麦秸颗粒制备及能源化成型添加剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农作秸秆是一种丰富廉价的能源来源,其能源化转化是目前世界上发展可再生能源的一种趋势。针对目前持续增长的秸秆能源化转化的需求与低效的麦秸制粒生产机械化技术的矛盾,研究了麦秸能源化成型颗粒的制粒技术,同时兼顾麦秸制粒系统对环境的影响,提出了采用添加剂的方式优化麦秸能源化成型制粒工艺技术的优化方案,最终提升了麦秸制粒过程和颗粒产品的强度和品质。
     进行了秸秆压缩的影响因素分析,讨论了压缩力、温度、秸秆粒度、含水率和化学组分对压缩制粒的影响,设计并搭建了麦秸能源颗粒试制的单颗粒制粒试验台和颗粒抗张强度测试试验台。
     基于麦秸单颗粒试制试验台,开展添加剂对麦秸制粒的影响试验研究。采用粗甘油、膨润土、木质素磺酸盐、未处理锯木屑和微波碱溶液处理的锯木屑进行麦秸能源化颗粒的试制。研究表明:添加剂的添加可以提高麦秸颗粒的强度,降低麦秸颗粒制粒的能耗,提高麦秸颗粒密度,以及麦秸颗粒的高位热值;通过采用添加剂,颗粒的抗张强度从0.84MPa提高到(1.13-1.63)MPa;当采用粗甘油、未处理锯木屑和预处理锯木屑作为添加剂时,颗粒的高位热值显著增加,达到(17.98-18.77)MJ/kg;添加剂功能综合分析表明,预处理锯木屑、未处理锯木屑和膨润土的性能更好;不同添加剂能从增加强度、致密、降低能耗、提高高位热值等角度优化麦秸制粒过程,提高颗粒品质。
     研究总结不同预处理技术的麦秸颗粒生产系统的工艺及关键技术参数,采用生命周期评估(LCA)方法对目前的麦秸制粒系统进行环境影响比较分析。结果表明:采用蒸汽爆碎预处理方式的制粒系统对环境影响较大;采用添加剂的方式能降低麦秸制粒系统对环境的影响;添加未处理锯木屑和烘焙预处理方式的麦秸制粒系统总体上对环境影响较低;添加剂的添加可以降低不可再生能源的消耗。
     添加剂的优化试验结果表明:抗张强度、比能耗、颗粒密度模型预测精度高,模型的平方确定系数(R2)分别为0.78、0.93和0.94;压缩载荷的增加使抗张强度、颗粒密度和比能耗增加;粗甘油添加量的增加使比能耗、抗张强度降低;未处理锯木屑和膨润土添加量的增加使制粒比能耗降低。
     以抗张强度、比能耗和颗粒密度的优化为目标,兼顾考虑高位热值、灰分和原料成本,得出六种优化方案,优化方案的中试规模的生产试验结果表明:添加未处理锯木屑30%,膨润土0.57%,粗甘油3.80%(方案三)时麦秸制粒能耗低,颗粒耐久性等颗粒品质较优:添加未处理锯木屑20.16%,膨润土1.62%,粗甘油2.60%(方案一)时颗粒的堆积密度最大,达到744.04kg/m3;六种方案的LCA比较研究表明方案三对环境的冲击相对较小。
     采用添加剂能提高麦秸颗粒机械化制备技术水平,降低有害物质排放,是一种可持续机械化生产方式。
Agricultural residue is an aboundance source of sustainable energy to substitute for fossil fuel. Pelletization of agricultural straw is a way to improve the efficiency of utilizing biomass as fuel especially for long distance transportation. While straw pellets are often dusty and easy to break during handling and transportation process. In order to manufacture strong wheat straw fuel pellets and research on the effect of binders on the quality of wheat straw fuel pellets, a single pellet unit was set up. Crude Glycerol, Bentonite, Lignosulfonate and wood waste were selected as binders for wheat straw pelletization. Microwave alkaline treated wood waste was also considered to be a binder. The results showed that the tensile strength of wheat straw pellets was significantly increased by adding these binders. The specific energy consumption was decresed and the pellet density was increased as well. The pellet with the addition of crude glycerol achieved the highest heating value. The heating value of the pellets can achieve as high as17.98-18.77MJ/kg with the addition of appropriate binders.
     The sustainable of wheat straw pelleting system was evaluated by the method of Life Cycle Accessment. The environmental impact of five pretreatment methods (steam explosion, microwave alkaline, binder addition, radiofrequency alkaline, and torrefaction) were evaluated in terms of global warming potential, acidification, eutrophication, human toxicity, marine aquatic ecotoxicity, ozone layer depletion, abiotic depletion, fresh water aquatic ecotoxicity, photochemical oxidation, terrestrial ecotoxidation, and non-renewable energy use. The results revealed that the environmental impact of wheat straw pelletization system can be reduced by using binders. Wood waste as binder and torrefaction method were the best pretreatment method that can help to decrease the environment impact of wheat straw pelleting.
     The optimization of biners and the compression load experimental trials were conducted. The responses of specific energy consumption, tensile strength and pellet density models were derived verified. The tensile strength and the pellet density increased as the increase of compression load. The specific energy consumption increased due to the increase of the compression load as well. The addition of cruede glycerol can reduce the specific energy consumption, but at the same time it decresed the tensile strength. The optimized solutions of making quality wheat straw fuel pellets were derived both by using the models and considering the heating value, ash content and the cost of the raw matetials.
     The pilot scale experiments were conducted based on the6optimized options. By analyzing the output rate, energy consumption and the quality of pellets, option3was considered to be better than other options which was wheat straw with the addition of30%wood waste, bentonite and3.80%crude glycerol. The environmental impact of6options was derived by using LC A method. In general, option3had a minimum impact on environment compared to other options.
     In conclusion, binder addition method could be a good way to increase the technology level of manufacturing wheat straw pellets, both efficiently and sustainably.
引文
[1]Bates J, Edberg O and Nuttall C. Minimising greenhouse gas emissions from biomass energy generation [EB/OL].Almondsbury, Bristol, UK:Environment Agency,2009. [2013-05-05]. http://www.environment-agency.gov.uk/static/documents/Research/Minimising greenhouse gas emissions from biomass energy generation.pdf
    [2]Peksa M, Dolzan P, Grassi A, et al. Global wood pellets markets and industry:policy drivers, market status and raw material potential [R]. Utrecht University:The Netherlands,2007.
    [3]Pirraglia A, Gonzalez R, Saloni D, et al. Wood pellets:An expanding market opportunity [J]. Biomass Magazine,2010,6:68-75.
    [4]Sultana A, Kumar A, Harfield D. Development of agri-pellet production cost and optimum size [J]. Bioresource technology,2010,101 (14):5609-5621.
    [5]Voulgaraki S, Balafoutis A, Papadakis G. Legal framework for MBP utilization [D]. Athens: Agricultural University of Athens,2007.
    [6]Kim S, Dale B E. Global potential bioethanol production from wasted crops and crop residues [J]. Biomass and bioenergy,2004,26 (4):361-375.
    [7]谭季秋,刘军安,朱培立,等.稻草秸秆压缩研究及制粒机械设计[J].湖南工程学院学报:自然科学版,2012,22(1):30-33.
    [8]Sun R. Cereal straw as a resource for sustainable biomaterials and biofuels:chemistry, extractives, lignins, hemicelluloses and cellulose [M]. Amsterdam, the Netherlands:Elsevier Publications,2010.
    [9]Holley C A. The densification of biomass by roll briquetting[C]//Proceedings of the Institute for Briquetting and Agglomeration (IBA).1983,18:95-102.
    [10]Sokhansanj S, Bi X, et al. A streamlined life cycle analysis of biomass densification process[C]//AlChE 2005 Annual Meeting, Cincinnati,2005.
    [11]Kumar P K, Ileleji K E. Techno-economic analysis of the transportation, storage and handling requirements for supplying lignocellulosic biomass feedstocks for ethanol production.2009 ASABE, Reno, Nevada June 21-24,2009 [C]. St. Joseph, MI.:American Society of Agricultural and Biological Engineers,2009.
    [12]Bhattacharya S C. Biomass Energy and Densification:A global review with emphasis on developing countries[R]. Sao Paulo:Centro Nacional de Referencia em Biomassa,2003.
    [13]Obernberger I, Thek G. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour[J]. Biomass and bioenergy,2004,27 (6) 653-669.
    [14]McMullen J, Fasina O O, Wood C W, et al. Storage and handling characteristics of pellets from poultry litter[J]. Applied engineering in agriculture,2005,21:645-651.
    [15]Mani S, Sokhansanj S, Bi X, et al. Economics of producing fuel pellets from biomass[J]. Applied Engineering in Agriculture,2006,22 (3):421.
    [16]Werther J, Saenger M, Hartge E U, et al. Combustion of agricultural residues[J]. Progress in energy and combustion science,2000,26 (1):1-27.
    [17]Nilsson D, Bernesson S. Processing biofuels from farm raw materials-a systems study. Report 001 [R]. Uppsala, Sweden:Department of Energy and Technology, Swedish University of Agricultural Sciences,2008 [in Swedish, summary in English].
    [18]Kaliyan N, Morey R V, White M D, et al. Roll press briquetting and pelleting of corn stover and switchgrass[J]. Transactions of the ASABE,2009,52 (2):543-555.
    [19]Kaliyan N. Densification of Biomass [D]. Twin Cities, MN, USA:University of Minnesota, 2008.
    [20]Sastry K V S, Fuerstenau D W. Mechanisms of agglomerate growth in green pelletization[J]. Powder Technology,1973,7 (2):97-105.
    [21]魏羽锋,田冰.制粒机理,制粒设备及其选择[J].机电信息,2013(8):1-13.
    [22]盛奎川,蒋成球.生物质压缩成型燃料技术研究综述[J].能源工程,1996(3):8-11.
    [23]周春梅,许敏,易维明.生物质压缩成型技术的研究[J].科技信息(学术版),2006,8:72-75.
    [24]Rumpf H. The strength of granules and agglomeration. W.A. Knepper (Ed.), Agglomeration, John Wiley, New York,1962:379-418.
    [25]Ghebre-Selassie I. Pharmaceutical pelletization technology [M]. Marcel Dekker, New York: Informa Health Care,1989.
    [26]Tabil L G, Sokhansanj S. Compression and Compaction Behavior of Alfalfa Grinds Part I: Compression Behavior[J]. Powder Handling and Processing,1996,8 (1):17-24.
    [27]Mohsenin N,Zaske J. Stress relaxation and energy requirements in compaction of unconsolidated materials[J]. Journal of Agricultural Engineering Research,1976,21 (2):193-205.
    [28]Lindley J A, Vossoughi M. Physical properties of biomass briquets[J]. Transactions of the ASAE, American Society of Agricultural Engineers,1989,32 (2):361-366.
    [29]Pietsch W. Agglomeration processes:phenomena, technologies, equipment[M]. New York:John Wiley & Sons,2008.
    [30]Thomas M, Van Vliet T, Van der Poel A F B. Physical quality of pelleted animal feed 3. Contribution of feedstuff components[J]. Animal Feed Science and Technology,1998,70 (1): 59-78.
    [31]Cooper A R and Eaton L E. Compaction behavior of several ceramic powders.Journal of the American Ceramic Society,1962,45(3):97-101.
    [32]Pietsch W B. Size enlargement methods and equipment-Part 4. Roll pressing, isostatic pressing and extrusion[J]. Handbook of Powder Science and Technology, eds. Fayed, ME and L. Otten, 1984:270-275.
    [33]白炜,胡建军,雷廷宙,等.秸秆颗粒冷态压缩成型试验研究及回归分析[J],河南科学,2009,27(6):703-706.
    [34]李源,张小辉,郎威,等.生物质压缩成型技术的研究进展[J].沈阳工程学院学报:自然科 学版,2009,5(4):301-304.
    [35]李美华.生物质燃料致密成型参数的研究[D].北京:北京林业大学,2005.
    [36]Adapa P, Tabil L, Schoenau G. Compaction characteristics of barley, canola, oat and wheat straw[J]. Biosystems engineering,2009,104 (3):335-344.
    [37]武凯,施水娟,彭斌彬,等.环模制粒挤压过程力学建模及影响因素分析[J].农业工程学报,2011(12):142-147.
    [38]肖宏儒,宋卫东,钟成义,等.生物质成型燃料加工技术分析研究[J].中国农机化,2009(5):65-68.
    [39]吴劲锋,黄建龙,张维果,等.苜蓿草粉制粒密度与挤出力模拟试验[J].农业机械学报,2007,38(1):68-71.
    [40]袁振宏,吴创之,马隆龙,等.生物质能利用原理与技术[M].北京:化学工业出版社,2005.
    [41]Kaliyan N, Vance Morey R. Factors affecting strength and durability of densified biomass products[J]. Biomass and Bioenergy,2009,33(3):337-359.
    [42]MacBain R. Pelleting animal feed [M]. Arlington, VA:American Feed Manufactures Association, 1966.
    [43]Mani S, Tabil L G, Sokhansanj S. Compaction behavior of some biomass grinds [J]. AIC Paper, 2002, (02-305).
    [44]Mani S, Tabil L G, Sokhansanj S. Evaluation of compaction equations applied to four biomass species [J]. Canadian Biosystems Engineering,2004,46 (3):55-61.
    [45]何元斌.生物质压缩成型燃料及成型技术(一)[J].农村能源,1995(5):12-14.
    [46]Kaliyan N, Morey R V. Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass [J]. Bioresource Technology,2010,101(3): 1082-1090.
    [47]Stevens C A. Starch gelatinization and the influence of particle size, steam pressure and die speed on the pelleting process [D]. Manhattan, KS:Kansas State University,1987.
    [48]Hill B, Pulkinen D A. A study of the factors affecting pellet durability and pelleting efficiency in the production of dehydrated alfalfa pellets. A Special Report. Tisdale, Saskatchewan, Canada: Saskatchewan Dehydrators Association,1988
    [49]Kaliyan N, Morey R V. Roll press briquetting of corn stover and switchgrass:A pilot scale continuous briquetting study.2007 AS ABE, Minneapolis, Minnesota June 17-20,2007 [C]. St. Joseph, MI.:American Society of Agricultural and Biological Engineers,2007
    [50]Shaw M D, Tabil L G. Compression and relaxation characteristics of selected biomass grinds. 2007 ASABE, Minneapolis, Minnesota June 17-20,2007 [C]. St. Joseph, MI.:American Society of Agricultural and Biological Engineers,2007
    [51]林维纪,张大雷.生物质固化成型技术及其展望[J].新能源,1999,2(4):39-42.
    [52]Shaw MD. Feedstock and Process Variables Influencing Biomass Densification. M.Sc. dissertation. Saskatoon, SK, Canada:University of Saskatchewan,2008.
    [53]Stelte W, Holm J K, Sanadi A R, et al. A study of bonding and failure mechanisms in fuel pellets from different biomass resources [J]. Biomass and bioenergy,2011,35 (2):910-918.
    [54]Hamilton R J. Analysis of waxes [J]. Waxes:chemistry, molecular biology and functions,1995, 6:311-342.
    [55]Deswarte F E I, Clark J H, Hardy J J E, et al. The fractionation of valuable wax products from wheat straw using CO2[J]. Green Chemistry,2006,8 (1):39-42.
    [56]Nielsen N P K, Gardner D J, Felby C. Effect of extractives and storage on the pelletizing process of sawdust[J]. Fuel,2010,89 (1):94-98.
    [57]Young L R, H B Pfost, A.M. Feyerherm. Mechanical durability of feed pellets. Transactions of the ASAE,1963, (6):145-150.
    [58]Kashaninejad M, Tabil L G. Effect of microwave-chemical pre-treatment on compression characteristics of biomass grinds [J]. Biosystems engineering,2011,108 (1):36-45.
    [59]Kumar P, Barrett D M, Delwiche M J, et al. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production [J]. Industrial & Engineering Chemistry Research, 2009,48 (8):3713-3729.
    [60]Shaw M D, Karunakaran C, Tabil L G. Physicochemical characteristics of densified untreated and steam exploded poplar wood and wheat straw grinds [J]. Biosystems engineering,2009,103 (2):198-207.
    [61]Adapa P, Tabil L, Schoenau G, et al. Pelleting characteristics of selected biomass with and without steam explosion pretreatment [J]. International Journal of Agricultural & Biological Engineering,2010,3(3):62-79.
    [62]Harmsen B J, Foster R J, Silver S, et al. Differential Use of Trails by Forest Mammals and the Implications for Camera-Trap Studies:A Case Study from Belize [J]. Biotropica,2010,42 (1): 126-133.
    [63]Iroba K and Tabil L G. Radio Frequency-Alkaline Pretreatment of Lignocellulosic Barley Straw. 2010 CSBE/ASABE, Pittsburgh, Pennsylvania June 20-23,2010 [C]. St. Joseph, MI.:American Society of Agricultural and Biological Engineers,2010
    [64]Bergman P C A, Kiel J H A. Torrefaction for biomass upgrading, Proc.14th European Biomass Conference, Paris, France,2005 [C]. The Netherland:Energy research Centre of the Netherland, 2005.
    [65]周粉富.颗粒饲料的热处理工艺[J].中国饲料,1998,18:24-26.
    [66]洪兰华.颗粒饲料制粒前调质的机理及操作[J].广东饲料,2001,10(4):25-26.
    [67]高自成,李际平,严永林,等.生物质颗粒文丘里干燥器的设计研究[J].中南林业科技大学学报,2013,33(12):130-134.
    [68]宁福胜,周军,康永德.制粒前调质温度和水分的设计与处理[J].饲料工业,2001,22(3):8-9.
    [69]Briggs J L, Maier D E, Watkins B A, et al. Effect of ingredients and processing parameters on pellet quality [J]. Poultry Science,1999,78 (10):1464-1471.
    [70]Winowiski T. Wheat and pellet quality [J]. Feed Management,1988,39 (9):58-64.
    [71]Wood J F. The functional properties of feed raw materials and their effect on the production and quality of feed pellets [J]. Animal Feed Science and Technology,1987,18 (1):1-17.
    [73]Heffner L E, H B Pfost. Gelatinization during pelleting. Feedstuff,1973, (45):33.
    [74]于翠平,赵红月,黄进,等.颗粒饲料质量的控制研究[J].饲料研究,2013(11):83-86.
    [75]张农联.配合饲料制粒前脂肪添加技术[J].饲料工业,1989(7):7-8.
    [76]Angulo E, Brufau J, Esteve-Garcia E. Effect of sepiolite on pellet durability in feeds differing in fat and fibre content [J]. Animal feed science and technology,1995,53 (3):233-241.
    [77]Richardson W, Day E J. Effect of varying levels of added fat in broiler diets on pellet quality [J]. Feedstuffs,1976.
    [78]Pfost H B, Young L R. Effect of colloidal binders and other factors on pelleting [J]. Feedstuffs, 1973,45 (49):21-22.
    [79]Anonymous. Special report:binders [J]. Milling 1983 b; 166 (2):31-33
    [80]周岩民,苏宜毅.不同酸化剂对饮料制粒性能及酸化效果的影响[J].粮食与饲料工业,1997(11):14-15.
    [81]Stahl M, Berghel J. Energy efficient pilot-scale production of wood fuel pellets made from a raw material mix including sawdust and rapeseed cake [J]. Biomass and Bioenergy,2011,35(12): 4849-4854.
    [82]Pietsch W. Agglomeration processes:phenomena, technologies, equipment [M]. New York:John Wiley & Sons,2008.
    [83]Wamukonya L, Jenkins B. Durability and relaxation of sawdust and wheat-straw briquettes as possible fuels for Kenya[J]. Biomass and Bioenergy,1995,8 (3):175-179.
    [84]Jenkins B M, Baxter L L, Miles Jr T R, et al. Combustion properties of biomass [J]. Fuel processing technology,1998,54 (1):17-46.
    [85]Nikolaisen L, N(?)rgaard-Jensen T, Hjuler K, et al. Quality characteristics of biofuel pellets [J]. Danish Energy Agency file,2002 (51161/00):0028.
    [86]马孝琴,骆仲泱,方梦祥,等.添加剂对秸秆燃烧过程中碱金属行为的影响[J].浙江大学学报:工学版,2006,40(4):599-604.
    [87]袁艳文,田宜水,赵立欣,等.添加剂对玉米秸秆颗粒燃料结渣特性的影响[J].农业工程学报,2011,27(14):99-103.
    [88]王瀚平.复合生物质颗粒燃料灰特性及热特性研究[D].长春:吉林大学,2012.
    [89]唐菊.秸秆类生物质灰熔特性试验研究[D].长春:吉林大学,2013.
    [90]Olivier J G J, Maenhout G J, Peters J A H W and Wilson J. Trends in global CO2 emissions:2012 Report. PBL report number 500114022[R]. The Netherlands:Netherlands Environmental Assessment Agency,2012.
    [91]Ruhul Kabir M, Kumar A. Comparison of the energy and environmental performances of nine biomass/coal co-firing pathways [J]. Bioresource technology,2012,124:394-405.
    [92]Dommett L. An introduction to Life Cycle Assessment [J]. Biofuels, Bioproducts & Biorefining, 2008,2 (5):385-388.
    [93]宋国辉,肖军,沈来宏.生物质基合成天然气(BioSNG)的生命周期评价[J].2013中国环境科学学会学术年会论文集(第四卷),2013.
    [94]冯超,马晓茜.秸秆直燃发电的生命周期评价[J].太阳能学报,2008,06:711-715.
    [95]陈世忠,张丙龙,梅永刚,等.木薯燃料乙醇全生命周期CO2排放分析——以循环经济为基础[J].食品与发酵工业,2012,38(6):144-147.
    [96]张治山,袁希钢.玉米燃料乙醇生命周期碳平衡分析[J].环境科学,2006,27(4):616-619.
    [97]潘峰,邵坚,田秉晖,等.麻风树籽制取生物柴油的生命周期风险指数评价[J].安徽农业科学,2012,40(29):14432-14436.
    [98]徐庆福,刘惠风,柴造坡.基于生命周期理论及FAHP法的生物质能项目评价体系构建[J].可再生能源,2012,10:028.
    [99]赵涛,张国晨,林涛.生物质能产品生命周期内能耗与排放测算[J].统计与决策,2013(1):57-59.
    [100]胡志远,楼狄明,浦耿强.燃料乙醇生命周期影响评价[J].内燃机学报,2005,03:258-263.
    [101]田望,廖翠萍,李莉,,等.玉米秸秆基纤维素乙醇生命周期能耗与温室气体排放分析[J].生物工程学报,2011,27(3):516-525.
    [102]Malca J, Freire F. Life-cycle studies of biodiesel in Europe:A review addressing the variability of results and modeling issues [J]. Renewable and sustainable energy revieMJ,2011,15 (1) 338-351.
    [103]Adler P R, Grosso S J D, Parton W J. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems [J]. Ecological Applications,2007,17 (3):675-691.
    [104]Kim S, Dale B E, Jenkins R. Life cycle assessment of corn grain and corn stover in the United States [J]. The International Journal of Life Cycle Assessment,2009,14 (2):160-174.
    [105]Gasol C M, Gabarrell X, Anton A, et al. LCA of poplar bioenergy system compared with Brassica carinata energy crop and natural gas in regional scenario [J]. Biomass and Bioenergy, 2009,33 (1):119-129.
    [106]Kim S, Dale B E. Life cycle assessment of various cropping systems utilized for producing biofuels:Bioethanol and biodiesel [J]. Biomass and Bioenergy,2005,29 (6):426-439.
    [107]Spatari S, Bagley D M, MacLean H L. Life cycle evaluation of emerging lignocellulosic ethanol conversion technologies [J]. Bioresource technology,2010,101 (2):654-667.
    [108]Gonzalez-Garcia S, Moreira M T, Feijoo G. Comparative environmental performance of lignocellulosic ethanol from different feedstocks [J]. Renewable and Sustainable Energy RevieMJ,2010,14 (7):2077-2085.
    [109]Li X, Mupondwa E, Panigrahi S, et al. Life cycle assessment of densified wheat straw pellets in the Canadian Prairies [J]. The international journal of life cycle assessment,2012,17 (4): 420-431.
    [110]Miller R B. Structure of wood. In:Wood handbookewood as an engineering material. Madison, United States:Department of agriculture, Forest Service, Forest products laboratory,1999.
    [111]Fengel D, Wegner G. Wood-chemistry, ultrastructure, reactions. Remagen:Kessel Verlag; 1983.
    [112]Moran E T. Effect of pellet quality on the performance of meat birds [J]. Recent Advances in Animal Nutrition, Butterworths, London,1989:87-108.
    [113]AOAC. Official method 984.13-protein (crude) in animal feed, and pet food. In Official methods of analysis of AOAC (18th Ed.). MD, USA:Association of Official Analytic Chemists, 2005a.
    [114]AOAC. Official method 973.18-acid detergent fiber & lignin in animal feed. In Official method of analysis of AOAC (18th Ed.). MD, USA:Association of Official Analytic Chemists, 2005b.
    [115]Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of dairy science,1991, 74 (10):3583-3597.
    [116]AOAC. Official method 942.05-ash in animal feeds. In Official method of analysis of AOAC (15th ed.). MD, USA:Association of Official Analytic Chemists,1990.
    [117]AOAC Official Method of Analysis, Method 920.39, Fat (crude) or ether extract in animal feed. In Official methods of analysis of AOAC (18th ed.). MD, USA:Association of Official Analytic Chemists,2005a.
    [118]王德成,吕东慧,郭磊,王光辉,尤泳.一种多参数控制的单颗粒制粒试验台[P].中国专利:CN203061149U,2013-07-17.
    [119]Adapa P K, Tabil L G, Schoenau G J, et al. Pelletization of Alfalfa Grinds-Compression Characteristics of Fractionated Alfalfa Grinds[J]. Powder H 和 ling and Processing,2002,14(4): 252-259.
    [120]Extension. New Uses for Crude Glycerin from Biodiesel Production Diversified Energy. Lincoln:University of Nebraska,2012. [2013-10-05]. http://MXw.extension.org/pages/29264/new-uses-for-crude-glycerin-from-biodiesel-production.
    [121]Johnson D T, Taconi K A. The glycerin glut:Options for the value-added conversion of crude glycerol resulting from biodiesel production [J]. Environmental Progress,2007,26(4):338-348.
    [122]Pagliaro M, Ciriminna R, Kimura H, et al. From Glycerol to Value-Added Products [J]. Angewandte Chemie International Edition,2007,46 (24):4434-4440.
    [123]Srivastava A, Prasad R. Triglycerides-based diesel fuels [J]. Renewable and sustainable energy reviews,2000,4(2):111-133.
    [124]ASABE standards 358.2. Moisture measurement-forages. In:ASABE standards, St. Joseph, MI.: American Society of Agricultural and Biological Engineers,2006.
    [125]ASABE standards 319.3. Method of determining and expressing fineness of feed materials by sieving. In:ASABE standards. St. Joseph, MI.:American Society of Agricultural and Biological Engineers,2008.
    [126]Yang F, Hanna M A, Sun R. Value-added uses for crude glycerol-a byproduct of biodiesel production [J]. Biotechnol Biofuels,2012,5:13.
    [127]Cavalcanti WB. The effect of ingredient composition on the physical quality of pelleted feeds:a mixture experimental approach [D]. Manhattan, KS:Kansas State University,2004.
    [128]Zhu S, Wu Y, Yu Z, et al. Microwave-assisted alkali pre-treatment of wheat straw and its enzymatic hydrolysis [J]. Biosystems engineering,2006,94 (3):437-442.
    [129]Sokhansanj S, Patil R T, Ahmadnia G, et al.. Procedures for evaluating durability and density of forage cubes and pellets [J]. CSAE paper,1991 (91-402):29-31.
    [130]ASTM. D5865-03-Standard test method for gross calorific value of coal and coke. In Annual Book of ASTM Standards. West Conshohocken, PA, USA:American Society for Testing and Materials,2003
    [131]Shaw M D, Karunakaran C, Tabil L G. Physicochemical characteristics of densified untreated and steam exploded poplar wood and wheat straw grinds [J]. Biosystems engineering,2009,103 (2):198-207.
    [132]ISO 14040. Environmental management-life cycle assessment-principles and framework. Geneva, Switzerland:International Organization for Standardization,2006.
    [133]Mupondwa E, Li X, Tabil L, et al. Technoeconomic analysis of wheat straw densification in the Canadian Prairie Province of Manitoba [J]. Bioresource technology,2012,110:355-363.
    [134]Fasina O O. Cooling characteristics of alfalfa pellets [D]. Saskatoon, SK:University of Saskatchewan,1994.
    [135]Adapa P K. Densification of Selected Agricultural Crop Residues as Feedstock for the Biofuel Industry [D]. Saskatoon, Saskatchewan:University of Saskatchewan,2011.
    [136]Jannasch R, Quan Y, Samson R. A process and energy analysis of pelletizing switchgrass, REAP-Canada [R]. Canada:Natural Resources Canada,2001.
    [137]Pastre O. Analysis of the technical Obstacles related to the production and utilization of fuel pellets Made from Agricultural residue [R]. Brussels, Belgium:European Biomass Industry Association,2002
    [138]Sokhansanj S, Fenton J. Cost benefit of biomass supply and pre-processing [M]. Kingston, Canada:BIOCAP Canada Foundation,2006
    [139]Pirraglia A, Gonzalez R, Saloni D, et al. Technical and economic assessment for the production of torrefied ligno-cellulosic biomass pellets in the US [J]. Energy Conversion and Management, 2013,66:153-164.
    [140]Lemus J. The role of torrefaction in supply chain. Sarriguren, Spain:National Renewable Energy Centre,2012.[2013-08-08]. http://bioclus.eu/en/images/files/08_ Lemus_ CENER_Torrefaction.pdf. Accessed on 30 May 2013
    [141]Magelli F, Boucher K, Bi H T, et al. An environmental impact assessment of exported wood pellets from Canada to Europe[J]. Biomass and Bioenergy,2009,33 (3):434-441.
    [142]Korre A, Gay J R, Durucan S. Human health risk assessment in regions surrounding historical mining activities:The effect of change of support [J]. International Journal of Mining, Reclamation and Environment,2007,21 (3):219-239.
    [143]Jolliet O, Margni M, Charles R, et al. IMPACT 2002+:a new life cycle impact assessment methodology[J]. The International Journal of Life Cycle Assessment,2003,8 (6):324-330.
    [144]ASABE standards S269.5. Densified Products for Bulk Handling — Definitions and Method. In. ASABE standards. St. Joseph, MI (USA):American Society of Agricultural and Biological Engineers,2012
    [145]ASABE standards 319.3. Method of determining and expressing fineness of feed materials by sieving. In:ASABE standards. St. Joseph, MI.:American Society of Agricultural and Biological Engineers,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700