多管藻(Polysiphonia urceolata Grev)藻胆体中的藻胆蛋白特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多管藻(Polysiphonia urceolata Grev)是海洋大型红藻之一,红藻的藻胆体以超分子复合体形式附着在类囊体膜上作为光系统Ⅱ(photosystemⅡ, PSⅡ)的捕光色素蛋白复合体为PSⅡ传递光能。
     目前,光合作用光反应机制研究以原核蓝藻、绿色植物等为主要研究对象,捕光色素复合体研究主要在蓝藻、绿藻及高等植物中进行。红藻色素—蛋白复合体研究远落后于蓝藻、绿藻及高等植物。比较深入的研究工作主要在单细胞红藻-紫球藻(Porphyridium cruentum)中进行。红藻藻蓝蛋白(phycocyanin, PC)和别藻蓝蛋白(allophycocyanin, AP)研究更少。红藻藻胆体特征对深入认识其结构、功能及光系统进化非常重要。
     本研究围绕多管藻藻胆体的分离纯化方法及藻胆蛋白的性质等进行了研究。采用两次蔗糖密度超速离心法分离纯化了多管藻藻胆体,确立了高效制备多管藻藻胆体的方法;利用层析法及非变性聚丙烯酰胺凝胶电泳分离纯化了多管藻藻胆体中含量较高的藻红蛋白(phycoeryanin, PE)和含量较低的藻蓝蛋白和别藻蓝蛋白;研究了纯化的藻胆蛋白的光谱特性、等电点等,提出了藻胆蛋白在藻胆体中的聚合模式。
     主要研究内容和结果如下:
     1.多管藻藻胆体分离纯化
     利用超声破碎,增溶,两次蔗糖密度梯度超速离心分离纯化藻胆体。结果表明以终浓度为2%(v/v)的NP-40增溶1.5 h,用1.0mol/L-2.0mol/L蔗糖密度和1.0mol/L蔗糖进行两次蔗糖密度梯度超速离心(138000×g,3.5h),获得多管藻的完整藻胆体(F675/F576=5.25),多管藻完整的藻胆体粒径在210 nm左右。
     2.藻胆蛋白分离纯化
     比较了分离纯化多管藻R-藻红蛋白(R-PE)的不同方法。结果表明先经过Sephadex G-150分子筛柱层析,再经离子交换柱层析是纯化多管藻藻胆体中R-PE的最有效手段,可使其A565/A280=4.95。
     多管藻R-藻蓝蛋白(R-PC)经过Sephadex G-150分子筛柱层析和离子交换柱层析后,再经过非变性聚丙烯酰胺电泳(7%(w/v),pH7.5的分离胶,3%(w/v),pH5.5的浓缩胶)纯化,使R-PC的A618/A280=5.25。
     R-PE和R-PC离子交换柱层析的洗脱条件分别是:R-PE采用0-400 mmol/L的NaCl溶液(25 mmol/L的PBS缓冲液配制)共500 ml进行梯度洗脱;R-PC用50-400 mmol/L的NaCl溶液(25 mmol/L的PBS缓冲液配制)共500 ml线性梯度洗脱。
     R-PC离子交换后,分别用400 mmol/LNaCl溶液和1.5 mol/L NaCl溶液洗脱离子交换柱,又洗脱下两个组分,分别进行非变性聚丙烯酰胺电泳(5%(w/v),pH7.5的分离胶,4%(w/v),pH5.5的浓缩胶),可分离出别藻蓝蛋白。
     3.藻胆蛋白的特征分析
     对纯化的R-PE, R-PC和AP进行了光谱性质,等电点,分子量等分析。结果如下:
     R-PE的等电点在pH4.7左右;分子量为247kDa; SDS-PAGE的结果显示R-PE有α,β,γ,γ'四种亚基(SDS-PAGE的条件为13-21%(w/v),pH9.0的分离胶和4%(w/v),pH6.8的浓缩胶);R-PE有两种不同的六聚体形式(α17.6β19.2)3γ29.5(α17.6β19.2)3和(α17.6β19.2)3γ31.0(α17.6β19.2)3,两种聚合体的等电点非常接近;变性等电聚焦电泳结果显示R-PE亚基的等电点在pH5.0-5.8之间,α/β的等电点为pH5.0和pH5.8。
     R-PC的等电点在pH5.7;SDS-PAGE的结果表明R-PC有α、β和β'三种亚基,没有γ亚基和无色多肽(SDS-PAGE的条件为12%-21%(w/v),pH8.8的梯度分离胶和4%(w/v),pH6.8的浓缩胶);R-PC两种不同的六聚体形式(α17.5β21.3)6和(α17.5β22.6)6;R-PC的α/β亚基的等电点为pH5.1和pH5.2。
     AP的等电点在pH5.5, SDS-PAGE的结果表明AP有α、β两种亚基(SDS-PAGE的条件为13%(w/v),pH 9.5的分离胶和4%(w/v),pH6.8的浓缩胶);经两次非变性电泳透析得到的AP1和由400 mmol/L NaCl洗下组分经非变性电泳得到的AP2有两种无色多肽,它们都有两种聚合体形式(α17β18.5)3L1和(α17β18.5)3 L2,由1.5 mol/L NaCl洗下组分经非变性电泳得到的AP3没有无色多肽,只有一种聚合体形式(α17β18.5)3。
     研究结果为深入了解大型红藻藻胆体中藻胆蛋白特征、藻胆体结构及其与蓝藻、单细胞红藻藻胆体的差异;为藻类叶绿体进化,光合作用机理及光系统的微观结构研究提供有价值的研究基础,为海洋红藻的应用提供理论依据。
Polysiphonia urceolata is one of the marine red macro algae. Phycobilisomes of red algae are in the form of macromolecular complexes attached to the stromatic side of the thylakoid membrane, which harvest the sunlight energy and transfer it to photosystemⅡ(PSⅡ).
     At present, prokaryotic cyanobacteria and green plants have been the main objects of study on the light reaction center of photosynthesis mechanism. Divers studies have been carried out using cyanobacteria, green algae and high plants as materials. The research of pigment-protein complexes of red algae is far behind those of cyanobacteria, green algae and high plants. In red algae, studies are mainly in unicellular Porphyridium cruentum. Report on the structure and function of phycobilisomes of multicellular red algae is scarce. Research about phycocyanin (PC) and allophycocyanin (AP) is even less. Phycocyanin and allophycocyanin are the components of the phycobilisomes, and their content is low in phycobilisomes. Study of phycobilisome composition of red algae, is very meaningful to the deep understanding of the structure and function of phycobilisome and evolution of photosynthetic systems.
     This study focuses on the separation and purification method of phycobilisomes from P. urceolata and the properties and the characteristics of phycobiliprotein. A two step sucrose density ultracentrifugation method has been used to separate and purify the phycobilisomes of P. urceolata. This is an efficient method of P. urceolata phycobilisomes preparation. The phycobiliprotein, phycoeryanin (PE), PC and AP of phycobilisomes from P. urceolata were separated and purified by combanation of chromatographies and native polyacrylamide gel electrophores. Spectral properties, isoelectric point and strctural characteristics of phycobiliproteins were studied. The main contents and results of the study are as follows:
     1. Separation and purification of phycobilisomes from P. urceolata
     The use of ultrasonication, solubilization and two-step sucrose density gradient ultracentrifugation purified phycobilisomes. The results showed that solubilization with 2% NP-40 (final concentration, v/v) for 1.5 h and then a two-step ultra-centrifugation (138,000×g,3.5 h) with 1.0-2.0 mol/L sucrose density gradient first and 1.0 mol/L sucrose solution later can obtain phycobilisomes with highly pure (F675/F576=5.25) and complete. Diameter of the phycobilisomes is about 21 Onm.
     2. Purification of phycobiliprotein from phycobilisomes
     Comparisonat different isolation and purification methods of R-PE found that Sephadex G-150 column chromatography in combination with ion exchange chromatography is effective for purifing phycoerythrin of phycobilisomes. A565/A280 of the purified R-PE is arrived at 4.95.
     R-PC was purified by native polyacrylamide gel electrophoresis with 7%(w/v) of separation gel (pH7.5) and 3%(w/v) of stack gel (pH5.5) after purified by the Sephadex G-150 column chromatography and ion exchange column chromatography. A618/A280 of the purified R-PC is arrived at 5.25.
     The elution conditions of ion exchange chromatography are that R-PE is eiuted by NaCl solution of 0-400 mmol/L linear gradient (25 mmol/L of PBS buffer preparation) with 500ml volumn and R-PC is eiuted by L NaCl solution of 50-400 mmol/L linear gradient (25mmol/L of PBS buffer preparation) with 500ml volumn. After R-PC was eluted from ion exchange column, AP can be isolated by native polyacrylamide gel electrophoresis with 5%(w/v) of separation gel (pH7.5) and 4%(w/v) of stack gel (pH5.5) from components which eluted by 400mmol/LNaCl andl.5mol/LNaCl from the ion exchange column respectively.
     3. Analysis of phycobiliprotein of phycobilisomes
     Spectral properties, isoelectric point, structure characteristic of purified R-PE, R-PC and AP have been researched. The results are as follows:
     The isoelectric point of R-PE is about pH4.7; molecular weight is 247kDa; R-PE contains four kinds of subunitsα,β,γ,γ'by SDS-PAGE with 13-21%(w/v) separating gel (pH9.0) and 4%(w/v) stacking gel(pH6.8). It has two different hexamer forms (α17.6β19.2)3γ29.5 (α17.6β19.2)3 and (α17.6β19.2)3γ31.0 (α17.6β19.2)3 and two hexamers have very close isoelectric points. The isoelectric points of R-PE subunits are pH5.0-5.8 and isoelectric points ofα/βsubunit are pH5.0 and pH5.8.
     The isoelectric point of R-PC is pH5.7. R-PC has three kinds of subunitsα,βandβ', has noγ-subunit and no colorless polypeptide by SDS-PAGE with 12%-21%(w/v) separating gel (pH8.8) and 4%(w/v) stacking gel (pH6.8). R-PC has two different hexamer forms (α17.5β21.3)6 and (α17.5β22.6)6. The isoelectric point ofα/βsubunit of R-PC is pH5.1 and pH5.2.
     The isoelectric point of AP is pH5.5. Results of SDS-PAGE with 13%(w/v) separating gel (pH 9.5),4%(w/v) stacking gel (pH6.8) show that AP has two kinds of chromospheres-carrying subunitsα,β. and quadratic AP1 (which dialyzed after second native-PAGE) and AP2 (which obtained by native-PAGE from fraction eluted by 400mmol/L NaCl) either have two colorless peptides. They all have two kinds of polymer form (α17β18.5)3L1, and (α17β18.5)3L2, AP3 (which obtained by native-PAGE from fraction eluted 1.5mol/L NaCl) has no colorless peptides. AP3 only has one type of polymer form(α17β18.5)3.
     Polymer form of phycobiliprotein of phycobilisomes was proposed in this study. It helps the understanding of the characteristic of phycobiliprotein and the structure of phycobilisomes of red algae and differences of phycobilisomes with cyanobacteria and unicellular algal. It can provide valuable research results for the evolution of algal chloroplasts, photosynthesis mechanism and micro-structure of photosystem.It also can provide theoretical basis for the application of marine red algae.
引文
蔡春尔,吴庆磊,徐春和,何培民.藻红蛋白光敏剂的研究进展.生物技术通讯,2004,4:629-632
    陈小强,史峰,龚兴国.R-藻红蛋白的结构、功能及其应用.细胞生物学杂志,2004,26:399-403
    程凌江,蒋丽金,马金石.条斑紫菜中R-藻红蛋白的纯化及其α和β亚基的分离与发色团含量的测定.海洋与湖沼,1990,21:337-342
    樊守金,张熙颖,张玉忠.钝顶螺旋藻藻胆体低速离心制备过程的光谱表征.光谱学与光谱分析,2008,28:2119-2129
    高洪峰,曹文达.坛紫菜R-藻蓝蛋白和变藻蓝蛋白的亚基组成和发色团含量.海洋学报,1993,15:99-104
    郭宝江,吴燕清.硒化藻蓝蛋白的生物材料抗肝癌作用的研究.华南师范大学学报(自然科学版),2001(3):40-44
    韩博平,韩治国,付翔.藻类光合作用机理与模型.北京:科学出版社,2003.1-27
    李凤平,路荣昭,顾天青,高士杰.藻胆体核心的分离和光谱研究.植物学通报,1997,14(2):33-35
    李冠武,王广策.多管藻R-藻红蛋白的激光光敏作用对体外培养的肿瘤细胞生存的影响.激光生物学报,1997,6:1119-1121
    李华佳,杨方美.藻蓝蛋白的提取技术与生物活性研究.食品科学,2005,26:243-246
    林碧琴,谢淑琦.水生藻类与水体污染监测.沈阳:辽宁大学出版社,1988.227-234
    林启山,张建平,曾繁杰,蒋丽金.海洋红藻和蓝藻中的别藻蓝蛋白结构特征的比较.植物生理学报,1992,18:253-259
    刘杨,王雪青,庞广昌.钝顶螺旋藻藻蓝蛋白的富集分离及其稳定性研究.食品科学,2007,29(7):39-42
    刘杨,王雪青,庞广昌.反胶团萃取分离螺旋藻藻蓝蛋白.天津科技大学学报,2008,23(2):30-34
    路荣昭,于延利.螺旋藻藻胆体的光谱特性和能量传递的研究.生物物理学报,1988.4(1):14-17
    路荣昭,张正东.发菜藻胆体的分离和光谱特性的研究.植物学通报,1990,7(4):27-30
    路荣昭,刘斌,王淑芝.华北半叶紫菜藻胆体的光谱特性和光能传递的研究.海洋与湖沼,1999,2:480-483
    梅镇安,孙琦,容寿榆.光合作用.北京:北京大学出版社,1987.43-49
    潘忠正,曾呈奎.中国产紫菜属藻胆蛋白的研究.海洋与湖沼,1985,16(5):417-420
    曲文娟,马海乐,张厚森.钝顶螺旋藻藻蓝蛋白的脉冲超声辅助提取技术.食品科技,2007,13:135-139
    苏平,赵金梅,赵开弘,周明.别藻蓝蛋白的聚集态研究.武汉植物学研究,2008,26:573-580
    苏普.海藻有效成分的研究与开发.药物生物技术,1998,5(1):60-64
    隋正红,张学成.藻红蛋白研究进展.海洋科学,1998,4:24-27
    唐玫,金鹰,郭宝江.螺旋藻藻蓝蛋白和藻多糖对人体外周血淋巴细胞功能的影响.华南师范大学学报(自然科学版),1998a,4:63-67
    唐玫,金鹰,郭宝江,周长忍.螺旋藻藻蓝蛋白对小鼠免疫功能的影响.暨南大学学报(自然与医学报),1998b,19(5):93-97
    王广策.藻胆体杆模型复合物的能量传递途径研究.中山大学学报(自然科学版),1997,6:206-211
    王广策,曾呈奎.藻胆体结构与功能的研究概况.水生生物学报,1998 a,22:372-377
    王广策,周百成,曾成奎.B-藻红蛋白和R-藻红蛋白γ亚基的分离、特性及其在分子中的空间位置分析.中国科学(C期),1998 b,28(1):36-41
    王广策,曾呈奎.藻胆蛋白功能的研究.生命科学,1998 c,10:312-315
    王广策.藻胆蛋白研究概况.海洋生物技术新进展.北京:海洋出版社,1999.196-221
    王广策,邓田.藻胆蛋白的研究概况(Ⅰ)—藻胆蛋白的种类与组成.海洋科学,2000,24(2):22-24
    王慧,赵井泉,张建平,杨紫莹,蒋丽金.四种变藻蓝蛋白复合物的分离及光谱特性的研究.生物物理学报,1996,12:318-322
    王素娟,裴鲁青,段德麟.中国常见红藻超微结构,宁波:宁波出版社,2004.2
    王勇,钱凯先,董强.高纯度藻蓝蛋白分离纯化及光谱特性研究.生物化学与生物物理进展,1999,26:457-460
    王勇,钱峰,钱凯先,董强.藻蓝蛋白的抗癌活性研究.浙江大学学报(工学版),2001,5:672-675
    王仲孚,赵谋明,彭志英,田庚元.藻胆蛋白研究.生命的化学,2000,20(2):27-57
    温少红,徐春野.紫球藻红蛋白的分离纯化及光谱性研究.海洋通报,2000,19(3):90-94
    伍华菊,张建平,夏安东,朱晋昌,曾繁杰,蒋丽金.条斑紫菜中R-藻红蛋白的生化特性.生物化学与生物物理学报,1994,26:491-497
    伍华菊,张建平,夏安东,朱晋昌,蒋丽金.红藻条斑紫菜R-藻红蛋白中的能量传递过程.生物化学与生物物理学报,1995,13(1):53-60
    吴蕾,庞广昌,陈庆森.螺旋藻藻蓝蛋白的规模化提取和色谱纯化技术研究进展.食品科学,2008,29:461-463
    吴萍,顾铭,戚艺华,欧阳藩.藻胆蛋白荧光探针及其标记.生命科学研究,2001,5:109-113
    颜世敢,陈秀兰,张熙颖,周百成,张玉忠.异型双功能交联剂SPDP对C-藻蓝蛋白的光谱影响.光谱学与光谱分析,2008,28:1115-1117
    杨苍珍,马金石,蒋丽金.R-藻红蛋白光谱分析.生物化学与生物物理进展,1998,15:200-203
    杨紫萱,蒋丽金,曾繁杰.条斑紫菜中藻胆蛋白的研究—条斑紫菜R-藻红蛋白的聚集-解聚现象.中国科学,1987,4(B辑):371-376
    衣志伟,黄辉,蒋伍玲,匡廷云,隋森芳.发菜藻胆体亚单位的分子排布.电子显微学报,2005,24(1):61-64
    喻玲华,曾繁杰,蒋丽金,周百成.海洋多管藻的R-藻红蛋白的亚基组成和发色团含量.生物化学与生物物理学报,1990,22:221-227
    曾繁杰,杨紫萱,蒋丽金.多管藻中R-藻红蛋白性质和超微结构.生物化学和生物物理学报,1985,17(1):97-104
    曾繁杰,杨紫萱,刘惠平,蒋丽金.条斑紫菜的藻胆蛋白的研究—Ⅰ.R-藻红蛋白的物理和免疫化学性质.中国科学B辑,1986,16:364-364
    曾繁杰,林启山,蒋丽金,朱立平.红藻坛紫菜中R-PC的分离和特性.生物物理和生物化学学报,1992,24:545-552
    张成武,增邵琪.钝顶螺旋藻藻胆蛋白的分离、纯化及其理化特性.天然产物研究开发,1996,8(2):29-34
    张成武,刘宇峰,王习霞,沈海雁.螺旋藻藻蓝蛋白对人血癌细胞株HL-60、K-552和μ-937生长影响.海洋科学,2000,24(1):45-48
    张厚森,马海乐.钝顶螺旋藻藻蓝蛋白的稳定性试验研究.食品研究与开发,2005,26(3):74-76
    张建平,谢洁,赵井泉,彭程航,郑锡光,赵福利,张景民,汪河洲.多管藻中R-藻蓝蛋白能量传递途径及动力学.生物物理学报,2001,17:767-782
    张丽琴,项斯瑞.藻类植物分类系统分类初探.郑州:河南教育出版社,2004.85
    张少斌,刘慧,刘国琴,商树田.螺旋藻别藻蓝蛋白的纯化、理化特性与结晶.微生物学通报,2006,33(5):30-35
    张学成,张锦东,隋正红,谭桂英.江蓠属藻胆蛋白的研究Ⅰ.诱变、突变体筛选及藻胆蛋白的光谱特性.青岛海洋大学学报,1996,26:316-326
    张学成,程晓杰.江蓠属藻胆体的研究Ⅱ-藻胆体的荧光光谱特性.青岛海洋大学学报,1999,29:474-478
    张玉忠,张熙颖,陈秀兰,周百成.一种完整藻胆体的制备方法.中国专利,200510042029,2005-10-4
    赵井泉,张建平.用脉冲辐解法研究藻胆蛋白与羟基自由基反应动力学.科学通报,2000,45(1):32-36
    郑江.藻胆蛋白的提取纯化研究进展.食品科学,2002,23(11):159-161
    郑江,高亚辉,王文星,黄水英.红毛藻中多组分藻蓝蛋白及其亚基的分离.中国水产科学,2003,10:277-281
    郑蔚然,丁玉庭.藻胆蛋白的分离纯化研究进展.微生物学杂志,2008,28(4):70-73
    Adir N. Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant, Photosynth. Res.,2005,85:15-32
    Apt KE, Hoffman NE, Grossman AR. The γ subunit of R-phycoerythrin and its possible mode of transport into the plastid of red algae.The Journal of Biological Chemistry,1993,268: 16208-16215
    Apt KE, Metzner S, Grossman AR. The γ subunit of phycoerythrin from a red alga:position in phycobilisomes and sequence characterization. Journal of Phycology,2001,37:64-70
    Bald D, Kruip J, Ronger M. Supramolecular architecture of cyanobacterial thylakoid membranes: how is the phycobilisome connected with the photosystems? Photosynth. Res.,1996,49: 103-118
    Ben-Shem A, Frolow F, Nelson N. Crystal structure of plant photosystem I. Nature,2003,426: 630-635
    Bold HC & Wynne MJ. Introduction to the Algae:Structure and reproduction. Prentice Hall Inc. Second edition.1985.23-68
    Bryant DA, Gluglielmi G, Tandau de Marsac N, Castets AM, Cihen-Bazire G. The structure of cyanobacterial phycobilisome:a model. Arch. Microbiol.,1976,123:113-127
    Bryant DA. Phycoerythrocyanin and phycoerythrin:properties and occurrence in cyanobacteria. J. Gen. Microbiol.,1982,128:835-844
    Bumba L, Helena HD, Michal H, Frantisek V. Structure characterization of photosystem Ⅱ complex from red alga Porphyridium cruentum retaining extrinsic subunits of the oxygen-evolving complex. Eur. J. Biochem.,2004,271:2967-2975
    Campbell D, Hurry V, Clarke A, Gustafsson P, Oquist G. Chlorophyll fluorescence analysis of cyanobactenrial photosynthesis and acclimation. Microbiology and molecular biology reviews, 1998,62:667-683
    Canaani OD & Gannt E. Circular dicroism and polarized fluorescence characteristics of blue-green algal allophycocyanins. Biochemistry,1980,19,2950-2956
    Chen C, Zhang YZ, Chen XL, Zhou BC, Gao PJ. Langmuir-blodgett film of phycobilisomes from blue-green alga Spirulina platensis. Acta Biochimica et Biophysica Sinica,2003,35:952-955
    Cheng Y, Prussin C. Utilization of phycobilisomes to detect low density cell surface TGF-beta expression on regulatory T cells. Journal of Allergy and Clinical Immunology,2004,113 (2): 2-9
    Cohen-Bazirc G & Bryant DA. Phycobilisomes:composition and structure. The biology of Cyanobacteria,1982,23:113-127
    Dekker JP & Boekema EJ. Supramolecular organization of thylakoid membrane proteins in green plants. Biochimica et Biophysica Acta,2005,1706:12-39
    Dolganov N & Grossman AR. A polypeptide with similarity to phycocyanin α subunit phycocyanobilin lyaseInvolved in degradation of phycobilisomes. Journal of Bacteriology,1999. 181:610-617
    Ducret A, Muller SA, Goldie KN, Hefti A, Zuber H, Engel A. Reconstitution, charaterisation and mass analysis of pentacylindrical allophycocyanin core complex from the cyanobacterium Anabaena sp. Pcc he 7120. J. Mol. boil.,1998,278:369-388
    Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E, Green BR. A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J. Mol. Evol.,1999,48:59-68
    Fairchild CD, Jones IK, Glazer AN. Absence of glycosylation on cyanobacterial phycobilisome linker polypeptides and Rhodophytan phycoerythrins. Journal of Bacteriology,1991,173: 2985-2992
    Gantt E & Conti SF. Granules associated with the chloroplast lamellae of Porphyridium cruetum. J.Cell Biol.,1966,29:423-434
    Gantt E & Lipschultz CA. Phycobilisomes of Porphyridium. Isolation. Cell Biol.,1972,54: 313-324
    Gantt E & Lipschultz CA. Energy transfer in phycobilisomes from phycoerythrin to allophycocyanin Biochim. Biophys. Acta,1973,292:858-861
    Gantt E & Gray BH. Spectral properties of phycobilisomes and phycobiliproteins from the blue-green alga Nostoc sp. Photochem. Photobiol.,1975,21:121-128
    Gantt E. Phycobilisomes. Annu. Rev. Plant Physiol.,1981,32:327-347
    Gantt E. The molecular biology of cyanobacteria, supramolecular membrane organization, in:D. A. Bryant (Ed), Netherlands:Kluwer Academic Publication,1994.119-138
    Gantt E. Pignent protein complexes and the concept of the photosynthetic unit:chlorophyll complexes and phycobilisomes. Photosynth. Res.,1996,48:47-53
    Gao ZQ, Wang GC, Tseng CK. Isolation and characrerization of photosystem Ⅱ of Porphyra yezoensis Ueda. Acta Biochimica et Biophysica Sinica,2004,36:780-785
    Ge BS, Tang ZH, Lin LP. Pilot-scale fermentation and purification of the recombinant allophycocyanin over-exp ressed in Escherichia coli. Biotechnology Letters,2005a,27: 783-787
    Ge BS, Tang ZH, Zhao FQ. Scale-up of fermentation and purification of recombinant allophycocyanin over-exp ressed in Escherichia coli. Process Biochemistry,2005b,40:190-195
    Gillbro T, Sandstrom A, Sundstrom V, Wendler J, Holzwarth AR. Picosecond study of energy transfer kinetics in phycobilisomes of Synechococcus 6301 and the mutant AN112. Biochim. Biophys.Acta.1985,808:52-65
    Glazer AN & Hixson CS. Characterization of R-phycocyanin. The Journal of Biological Chemistry, 1975,250:5487-5495
    Glazer AN. Photosynthetic accessory proteins with bilin prosthetic group.in:hatch, M.D. and board man. The Biochemistry of Plants. New York:Academic Press,1981.51-96
    Glazer AN & Stryer L. Fluorescent phycobiliprotein conjiugates for analyses of cells and molecules. Cell Biol.1982,93:981-986
    Glazer AN & Stryer L. Fluorescent tandem phycobiliprotein conjugates:Emission wavelength shifting by energy transfer. Biophys.,1983,43:383-386
    Glazer AN. Phycobilisome:a macromolecular complex optimized for enery transfer. Biochim. Biophys. Acta,1984a,768:29-51
    Glazer AN & Stryker L. Phycofluor probes. Trends in Biochemical Sciences,1984b,9:423-427
    Glazer AN, Yeh SW, Webb SP, Ckarc JH. Disc-to-disc transfer as the rate-limiting step for energy flow in phycobilisome. Science,1985 a,227:419-423
    Glazer AN, Williams RC and Ckarc JH. Kinetics of energy flow in the phycobilisome. Science, 1985b,230:1051-1053
    Glazer AN. Light guides directional energy transfer in a photosynthetic antenna. Biol. Chem.1989, 264:1-4
    Glazer AN. Phycobilisome:a macromolecular complex optimized for light energy transfer. Biochim. Biophys. Acta,1993,768:29-51
    Glauser M, Sidler W, Zuber H. Isolation characterization and reconstitution of phycobiliprotein rod-core linker polepetide complexes from the phycobilisome of Mastgocladus laminosus. Photochem. Photobiol.,1993,57:344-351
    Glick RE & Zilinskas BA. Role of the colourless polypeptides in phycobilisome reconstitu-tion from separated phycobiliproteins. Plant Physiol.,1983,69:991-997
    Gottschack L, Lottspeich F and Scheer H. Reconstitution of allophycocyanin from Mastgocladus laminosus with isolated linker polypeptide. Photochem. Photobiol.,1993,58:761-767
    Green BR & Durnford DG. The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev. Plant Physiol. Plant Mol. Biol.,1996,47:685-714
    Green BR. Was "molecular opportunism" a factor in the evolution of different photosynthetic light-harvesting pigment systems? Proceeding of the National Academy of Sciences of th United States of America,2001,98:2119-2121
    Grossman AR, Schaefer GG, Chiang JL. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiology reviews,1993,57:725-749
    Hilditch CM, Balding P, Jenkins R, Smith AJ, Rogers LJ. R-phycoerythrin from the macroalga Corallina officinalis (Rhodophyceae) and application of a derived phycofluor probe for detecting sugar-binding sites on cell membranes. J. Appl. Phycol.,1991,3:345-354
    Holzwarth AR. Structure-function relationships and energy transfer in phycobiprotein antennae. Physiol. Plant,1991,83:518-528
    Isono T & Katoh T. Subpriticales of Anabaena phycobilisome—Ⅰ. Reconstitution of allophycocyanin cores and entire phycobilisomes. Plant Cell Physiol.,1983,24:357-368
    Kapraun DF. Nuclear DNA content estimates in multicellular green, red and brown algae: phylogenetic considerations. Annals of Botany,2005,95:7-44
    Klotz AV, Glanzer AN, Boshop JE, Nagy JQ, Rapoport H. Phycobiliprotein-bilin linkage diversity. Ⅱ. Structure studies on a-ring linked and d-ring linked phycoerythrobilins. J. BIol. Chem.,1986, 261:6797-6805
    Krik EA, Hoffman NE, Grossman AR. The γ subunit of R-phycocerythrin and its possible mode of transport into the plastid of red alga. J. Bio. Chem.,1993,268:16208-16215
    Krik EA, Sandra M, Arthur RG. The γ subunits of R-phycocerythrin from red alga:possiton in phycobilisomes and sequence characterization. J. Phycol.2001,37:64-70
    Krik J. Light and photosynthesis in aquatic ecosystems. Second Edition. England:Cambridge Univ. Press,1994.1-35
    Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LL, An XM, Chang, WR. Crystal structure of spinach major light-harvesting complex at 2.72 A resolutions. Nature,2004,428:287-292
    MacColl R & Guard-Friar D. Phycobiliproteins. Florida:CRC Press, Boca Raton.1987.45-80
    MacColl R. Cyanobacterial phycobilisomes. Journal Structural Biology,1998,124:311-314
    MacColl R, Eisele LE, Dhar M, Ecuyer J, Hopkins S. Bilin organization in cryptomonad biliproteins. Biochemistry,1999,38:4097-4105.
    Maxon P, Sauer K, Zhou J, Bryant DA, Glazer AN. Spectroscopic studies of cyanobacterial phycobilisomes lacking core polypeptides. Biochim. Biophys. Acta,1988,977:40-51
    Mimuro M, Lipschulze C, Gannt E. Energy flow in the phycobilisome core of Nostoc sp. (MAC): two independent teminal pigments. Biochem.Biophys. Acta,1986,852:126-132
    Mimuro M, Yamazali L, Tamai N, Katoh T. Excitation energy transfer in phycobilisomes at-196℃ isolated from the cyanobacterium Anabaena wariabilis (M3):Evidence for plural transfer pathways to the terminal emitters. Biochim. Biophys.Acta,1989,973:153-162
    Morschel R. Phycobilisome and the light-havrvesting system of cyanobacteria and red algae. Electron Microscopy of Protein, London:Acadmic Press,1987:209-254
    Morschel R. The light-harvesting antennae of cyanobacteria and red algae. Photosynthetica,1991, 25:137-144
    Murphy JT & Lagarias JG. The phytofluors:a new class of fluorescent protein probes. Current Biology,1997,7:870-876
    Nelson N, Yocum C. Structure and function of photosystems Ⅰ and Ⅱ. Annu. Rev. Plant Biol., 2006,57:521-565
    O'Carra P & O'hEocha C. Algal biliproteins and phycobilins. Chemistry and Biochemistry of Plant Pigments. New York:Academic Press,1976.328-376
    Patil G. Aqueous two phase extraction forpurification of C-phycocyanin. Biochemical Engineering Journal,2007,34:156-164
    Qin S, Tang ZH, Lin F, Sung LA, Tseng CK. Genomic cloning, expression and recombinant protein purification of α and β subunits of the allophycocyanin gene (apc) from the cyanobacteria. Journal of Applied Phycology,2004,16:483-487
    Richard GF, Nancy EW, Herbert EF, Robert MS. Three-dinensional structures of C-phycocyanin and B-phycoerythrin at 5-A resolution. The Journal of Biological Chemistry,1980,255: 5082-5089
    Roell MK & Morse DE. Orgnization,expression and nucleotide sequence of the operon encoding R-phycoerythrin alpha and bata subunits from red alga Ploysiphomia boldii. Plant Mol. Biol. 1993,21 (1):47-58
    Rowan KS. Photosynthetic Pigments of Algae. New York:Cambridge University Press,1989. 166-189
    Samsonoff WA, MacColl R. Biliproteins and phycobilisomes from cyanobacteria and red alga at the extrems of habitat. Archives of Microbiology,2001,176:400-405
    Sauer K & Scheer H. Excitaion transfer in C-phycocyanins forster transfer rate and excitation calculation based on new crystal structure data for C-phycocyanina from Agmenellum quadruplicatum and Mastigovladus. Biochim. Biophys., Acta,1988,936:157-170
    Siegelman HW & Kycia JH. Handbook of phycolibical method. London:Cambridge University Press,1973.89-93
    Six C, Thomas JC, Thion L, Lemoine Y, Zal F. Two novel phycoerythrin-associated linker proteins in the marine cyanobacterium Synechococcus sp. Strain WH8102. Journal of Bacteriology,2005, 187:1685-1694
    Sun L, Wang SM. A phycoerythrin-allphycocyanin complex from the intact phycobilisomes of the marine red alga Polysiphonia urceolatee. Photosynthetica,2000,38:601-605
    Sun L, Wang SM, Chen LX, Gong XQ. Promising fluorescent probes from phycobiliproteins. IEEE J. Selected Topics in Quantum Electronics,2003,9:177-188
    Sun L, Wang SM, Gong XQ, Chen LX. A rod-liker-contained R-phycoerythrin complex from the intact phycobilisome of the marine red alga Polysiphonia urceolata. Journal of Photochemistry and Photobiology,2004,76:1-11
    Sun L, Wang SM, Gong XQ, Zhao MR, Fu XJ, Wang.L. Isolation, purification and characteristics of R-phycoerythrin from a marine macroalga Heterosiphonia japonica, Protein Expr. Purif.,2009, 64:146-154
    Tandeau de Marsac N & Cohen-Bazire G. Molecular composition of cyanobacterial phycobilisome. Proc. Natl. Acad. Sci. USA,1977,74:1635-1639
    Tetzuya K. Phycobilisome stability. Methods Enzymol.,1988,167:313-318
    Thammapalerd N, Suprsiri T, Awakairt S, Chandrkra-change C. Application of local products R-phycoerythrin and monoclonal antibody as a fluorescent antibody probe to detect Entamoeba histolytica trophozoites. South AsianJ. Trop. Med. Public Health,1996,27:297-303
    Thomas R & Elisabeth G. Phycobilisome structure of Porphyridium cruentum. Plant Physiol., 1981,68:1375-1379
    Yamanaka G, Glazer A, Williams R. Cyanobacterial phycobilisomes-characterization of the phycobilisomes of synechococcus sp.6301. The journal of biological chemistry,1978,253: 8303-8310.
    Yu MH, Glazer AN, Spencer KG, West JA. Phycoerythrins of the red alga Callithamnion. The Journal of Bioligical chemistry,1981,68:482-488
    Zhang YZ, Chen XL, Zhou BC, Shi DX, Pang SJ. A new model of phycobilisomes in Spirulina platensis. Science in China (Series C),1999,42:74-79
    Zhang YZ, Chen XL, Wang L, Zhou BC, He JA, Shi DX, Pang SJ. In vitro assembly of R-phycoerythrin from marine red alga Polysiphonia urceolata. Acta Biochica et Biophysica, 2002,34(1):99-103
    Zhao CL, Wang YC, Hruska Z, Winnik, MA. Molecular aspects of latex film formation:an energy-transfer study. Macromolecules, 1990,23:4082-4087
    Zhou BC, Zhao J, Bryant DA. Energy transfer processes in phycobilisomes as deduced from analysis of mutants of synechococcus PCC 7002. Research in photosynthesis,1992,1:25-32
    Zil BA & Greenwald LS. Phycobilisome structure and function. Photosynth. Res.,1986,10:7-35
    Zuber H. Structure and founction of light-harvesting pigment-protein complexes. Ameszed Photosynthesis,1987,11:233-271
    Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P. Crystal structure of photosystem Ⅱ from synechococcus elongatus at 3.8A resolution. Nature,2001,409:739-743

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700