor exchange GAX[C]. The International Absorption Heat Pump Conference, New Orleans, LA, USA,1994,25-32.
    [225]Sabir H M, Chretienneau R, ElHag Y B M. Analytical study of a novel GAX-R heat driven refrigeration cycle[J]. Applied thermal engineering,2004,24(14):2083-2099.
    [226]Kang Y T, Akisawa A, Kashiwagi T. An advanced GAX cycle for waste heat recovery, WGAX cycle. Applied Thermal Engineering 1999; 19(9):933-47.
    [227]杜垲,廖健敏.氨水吸收式制冷GAX循环中临界热源温度的理论分析[J].东南大学学报(自然科学版),2005,35(5):766-768.
    [228]陈光明,洪大良,唐黎明,何一坚.一种高效GAX吸收式制冷装置[P].中国发明专利,ZL201010556630.9,2009.
    [229]Erickson D C. Evaluation of double-lift cycles for waste heat powered refrigeration[C]. Proceedings of the International Absorption Heat pump Conference, Canada,1996, 161-168.
    [230]Ziegler F. Recent developments and future prospects of sorption heat pump systems[J]. International journal of thermal sciences,1999,38(3):191-208.
    [231]Costello F A. Combined absorption and vapor-compression refrigeration system:U.S. Patent 4,031,712[P].1977-6-28.
    [232]Ventas R, Lecuona A, Zacarias A, et al. Ammonia-lithium nitrate absorption chiller with an integrated low-pressure compression booster cycle for low driving temperatures[J]. Applied Thermal Engineering,2010,30(11):1351-1359.
    [233]Zheng D, Meng X. Ultimate refrigerating conditions, behavior turning and a thermodynamic analysis for absorption-compression hybrid refrigeration cycle[J]. Energy Conversion and Management,2012,56:166-174.
    [234]孟学林,郑丹星,潘春晖.吸收-压缩复合制冷循环能量耦合机理[C].2011年中国工程热物理学会工程热力学与能源利用学术会议论文集,武汉,中国,2011,1-7.
    [235]Malewski W, Holldorff G. Absorption refrigeration system with booster compressor and extraction of a partial vapor flow at an intermediate pressure:U.S. Patent 4,505,133[P]. 1985-3-19.
    [236]胡兴华,舒水明.新型溴化锂增压吸收式制冷循环[J].华中科技大学学报(自然科学版),2002,30(7):11-13.
    [237]Kim J S, Ziegler F, Lee H. Simulation of the compressor-assisted triple-effect H2O/LiBr absorption cooling cycles[J]. Applied thermal engineering,2002,22(3):295-308.
    [238]Kashiwagi T, Akisawa A, Kang Y T, et al. Next generation technologies for advanced energy conversion systems[C]. Proceedings of IAMS Int. Seminar on Thermal and Fluid Engineering for Advanced Energy and Systems, Kasuga, Japan,1997,1-12.
    [239]Kang Y T, Hong H, Park K S. Performance analysis of advanced hybrid GAX cycles: HGAX[J]. International journal of refrigeration,2004,27(4):442-448.
    [240]Ramesh Kumar A, Udayakumar M. Simulation studies on GAX absorption compression cooler[J]. Energy conversion and management,2007,48(9):2604-2610.
    [241]Rameshkumar A, Udayakumar M, Saravanan R. Energy analysis of a 1-ton generator-absorber-exchange absorption-compression (GAXAC) cooler[j]. ASHRAE Transactions,2009,115(1):405-414.
    [242]Costello F A. A hybrid solar air conditioning system[J]. Solar Energy,1976,18:-149-152.
    [243]陈光明,冯仰浦,王剑锋,飞原英治.一个用太阳能驱动的新型吸收制冷循环[J].低温工程,1999,(1):50-54.
    [244]Chen G, Hihara E. A new absorption refrigeration cycle using solar energy[J]. Solar Energy,1999,66(6):479-482.
    [245]曹毅然,张小松,鲍鹤灵.太阳能驱动的压缩吸收复合式制冷循环分析[J].流体机械,2002,30(10):51-53.
    [246]Garimella S, Brown A M, Nagavarapu A K. Waste heat driven absorption/vapor-compression cascade refrigeration system for megawatt scale, high-flux, low-temperature cooling[J]. International Journal of Refrigeration,2011,34(8): 1776-1785.
    [247]Fernandez-Seara J, Sieres J, Vazquez M. Compression-absorption cascade refrigeration system[J]. Applied thermal engineering,2006,26(5):502-512.
    [248]唐鹏武,陈光明,唐黎明等.一种新型吸收-压缩复合制冷循环模拟[J].低温工程,2011,23(4):21-26.
    [249]刘利华,唐黎明,陈光明等.新型吸收/蒸汽压缩复叠太阳能热泵系统实验研究[C].中国工程热物理学会工程热力学与能源利用学术年会论文集,哈尔滨,中国,2012,1-11.
    [250]陈光明,徐英杰,李大红等.自复叠吸收·压缩复合制冷系统实验研究[C].中国工程热物理学会工程热力学与能源利用学术年会论文集,哈尔滨,中国,2012,1-8.
    [251]Stoecker, W.F, Jones, J.W,1982. Refrigeration and Air Conditioning, second ed. McGraw-Hill Inc, New York.
    [252]Seyfouri Z, Ameri M. Analysis of integrated compression-absorption refrigeration systems powered by a microturbine[J]. International Journal of Refrigeration,2012,35(6): 1639-1646.
    [253]Chunnanond K, Aphornratana S. Ejectors:applications in refrigeration technology[J]. Renewable and sustainable energy reviews,2004,8(2):129-155.
    [254]Kuhlenschmidt D. Absorption refrigeration system with multiple generator stages:U.S. Patent 3,717,007[P].1973.
    [255]顾兆林,郁永章.吸收-喷射复合制冷循环特性分析[C].第七届全国余热制冷与热泵技术学术会议,合肥,中国,1994,130-135
    [256]Sun D W, Eames I W, Aphornratana S. Evaluation of a novel combined ejector-absorption refrigeration cycle-I:computer simulation[J]. International journal of refrigeration,1996, 19(3):172-180.
    [257]顾兆林,冯诗愚,郁永章.LiBr-H2O吸收一喷射复合制玲循环流程的性能研究[J].西安交通大学学报.1998,32(1):61-64.
    [258]王彦峰,顾兆林,冯诗愚,李云,冯霄.LiBr-HiO吸收-喷射复合制冷循环流程的热力参数研究[J].西安交通大学学报.1999,33(8):69-73.
    [259]Jiang L, Gu Z, Feng X, et al. Thermo-economical analysis between new absorption-ejector hybrid refrigeration system and small double-effect absorption system[J]. Applied thermal engineering,2002,22(9):1027-1036.
    [260]Sozen A, Ozalp M. Solar-driven ejector-absorption cooling system[J]. Applied energy, 2005,80(1):97-113.
    [261]Shi L, Yin J, Wang X, et al. Study on a new ejection-absorption heat transformer[J]. Applied energy,2001,68(2):161-171.
    [262]Wu S, Eames I W. A novel absorption-recompression refrigeration c'ycle[J]. Applied thermal engineering,1998,18(11):1149-1157.
    [263]Eames I W, Wu S. A theoretical study of an innovative ejector powered absorption-recompression cycle refrigerator[J]. International journal of refrigeration, 2000,23(6):475-484.
    [264]Alexis G K, Rogdakis E D. Performance characteristics of two combined ejector-absorption cycles[J]. Applied thermal engineering,2002,22(1):97-106.
    [265]洪大良,陈光明,唐黎明,何一坚,邹云霞.一个带喷射器的两级吸收式制冷循环[C].中国工程热物理学会2010年工程热力学与能源利用学术会议论文集.南京,中国,2010,1-7.
    [266]石玉琪,洪大良,陈光明,唐黎明,何一坚,邹云霞.一个带喷射器的两级吸收式制冷循环[J].太阳能学报.录用.2013.
    [267]Vereda C, Ventas R, Lecuona A, et al. Study of an ejector-absorption refrigeration cycle with an adaptable ejector nozzle for different working conditions[J]. Applied energy,2012, 97:305-312.
    [268]姜周曙,王如竹,卢允庄等.吸附-吸收复叠式多效制冷循环研究[J].工程热物理学报, 2001,22(5):546-548.
    [269]姜周曙,王如竹,卢允庄等.吸附-吸收复叠式三效制冷循环[J].化工学报,2002,53(6):566-571.
    [270]杨国忠,王如竹,夏再忠等.耦合吸附吸收制冷系统设计及性能预测[C].中国工程热物理学会2004年工程热力学与能源利用学术会议论文集,北京,中国,2004,510-514.
    [271]杨国忠,王如竹,夏再忠等.耦合吸附吸收制冷系统设计及性能预测[J].工程热物理学报,2006,27(1):29-30.
    [272]周广英.耦合吸附吸收制冷循环模拟及实验研究[D].华南理工大学,2002.
    [273]Wang S, Zhu D. Adsorption heat pump using an innovative coupling refrigeration cycle[J]. Adsorption,2004,10(1):47-55.
    [274]周广英,朱冬生.耦合吸附吸收制冷系统的实现及其特性[J].华南理工大学学报(自然科学版),2004,32(7):56-59.
    [275]Platen B. C. V, Munters C. G. Refrigerator, U.S. Patent 1,920,612[P].1933-8-1.
    [276]Zohar A, Jelinek M, Levy A, et al. Numerical investigation of a diffusion absorption refrigeration cycle[J]. International journal of refrigeration,2005,28(4):515-525.
    [277]Chen J, Kim K J, Herold K E. Performance enhancement of a diffusion-absorption refrigerator[J]. International journal of refrigeration,1996,19(3):208-218.
    [278]李启奈.论扩散-吸收式冰箱热虹吸泵对制冷系统的影响[J].制冷,2006,25(1):15-18.
    [279]Wang Q, Gong L, Wang J P, et al. A numerical investigation of a diffusion absorption refrigerator operating with the binary refrigerant for low temperature applications[J]. Applied Thermal Engineering,2011,31(10):1763-1769.
    [280]Ziegler F. Recent developments and future prospects of sorption heat pump systems[J]. International journal of thermal sciences,1999,38(3):191-208.
    [281]朱明善.能量系统的火用分析[M].北京:清华大学出版社,1988.
    [282]岳永亮,张红岩,董素霞等.单双效结合余热利用型澳化锂吸收式制冷机[J].流体机械,2003,31(z1):91-93.
    [283]Longo G A, Gasparella A, Zilio C. Analysis of an absorption machine driven by the heat recovery on an IC reciprocating engine[J]. International journal of energy research,2005, 29(8):711-722.
    [284]Kalinowski P, Hwang Y, Radermacher R, et al. Application of waste heat powered absorption refrigeration system to the LNG recovery process[J]. International journal of refrigeration,2009,32(4):687-694.
    [285]Schweigler C J, Demmel S, Riesch P, et al. New absorption chiller to establish combined cold, heat, and power generation utilizing low-temperature heat[J]. ASHRAE Transactions,1996,102(1):1118-1127.
    [286]Schweigler C, Demmel S, Ziegler F. Single-effect/Double-Lift Chiller:Operational Experience and Prospect[C]. Proceedings of the International Sorption Heat Pump Conference,1999,533-539.
    [287]Schweigler C J, Hellmann H M, Preissner M, et al. Operation and Performance of a 350 kW (100RT) Single-effect/double-lift Absorption Chiller in a District Heating Network[J]. ASHRAE Transactions,1998,104:1420-1426.
    [288]Lamp P, Schweigler C, Ziegler F. Opportunities for sorption cooling using low grade heat[J]. Applied thermal engineering,1998,18(9):755-764.
    [289]Yuqun Z. A single-effect/double-lift cycle-a new absorption cycle for low temperature application[C]. Proceeding of Int Conference of Cryogenics and Refrigeration, Hangzhou, China,1998,98,167-170.
    [290]Yattara A, Zhu Y, Mosa Ali M. Comparison between solar single-effect and single-effect double-lift absorption machines (Part Ⅰ)[J]. Applied thermal engineering, 2003,23(15):1981-1992.
    [291]陈滢,朱玉群,耿玮等.低温热源驱动的单效/双级(SE/DL)吸收式制冷循环[J].太阳能学报,2002,23(1):102-107.
    [292]万忠民,舒水明.一种新型混合吸收式制冷循环的性能分析[J].太阳能学报,2003,24(2):189-192.
    [293]万忠民,舒水明.一种高效太阳能混合吸收式制冷循环系统[J].华中科技大学学报(自然科学版),2003,31(1):100-102.
    [294]Wan Z, Shu S, Hu X, et al. Research on performance of mixed absorption refrigeration for solar air-conditioning[J]. Frontiers of Energy and Power Engineering in China,2008, 2(2):222-226.
    [295]陈亚平,王克勇,施明恒等.太阳能1.x级澳化锂吸收式制冷循环性能分析[J].东南大学学报(自然科学版),2005,35(1):90-94.
    [296]陈亚平,王克勇,施明恒等.1.x级澳化锂吸收式制冷循环性能分析[J].工程热物理学报,2005,26(2):193-195.
    [297]陈亚平,王克勇,施明恒等.太阳能1.x级澳化锂吸收式制冷循环的性能分析[C].中国工程热物理学会2004年工程热力学与能源利用学术会议论文集.2004,452-456.
    [298]陈光明,洪大良,唐黎明,何一坚.双热源高效吸收式制冷装置[P].中国发明专利,专利号,ZL201010225004.2010.
    [299]林顺荣.适合于低温变温热源的吸收制冷研究[D].浙江大学,2012.
    [300]Yan X, Chen G, Hong D, et al. A novel absorption refrigeration cycle for heat sources with large temperature change[J]. Applied Thermal Engineering,2013,1(52):179-186.
    [301]Lemmon. E. W, Huber. M. L and McLinden. M.O,2007. NIST Standard Reference Database 23:Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg. http://www.nist.gov/srd/nist23.htm
    [302]何丽娟.冷变换器原理及其在低品位热驱动制冷系统中的应用研究[D].浙江大学,2009.
    [303]洪大良,唐黎明,邹云霞等.一个新的吸收-喷射复合制冷循环[J].太阳能学报,2011,32(12):1810-1815.
    [304]Infante Ferreira C A. Thermodynamic and physical property data equations for ammonia-lithium nitrate and ammonia-sodium thiocyanate solutions[J]. Solar Energy, 1984,32(2):231-236
    [305]索科洛夫,岸格尔.喷射器.(黄秋云)译.北京,科学出版社,1977.
    [306]Hong D, Tang L, He Y, Chen G, A novel absorption refrigeration cycle[J]. Applied Thermal Engineering,2010,30(14):2045-2050.
    [307]Hong D, Chen G, Tang L, He Y. A novel ejector-absorption combined refrigeration cycle[J]. International Journal of Refrigeration,2011,34(7):1596-1603.
    [308]Patek J, Klomfar J. A computationally effective formulation of the thermodynamic properties of LiBr-H2O solutions from 273 to 500K over full composition range [J]. International Journal of Refrigeration,2006,29(4):566-578.
    [309]Farshi L G, Mahmoudi S M S, Rosen M A, et al. Use of low grade heat sources in combined ejector-double effect absorption refrigeration systems[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy,2012,226(5): 607-622.
    [310]Garousi Farshi L, Mahmoudi S M S, Rosen M A. Exergoeconomic comparison of double effect and combined ejector-double effect absorption refrigeration systems[J]. Applied Energy,2012,103(3):700-711.
    [311]Hong D L, Chen G M, Tang L M, et al. Simulation research on an EAX (Evaporator-Absorber-Exchange) absorption refrigeration cycle[J]. Energy,2011,36(1): 94-98.
    [312]Winoto S H, Li H, Shah D A. Efficiency of jet pumps[J]. Journal of Hydraulic Engineering,2000,126(2):150-156.
    [313]刘爽.用于CO2热泵热水器的喷射器特性研究[D].浙江大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700