基于RTDS的高速铁路动车组与牵引网交互动态模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年我国高速铁路发展迅速,建成和在建的高速铁路路网规模庞大。牵引网和动车组是高速铁路的重要组成部分,二者有着紧密的关联,并对高速铁路的安全稳定运行具有决定性作用。利用实时数字仿真进行牵引网和动车组的交互建模对系统运行的研究分析以及实际装置的测试等工作都有着重要的意义与必要性。
     文中针对现有牵引网参数计算的不足,借鉴电力系统中的多导体传输线理论,推导符合实际情况的牵引网导纳矩阵及数学模型,并利用卡森公式和复数深度公式推导了地中回路的自阻抗和互阻抗计算公式,并给出可用于计算机编程的数学公式描述。基于RTDS (Real-time Digital Simulator,实时数字仿真装置)的CBuilder(用户自定义环境)平台利用C语言建立了单线和复线情况下的牵引网模型,其可用于牵引供电系统的建模。
     对两电平和三电平脉冲整流器的工作模式和控制方法进行研究,通过对比选择瞬态直接电流控制策略进行整流器的控制,在RTDS中实现两电平和三电平的脉冲整流器模型,仿真实验表明瞬态直接电流控制策略具有良好的动态响应和静态稳定性,通过载波移相实现两电平脉冲整流器的双重化设计,通过实验表明双重化对降低网侧电流电压的谐波含量具有显著效果;三电平整流器使用五个电平模拟正弦波形,有利于降低网侧的谐波含量。
     采用恒压频比的电压空间矢量控制策略实现两电平和三电平脉冲逆变器的控制,根据CRH1、CRH2、CRH3、CRH5型动车组的不同主电路结构及参数基于RTDS建立不同动车组仿真模型,实现恒转矩启动、恒速、再生制动等工况的模拟,与现场实测的CRH3型动车组网侧电流波形相吻合,所建模型可再现现场运行工况。研究了网压突变时、定功率变网压、定网压变功率等条件下的动车组及牵引网响应,得出网压短时突变时动车组可以平稳运行,网压一定时谐波含量随功率增大而降低,功率一定时谐波含量随网压升高而增大的结论,并对长大坡道线路条件下的动车组运行进行研究。
     通过在RTDS模型中增设电压电流互感器及数字量模拟量输入输出模块,经功率放大器后与实际的物理装置闭环连接后实现了牵引网与动车组交互模型与实际物理装置的测试及系统的动态闭环试验,说明建立的模型可用。
China's high-speed railway was developing so fast in recent years that formed a large scale of high-speed railway network. Traction network and EMU were closely related and both of them were important to high-speed railway. They played decisive roles in the high-speed railway to guarantee its safety and stability. Using RTDS (Real-Time Digital Simulator) to model the traction network and the EMU interaction has an important significance to researching and testing. The modeling of traction network and the EMU interaction through Real-Time Digital Simulator (RTDS) was essential to analyze the operation of system and test the actual device.
     In this thesis, the traction admittance matrix and mathematical models were derived based on the multi-conductor transmission line theory from power system since for the deficiencies of current traction network computing. And the self-impedance and mutual impedance formula of underground loop were derived and mathematical formulas were described which can be used in computer programming. Based on CBuilder of RTDS, the traction network model for the both single and double track case was established using the C programming language to model the traction power supply system.
     Operating mode and control methods of two-level and three-level pulse rectifier were studied in this essay. The transient direct current control strategy was adopted in the appliance as a better choice, and the model of two-level and three-level pulse rectifier are created based on RTDS. The simulation experiment showed that the dynamic and static performance of system was favorable. Dual design of two-level pulse rectifier based on carrier phase shift was proved to have obvious effect to reduce the harmonic content of the current and voltage of the network side.
     Constant V/f principle was used to control the two-level and three-level pulse inverter control. The model of CRH1, CRH2, CRH3, CRH5-EMU are created based on RTDS. The wave of current match with the field measurement of CRH3when model of EMU works at tractional, constant and dormancy state.
     The closed-loop test of traction network and EMU interaction model and the actual physical device was proved successfully with additional voltage-current transformers and analog and digital input-output modules, indicates that the simulation model is correct and valid.
引文
[1]Mellon Institute, Carnegie Mellon University. User Manual for the Transportation System Energy Model Rail System Center [K]. Pittsburgh, PA:Mellon Institute,1986.
    [2]Kusmeda K J, Fehrle K G, Trick P J. Computer modeling, simulation, and validation by field of a traction power system for electric trolley buses, Railroad Conference [Z]. Baltimore:Railroad Conference, Proceedings of the 1995 IEEE/ASME Joint,1995:87-91.
    [3]YCai, M.R.lrving, S.H.Case. Modeling and numerical solution multibranched DC rail traction Power systems [J]. Electric Power Application IEE Proeedings.1995,142 (5):323-328.
    [4]刘海东等.列车自动驾驶仿真系统算法及其实施研究[J].系统仿真学报,2005,17(3):577-580.
    [5]毛保华等.通用列车运行模拟软件系统研究[J].铁道学报,2000,22(1):1-6.
    [6]丁勇等.列车节能运行模拟系统的研究[J].北方交通大学学报,2004,28(2):76-81.
    [7]何鸿云,朱金陵.列车牵引计算及操纵示意图计算机软件的开发[J].西南交通大学学报,2000,5(5):514-516.
    [8]王英杰,贾利民,桑苑秋.广深铁路运营智能仿真系统[J].计算机仿真,2001.18(6):4-8.
    [9]郭佑民,王志伟.列车操纵与运行仿真系统[J].兰州铁道学院学报(自科学版).2002,21(6).
    [10]尹仁发,胡汉春.列车牵引运行仿真系统设计[J].北京机电产品开发与创新,2007,5(3).
    [11]王晓东,张洪斌.城市轨道直流牵引供电系统的仿真研究[J].系统仿真学报,2002,14(1):1692-1697.
    [12]T K Ho, Y L Chi, L K Siu, et al. Traction Power System Simulation in Electrified Railways [J].交通运输系统工程与信息,2005,5(3):93-107.
    [13]池云莉,何天健,梁嘉杰.电气化铁道系统概率潮流算法研究[J].电气化铁道,2004,(4):4-8.
    [14]刘学军,马林,孙常龙.牵引供电系统培训仿真器的设计和实现[J].铁道学报,1996,18(2):121-124.
    [15]万庆祝等.基于牵引计算的牵引变电所馈线电流仿真计算[J].电工技术学报.2007年第06期.
    [16]吴德范,辛成山.电气化铁道自耦变压器供电系统计算方法[J].中国铁道科学.1980(2):111-127.
    [17]Goodman C J. A Review of Simulation Models for Railway Systems[Z], London:IEE International Conference on Developments in Mass Transit Systems,1998:80-85.
    [18]Calvin R J. Feasibility Study for Maximum demand control on the central division of Queensland railways [Z], York:Intl. Conf.'Mainline Railway Electrification', Conf. Pubin.312:378-382.
    [19]Andrea Mariscotti, Paolo Pozzobon, and Maurizio Vanti. Simplified Modeling of 2×25-kV AT Railway System for the Solution of Low Frequency and Large-Scale Problems[J]. IEEE Trans. Power delivery, vol.22, no.l, pp296-305,2007.
    [20]刘海东等.多导体模式下的交流牵引供电仿真系统的研究[J].系统仿真学报,2004(02):117-125.
    [21]张小瑜,吴俊勇.基于PSCAD的牵引供电系统仿真研究[J].电气化铁道,2007(06):17-20.
    [22]Hill.R.J. & Cevik.I.H. (1993). On-line simulation of voltage regulation in auto-transformer-fed AC electric railroad traction networks [J]. IEEE Trans. on Vehicular Technology,4(3),365-372.
    [23]His. P, Chen, S. & Li, R. (1999). Simulating on-line dynamic voltages of multiple trains under real operating conditions for AC railways [J]. IEEE Trans. on Power System,14(2),452-459.
    [24]Chen C.S, Chuang H J, Chen J L.Analysis of dynamic load behavior for electrified mass rapid transit systems. IEEE,1999.
    [25]吴命利等.十字交叉接线牵引变压器的运行特性(Ⅰ)—数学模型与理论分析[J].电工技术学报,2004,19(9):11-17.
    [26]B. K. Chen and B.S.Guo. Three phase models of specially connection transformers [J]. IEEE Trans. Power Delivery, vol.11, no.1, pp.323-330,1996.
    [27]李群湛,贺建闽.牵引变电所基波和谐波通用模型[J].铁道学报,1992,14(3):22-30
    [28]Sy-Ruen Huang, Bing-Nan Chen. Harmonic Study of the Le Blanc Transformer for Taiwan Railway's Electrification System[J]. IEEE Trans Power Del, Vol.17, No.2, APRIL 2002:495-499.
    [29]李群湛.牵引负载的三相等效模型[J].电力系统自动化,1994(12):24-31.
    [30]张丽,李群湛.牵引供电系统三相模型及其序网[C].中国铁道学会电气化学术会议论文集,2006年.
    [31]吴命利,李群湛.电力系统与牵引供电系统三相谐波模型仁[J].铁道学报,1999,21(1):44-47.
    [32]TSAI-HSIANG CHEN. Simplified models of electric railway substations for three phase power flow studies[C] in Proc.29th IAS Ange. Meeting, pt.3, Conf. Rec., Denver, CO, Oct.2-6,1994, vol.3, pp.2245-2248.
    [33]姚楠.电气化铁道牵引网基波与谐波模型研究[D].北京交通大学,2008年.
    [34]郎兵,吴命利.牵引网谐波模型及其仿真计算[J].电力系统自动化,2009,Vol 33,No 7:76-80.
    [35]A. Mariscotti and P. Pozzobon. Determination of the electrical parameters of railway traction lines: Calculation, measurement and reference data[J]. IEEE Trans. Power Del., vol.19, no.4, pp. 1538-1546, Oct.2004.
    [36]S. Brillante. G. etc. Validation of the analytical model of an electric railway traction line[C]. in Proc. Int. Conf. Metrology, Jerusalem, Israel, May 16-18,2002, pp.355-360.
    [37]R. Cella, G. Giangaspero, A. Mariscotti. Measurement of AT electric railway system currents and validation of a multi-conductor transmission line model[J]. IEEE Trans. Power Del., vol.21, no.3, pp.1721-1726, Jul.2006.
    [38]A. Mariscotti, P. Pozzobon. Synthesis of line impedance expressions for railway traction systems[J]. IEEE Trans. Veh. Technol., vol.52,no.2, pp.420-430, Mar.2003.
    [39]T.A.Kneschke, R.Natarajan, W.Nagvi. Impedance Calculations for SEPTA's Rail Power Distribution System[C]. Proc.199-5 IEEE:ASME Jt.Railr. Conf.(Cat. No.95CH35766),1995 pp. 79-85.
    [40]R.J. Hill and D.C. Carpenter. Rail track modeling for signaling and electrification system simulation [J]. Rail Eng. Jnt, vol.19, no.4, pp.16-20, Dec.1990.
    [41]冯晓云.电力牵引交流传动及其控制系统[M].北京:高等教育出版社,2009.
    [42]MarianP. Kazmierkowski, Luigi Malesani. Current control teehiques for three-phase voltage-source PWM converters:A Surrey[J]. IEEE Trans Ind Electronics.1998,45(5):691-703.
    [43]杨德刚,刘润生,赵良炳.三相高功率因数整流器的电流控制[J].电工技术学报,2000(2):83-703.
    [44]Dixon JW, Ooi B T. Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier, IEEE Transpower Electron,1998,35:508-515.
    [45]刘志敏,PWM整流器控制策略研究与实现[D].西南交通大学硕士学位论文,2008.
    [46]张兴,张崇巍.PWM可逆变流器空间电压矢量控制技术的研究[J].中国电机工程学报,2001(10):102-105.
    [47]Wu R, Dewan S B, Slemon G B. A PWM AC-to-AC converter with fixed switehing frequency[J]. IEEE Trans Ind Appl,1990,26:880-885.
    [48]陶良慧.三点式四象限脉冲整流器控制策略研究[D].西南交通大学硕士学位论文,2008.
    [49]余丹萍.电气化铁路牵引供电系统的仿真及影响研究[D].浙江大学硕士论文,2011.
    [50]Zhong Chao, Zhang. Boon-Teck Oo:Multimodular current source SPWM converters for super conducting a magnetic energy storage system[J] IEEE Trans Power Electronic,1993,8(3):250-255.
    [51]J.s.Kim. A novel voltage modulation technique of the space vector PWM. Trans. Inst. Eleet.Eng. JPn.Vol.116D,no.8,820-825.
    [52]葛兴来,冯晓云.动车组牵引传动三电平逆变器SVPWM控制[J].西南交通大学学报.2008,43(5):566-572.
    [53]李启明.三电平SVPWM算法研究及仿真[D].合肥工业大学硕士学位论文,2007.
    [54]杨毅.基于空间电压矢量法(SVPWM)的三电平逆变器的研究[D].东华大学硕士学位论文,2008.
    [55]曹伟华.三电平逆变器异步电机矢量控制系统研究[D].西南交通大学硕士学位论文,2006.
    [56]李官军.高速动车组牵引工况变流器控制算法研究与实现[D].西南交通大学硕士学位论文,2008.
    [57]王利军.高速动车组再生制动工况变流器控制算法的研究与实现[D].西南交通大学硕士学位论文,2008.
    [58]吴俊强.交直交电力机车电传动系统的仿真研究[D].北京交通大学硕士学位论文,2005.
    [59]吴命利,李群湛.输电线谐波模型与算法研究[J].铁道学报,1995(增刊):105-112.
    [60]辛成山,吴德范.自耦变压器(AT)供电系统电算程序研究[J].铁道机车车辆,1981(1):19-29.
    [61]姚楠.电气化铁道牵引网基波与谐波模型研究[D].北京交通大学硕士论文,2008.
    [62]H.W.Dommel著,李永庄等译.电力系统电磁暂态计算理论[M].水利电力出版社,1991.
    [63]吴命利.牵引供电系统电气参数与数学模型研究[D],北京交通大学博士学位论文,2006.
    [64]C. Dubanton, The approximate calculation of primary and secondary transmission line parameters. Homopolar values [J]. E.D.F. Bulletin de la Direction des Etudes et Recherches-Serie B,1969, p53-62.
    [65]郭世明,黄念慈.电力电子技术[M].西南交通大学出版社,2002.
    [66]盛彩飞.电力机车和动车组谐波电流的仿真研究[D].北京交通大学硕士学位论文,2009.
    [67]J.Shen, N. Butterworth. Analysis and design of a three-level PWM converter system for railway-traction applications[J], IEEE Proc-Electr. Power Appl,144(5),1997.
    [68]刘凤君.现代逆变技术及应用[M].电子工业出版社,2006.
    [69]何卫东,王长永,张仲超等.相移正弦脉宽调制技术在电网有源滤波和无功补偿中的应用[J].电网技术,1999,23(6):5-7.
    [70]卓放,胡军飞,王兆安.采用多重化主电路实现的大功率有源电力滤波器[J].电网技术,2000,24(8):5-7.
    [71]官二勇,宋平岗,叶满园等.基于电压移位调制的三点式四象限变流器[J].机车电传动,2005,3:29-32.
    [72]陈亚爱,李政学,李正熙,周京华.三电平逆变器空间电压矢量控制算法仿真研究[J].北方工业大 学学报.2007.19(1):28-31.
    [73]张卫丰,余岳辉,刘璐.三电平逆变器空间电压矢量控制算法仿真研究[J].电力电子技术.2006.40(1):3-5.
    [74]陈旭.艰险山区客运专线最大坡度技术研究[J].中国铁路,2012,3:36-40.
    [75]铁道部科学研究院机车车辆研究所.TB/T 1407-1998列车牵引计算规程[S].北京:铁道部科学研究院机车车辆研究所,1999.
    [76]TB 10020-2009高速铁路设计规范[S].2009.
    [77]王月仙,王成国,马大炜,张易.高速动车组自动运行仿真研究[J].电力机车与城轨车辆.2009,4:7-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700