气升回流一体化反应器设备开发与工艺试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前较多的分散污水处理工艺尽管在很多地区得到了应用,但是很多弊端也日益显现出来,尤其存在占地面积大、设备复杂等缺点。而本研究课题主要针对分散污水处理工艺存在的一些问题,设计开发出了气升回流一体化反应装置,主要用于处理分散生活污水,旨在获得最佳运行工况和设计参数,实现污染物的达标排放,便于实际工程推广和应用。
     本研究采用总有效容积为95L的气升回流一体化反应器,对实际分散生活污水进行了初步研究。主要研究了混合液回流比和污泥负荷等对工艺整体运行性能的影响。研究结果如下:
     (1)在回流比为1.2左右,沉淀区无污泥回流到缺氧区,只有出水回流,COD污泥负荷为0.25 kgCOD/(kgMLSS·d),平均水温为13.9℃,系统出水COD、氨氮和硝氮浓度分别为52mg/L、2.5mg/L、17.2mg/L平均去除率分别为86.4%、89.8%和23.7%。出水浊度由3.1 NTU逐渐升高到22.8NTU左右,好氧区无污泥回流到缺氧区,反硝化效果较差。
     (2)混合液回流比增加到3左右,沉淀区的污泥顺利回流到缺氧区。系统水温在一段时间较为稳定,出水COD、NH3-N和TN平均浓度分别从49mg/L、2.5mg/L和19.0mg/L降为42mg/L、1.1mg/L和5.0mg/L,平均去除率分别从88.2%、90.3%和24.9%增加为89.5%、96.3%和83.7%,在水温降到4.5℃时,NH3-N和TN去除率明显降低。
     (3)在污泥负荷为0.30 kgCOD/(kgMLSS·d)左右,气水比为30:1,并稳定运行后,好氧区的污泥沉降性能较好,SVI值在110左右。出水COD、NH3-N和TN平均出水浓度分别为33.3mg/L、1.8mg/L和5.9mg/L,平均去除率分别为92.5%、95.5%和83.7%,出水可达GB18918-2002一级A标准。出水浊度平均为3.4NTU。
     COD污泥负荷增加到0.49 kgCOD/(kgMLSS·d)以上时,发生了污泥膨胀现象,SVI值从68增加到363,好氧区的污泥浓度较低,沉淀区污泥随出水流失。这也表明,污泥负荷为0.30 kgCOD/(kgMLSS·d)左右有利于系统的稳定运行。
Nowdays,although more decentralized wastewater treatment processes have been applied in many areas,there were also many shortcomings such as larger area,complex equipment and so on.This thesis aimed at shortcomings above-mentioned,an airlifting-reflux combined reactor was developed mainly for treating decentralized wastewater in order to obtain optimum operating conditions,design parameters, meet the discharge standard and application of practical engineering.
     In this thesis , the reactor devices with 95L total effective volume,11.2h HRT, 200L/d handling capacity was carried out to conduct preliminary study.Major objectives were pollutant removal efficiency,reflux ratio,the volume ratio of reaction zones,sludge reduction and so on.The main results were presented as follows:
     (1) when reflux ratio was1.2,COD-sludge load was 0.27kgCOD/(kgMLSS·d)sludge in the aerobic zone was not return to the anoxic zone,only effluent after precipitation was returned,the average temperature was 13.9℃.The average effluent COD、ammonia and nitrate concentrations were 52mg/,2.5mg/L and 17.2mg/L respectively , average removal rates were 86.4% , 89.8% and23.7% respectively.Effluent turbidity was gradually increased to 22.8NTU from 5.3 NTU.
     (2) When reflux ratio increased to about 3,the sludge in settling zone was smoothly returned to the anoxic zone.water temperature was stable.The average effluent COD,NH3-N and TN concentrations were rfrom 49mg/L,2.5mg/L and 19.0mg/L reduced to 42mg/L,1.1mg/L and 5.0mg/L respectively,the average removal rate were from 88.2%,90.3%,and 24.9% increased to 89.5%,96.3% and 83.7% respectively.When the temperature dropped to 4.5℃,NH3-N and TN removal efficiency decreased obviously,but COD removal efficiency were less affected.
     (3) When COD-sludge load was about 0.30 kgCOD/(kgMLSS·d),air to water ratio was 30:1,the aerobic sludge settling performance was good,SVI value was about 110.Effluent COD, NH3-N and TN concentrations were 33.3mg/L,1.8mg/L and 5.9mg/L respectively, the average removal rates were 92.5%, 95.5% and 83.7% respectively,and the Effluent concentration was met to GB18918-2002 grade A standards. The average effluent turbidity was 3.4NTU.
     When COD-sludge load increased to above 0.49 kgCOD/(kgMLSS·d),the phenomenon of sludge bulking occurred,SVI value was increased to 363 from 68.Sludge concentration in settling zone was very low and some sludge was washed out.The result showed that COD-sludge load of 0.30 kgCOD/(kgMLSS·d) was conducive to the stable performance of the system.
引文
[1]郝晓地,张向萍,兰荔.美国分散式污水处理的历史、现状与未来[J].中国给水排水,2008,24 (22):1~5.
    [2]贺墨梅,刘焱.污水集中式与分散式处理技术的比较研究[J].西南给排水,2006,28 (4):20~23.
    [3] Zaini Ujiang,Mogens Henze(崔成武译).发展中国家城市污水管理—原理与工程技术[M].中国环境科学出版社,2008.
    [4]郝晓地,宋虹苇.生态卫生-可持续、分散式污水处理新概念[J].给水排水,2005,31(6):42~45.
    [5]艾平,张衍林,袁巧霞.农村生活污水分散式处理技术浅析[J].环境保护科学,2008 ,12,(6):8~11.
    [6]环境保护部污染物排放总量控制司.城镇分散型水污染物减排实用技术汇编[M].中国环境科学出版社,2009.
    [7]蒋克彬,彭松,张小海等.农村生活污水分散式处理技术及应用[M].中国建筑工业出版社,2009.
    [8]国家环境保护总局,国家质量监督检验检疫总局.GB18918-2002.城镇污水处理厂污染物排放标准[S].北京:中国标准出版社,2002.
    [9]江苏省环境保护厅,江苏省质量技术监督局. DB32.江苏省地方标准《太湖地区城镇污水处理厂及重点工业行业主要水污染物排放限值》[S],2007.
    [10]美国AECOM集团梅特卡夫,水回用:问题、技术与实践:issues, technologies, and applications.I、II影印版[M].清华大学出版社,2008.
    [11] 2008年中国环境状况公报[R],2009.
    [12] A.Mulder,The quest for sustainable nitrogen removal technologies[J].Water Science and Technology,2003,48(1):67~75.
    [13] KreisslJ F. Onsite wastewater management at the start of the new millenium [J]. Small Flows, 2000,1(1):10~11.
    [14] Hellstrom D, Jonsson L. Evaluation of small wastewater treatment systems [J]. Water Science and Technology,2003,48(11-12):61~68.
    [15] Anh N V, Ha T D, Nhue T H, et al. Decentralized wastewater treatment - new concept and technologies for Vietnamese conditions [A].5th Specialized Conference on Small Water andWastewater Treat ment Systems[C].Istanbul:Istanbul Member of Organizing Committee,2002.
    [16] The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater-New Danish guidelines[J]. Ecological Engineering, 2005, 25(5):491~500.
    [17]许春莲,宋乾武,王文君.日本净化槽技术管理体系经验及启示[J].中国给水排水,2008,24(14):1~4.
    [18]小野洋.净化槽和管理体系的未来模式[J].用水和废水(日),1995,38(7):13~17.
    [19]闵毅梅.日本净化槽技术在中国的推广前景[J].污染防治技术,2003,16(4): 74~78.
    [20] Ministry of Land, Infrastructure and Transport and Tourism of Japan. The Structure Standard ofJohkasou[M]. Tokyo: the Building Center of Japan, 2005.
    [21]高蓉菁,闵毅梅.厌氧滤床-接触氧化工艺净化槽处理[J].环境工程学报,2007,11(1):59~64.
    [22] Agnieszka Renmana,LarsD.Hylanderb,Gunno Renman.Transformation and removal of nitrogen in reactive bed filter materials designed for on-site wastewater treatment[J].ecological engineering,2008, 34(6):207~214.
    [23]肖恩荣,梁威,吴振斌.污水处理中的人工湿地强化技术研究[J].环境污染治理技术与设备,2006,7(7):118~123.
    [24]齐瑶,常杪.小城镇和农村生活污水分散处理的适用技术[J].中国给水排水,2008,24(18):24~27.
    [25] Dunne E.J., Culleton N.,Donovan G.O., et al. An integrated constructed wetland to treat contaminants and nutrients from dairy farmyard dirty water. Ecological Engineering, 2005,24(3):219~232.
    [26] WiessnerA.,Kuschk P.,StottmeisterU.,et.al.Treating a lignite pyrolysis wastewater in a constructed subsurface flow wetland. Water Research, 1999, 33(5):1296~1302.
    [27]叶芬霞,李颖,朱瑞芬.塔式复合人工湿地处理农村生活污水的实验研究[J].中国给水排水,2008,24(21):60~63.
    [28]唐晶,吕锡武,等.生物-生态组合技术处理农村生活污水研究[J].中国给水排水,2008,24(17):1~4.
    [29]叶建锋,徐祖信,李怀正.垂直流人工湿地堵塞微观概念模型的提出[J].环境污染与防治,2008,2:23~26.
    [30]尧平凡,陈静静.人工湿地基质堵塞预防措施及恢复对策研究进展[J].净水技术,2007,26(5):23~26.
    [31] D.Xanthoulis著,王成端译校.低成本污水处理教程[M].化学工业出版社,2008.
    [32]高尚,黄民生,吴林林等.生物净化槽对黑臭河水净化的中试研究[J].中国环境科学2008,28(5):433~437.
    [33]刘继辉.小型多功能生活污水处理净化槽的特性研究[D](硕士学位论文).天津:天津工业大学,2009.
    [34]水落元之.日本的分散型生活污水处理体系[R].中日污染物总量控制的理论与实践及促进小城镇分散型污水处理研讨会,新疆,2008,12.
    [35]王昶,杜晓雪,贾青竹等.家庭生活污水分散处理净化槽的研究[J].水处理技术,2008,34(2):79~82.
    [36] Yuhei Inamori, Toshihiro Sankai, Toshikatu Ozawa. Popularization and Development of High performance Johkasou[M ].Tokyo: Gyosei Co,2002.
    [37] Simon Judd, Claire Judd著,陈福泰,黄霞译.膜生物反应器:水和污水处理的原理与应用[M].北京:科学出版社.2009.
    [38] T.Melin, B.Jefferson, D.Bixio et al. Membrane bioreactor technology for wastewater treatment and reuse[J]. Desalination 2006(187):271~282.
    [39]黄霞,曹斌,文湘华等.膜-生物反应器在我国的研究与应用新进展[J].环境科学学报,2008,28(3):416~432.
    [40]欧阳科,刘俊新.膜生物反应器与传统活性污泥反应器内生物群落特征[J].环境科学,2009,30(2):499~503.
    [41]张斌,孙宝盛,季民等.MBR中微生物群落结构的演变与分析[J].环境科学学报,2008,28(11):2192~2199.
    [42]于水利,赵方波.膜生物反应器技术发展沿革与展望[J].工业用水与废水,2006,37(2):1~6.
    [43] Christian,Abegglen .Biological nutrient removal in a small-scale MBR treating household wastewater[J]. Water Res,2008,42:338-346.
    [44]董良德,张民,陆上岭等.我国稳定塘废水处理的现状简述[J].污染防治技术,1995 ,8 (1) :52~56.
    [45]李剑超,褚君达,丰华丽.我国稳定塘处理的研究与实践[J].工业用水与废水2002,33(01) 1~3.
    [46]王德荣,赵静.复合生态系统在处理城市污水中的应用[J].农业环境与发展,1996,13(3):19-23.
    [47]徐康宁,汪诚文,刘巍.稳定塘用于石化废水尾水处理的中试研究[J].中国给水排水,2009,25(3):32~36.
    [48]黄翔峰,池金萍,何少林等.高效藻类塘处理农村生活污水研究[J].中国给水排水,2006, 22(5) : 35~39.
    [49] Surampalli R Y, Banerji S K, Pycha C J et al. Phosphorus removal in ponds[J]. Water Sci Technol, 1995,31(12): 331~339. [50何小莲,李俊峰,何新林.稳定塘污水处理技术的研究进展[J].水资源与水工程学报,2007,18(5):75~78.
    [51]李松,尹海龙,薛红征.稳定塘改进措施研究进展[J].净水技术,2006,25(4): 10~13.
    [52]李旭东,周琪,黄翔峰等.高效藻类塘系统处理太湖地区农村生活污水[J].水处理技术, 2006,32(6):61~64.
    [53]何争光,买文宁,刘寅.苏湾稳定塘生态处理工程的研究与设计[J].郑州大学学报,2002,23(3):33~36.
    [54]张自杰等.排水工程(下)[M].中国建筑工业出版社,2000.
    [55] Michael Rodgers, Carbon and nitrogen removal using a novel horizontal flow biofilm system[J].Process Biochemistry 2006 ,41:2270~2275 .
    [56]胡天媛,徐伟.水解酸化-上向流曝气生物滤池工艺处理小城镇污水[J].给水排水,2004,30(10):15~18.
    [57]刘长荣.曝气生物滤池技术应用与设计计算[J].给水排水,2002,22(7):16~18.
    [58]唐受印,戴友芝.水处理工程师手册[M].北京:化学工业出版社,2001.
    [59]吉祝美,吕锡武.接触氧化法在中小型生活污水处理中的应用[J].净水技术,2006,25(3):23~26.
    [60]苏东辉,郑正,王勇等.农村生活污水技术探讨[J].环境科学,2002,15(3)33~35.
    [61] Youssouf Kalogo ,Willy Verstraete.Development of anaerobic sludge bed (ASB) reactor technologies for domestic wastewater treatment: motives and perspectives[J].World Journal of Microbiology & Biotechnology 1999,15: 523~534.
    [62] Sari A. Luostarinen,JukkaA Rintala.Anaerobic on-site treatment of black water anddairy parlourwastewater in UASB-septic tanks at low temperatures [J].Water Research,2005,39 :436~448.
    [63] Sunny Aiyuka, Joyce Amoakoa, Lutgarde Raskin et al.Removal of carbon and nutrients from domestic wastewater using a low investment, integrated treatment concept[J]. WaterResearch,2004,38:3031~3042.
    [64] Vieira, SM M, et al. Application of the UASB technology for sewage treatment in a small community at Sumare, SaoPaulo state[J]. Water Science and Technology, 1994,30(12):203~210.
    [65]沈东升,贺永华,冯华军.农村生活污水地埋式无动力厌氧处理技术研究[J].农业工程学报,2005,21(7):111~115.
    [66]朱根华,万钱江.小型生活污水厌氧处理装置的构造与特性[J].中国给水排水,2003,19(8):84~85.
    [67]江苏省建设厅.农村生活污水处理适用技术指南.苏建村[2008]154号.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700