不同海拔藏川杨遗传多样性评估及苗期表型关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
藏川杨(Populus szechuanica var. tibetica)是我国西南地区重要的乡土树种,是杨属中生活环境海拔最高的树种,对于高原环境具有良好的适应性,如耐低温、耐强光照、易繁育、寿命长等,是我国杨树育种宝贵的基因资源库,能够为杨树的遗传育种提供大量抗逆性强的种苗和基因资源。在进行种质资源的保护、收集之前需要对该物种的遗传背景进行有效评估。为保证藏川杨资源保护和育种工作的顺利开展,迫切需要开展藏川杨群体遗传多样性方面的研究。为此,在对藏川杨基因资源进行踏查的基础上,选择了西藏林芝地区的色季拉山脉沿线进行了种质资源的收集,共收集保存469个基因型个体。在此基础上,利用SSR, SNP两种分子标记对不同海拔分布的藏川杨群体进行了遗传多样性的分析,揭示了海拔变化与遗传变异之间的关系,为藏川杨遗传资源的保存保护提供了理论依据。同时利用基于自然群体的连锁不平衡作图方法,进行了SNP位点与表型生长数据包括苗高、地径、分枝数、叶片形态等的关联分析,研究结果为重要性状相关位点的发掘、创新种质资源、无性系优株的苗期选择等提供了科学理论依据,具有一定的应用价值,主要研究结果如下:
     (1)利用24个基于胡杨(Populus euphratica)EST序列开发的SSR标记位点对不同海拔的藏川杨群体进行了遗传多样性的研究,中性检验结果显示24个位点中有两个处于自然选择压力下,在进行遗传结构、遗传分化等由非中性进化引起的指标分析时,应进行中性位点的筛选,保证结果可靠性,使用24对微卫星标记进行遗传分析。在469个个体中共检测到126个等位位点,每个位点的平均等位位点数为(Na)5.25;位点多态率(PPl)为100%,期望杂合度(He)在高、低海拔都处于较高水平,分别为0.48和0.49;分子方差分析(AMOVA)的分析结果表明种群间分化占总变异的6.38%,遗传变异主要集中在不同个体之间;基因分化系数(FsT)的结果为0.02,也证实群体分化处于较低水平,检测到群体间的基因流(Nm)为9.89,处于较高水平。基于上述结果认为,海拔因素未对生长在色季拉山高低海拔的藏川杨群体造成地理隔离从而产生种群分化,藏川杨种质资源的保存无需考虑海拔的差异,在此地区不同海拔生长的藏川杨群体遗传背景一致,为研究高海拔的适应机制的材料选择提供了很大的便利。
     (2)使用GBS(genotyping by sequencing)的方法在由60个藏川杨基因型个体组成的群体中进行SNP位点开发,共得到6520个位点。利用群体的SSR标记与SNP标记两种标记遗传多样性结果进行对比发现:1)聚类结果有着显著差异,SNP的聚类结果与两个不同群体来源相一致,而SSR的结果显示两个群体来源的个体并无明显的分离。
     (3)对采集的469个种质资源进行了无性系化,并将其分别定植于不同海拔高度的试验点。对一年生的试验苗进行了苗高、地径、分枝数、叶形等表型性状的测定。并将环境及遗传因素对于表型变异的影响进行了细致剖析,且开发了适用于本次实验设计的模型,发现13个与地径相关联的位点及10个与分枝数相关联的位点。
     (4)利用R软件包fgwas2和PLINK软件对60个藏川杨群体的苗高、地径、分枝数、叶形等表型性状进行了SNP位点的关联分析。经R软件包fgwas2分析共发现3个位点与苗高性状相关联,其中106346位点表型变异的贡献率最高为11%,共发现2个位点与地径性状相关联,其中112578位点表型变异的贡献率最高为10.4%,共发现3个位点与分枝数性状相关联,其中109890位点表型变异的贡献率最高为10.9%;PLINK的分析结果如下:与株高性状进行关联的结果共得到17个位点(P<0.001),与其关联最紧密的SNP位点是111604,显著性达到6.09×10-5,与地径性状进行关联分析的结果共得到17个位点(p<0.001),其中显著性最高的为位点106346,为7.87×10-5,对分枝数性状进行了关联分析,共得到4个位点与该表型具有显著关联(p<0.001),其显著性最高的是位点130018,其显著值达到5.29×10-5。并对显示与性状相关的位点进行了BLAST,由于杨树基因组的注释还未完善,所以大部分位点显示与预测基因相关联。两个方法所检测到的与表型相关联的位点存在着一定的重叠,这表明两个方法均具有良好的检验效力。
Tibetan poplar is an important tree species in the southwestern China, with the highest altitude habitat and excellent adaptation to environment of plateau, it possesses the characteristic of tolerance to low temperature, strong illumination, easy to breed, long life, is an important part of genetic pool in Populus and could provide lots of seeding and genetic source for breeding of stress resistance. Before the conversation and collection of germplasm, the genetic base should be detected and estimated clearly. To protect the special tree, related work should be preceded immediately. To this end, based on the investigation of distribution of Tibet poplar, the SEJILA Mountain was selected to be the study area for its sharply altitude falling. We collected469genotypes totally along the SEJILA Mountain. SSR and SNP markers were applied to analysis population structure and genetic diversity of population from different altitudes to reveal the relationship between altitude and genetic variation, therefore to provide the theoretical basis for the conservation of Tibetan poplar germplasm. The LD mapping was used to identify the locus associated with growing phenotype like height, ground diameter branches and leaf shape. The results of LD provided theoretical basis for the selection of clone excellent individuals, innovation germplasm resources, and outstanding locus identification. The following is main results:
     (1) In this study, we selected populations of Populus szechuanica var. tibetica which were living in Sejila Mountain in southeastern Tibet as study material to analysis the influence of altitude on genetic diversity and population structure. In the molecular analysis, we chose24primer pairs to process genotyping after screening.126alleles were amplified in total469individuals,5.25alleles per locus; PPL (polymorphism percentage level) was100%, expected heterozygosity (He) of high and low altitude, both at a high level in population, were0.48and0.49, respectively. The analysis of molecular variance (AMOVA) showed that the differentiation between populations was6.38%to total variation and the most variation was among the individuals. That estimation of Fst was0.02also supported the conclusion that the differentiation between populations was in low level. The value of gene flow (Nm) was9.89which was in a very high level. In conclusion, the genetic diversity and population structure of populations sampled from Sejila Mountain showed no evident pattern along altitude gradient. The strategic conservation and utilization of Tibetan poplar could be facilitated on the base of understanding of differentiation and distribution patterns of the species. The study about mechanism of adoption of high altitude could be processed smoothly.
     (2) The method of genotyping by sequencing (GBS) was used to excavate SNPs in the Tibetan poplar population composed by60individuals collected from different altitudes. After data filtering, quality control, a total of6520SNPs were identified and genotyped in the all individuals. The short sequences were used to mapping the genome of black cottonwood, the result showed that the mapping rate was low, it may means that the genome of black cottonwood and Tibetan poplar varied significantly. The comparison results of genetic diversity analysis between SNP and SSR showed that the cluster result showed that the two clustered groups are consistent with the sampling location, but the result of SSR had no clear differentiation.
     (3) The total of469samples were cloned and planted in two location with different altitude, Sichuan province and Tibet. The growing phenotypes like height, ground diameter, branch et al were measured for annual seeding. The influence of genetic and environment was analyzed, using different clone from reciprocal transplantation design. A novel mathematic model was developed to proceed the data analysis obtained in this experiment.
     (4) Package fgwas2which was developed on the R software was suitable for the big data and GWAS, the advantage is that it could consider all the loci at the same time. The Plink is free software used to do the GWAS and SNP data summary. The two ways was taken to do the association with growing phenotypes like height, ground diameter and branches. The results of fgwas2analysis showed that3loci were identified with height the heritability of0.11,locus was106346, the highest,2loci were identified with ground diameter, the heritability of0.109, locus was112578, the highest,3loci were associated with number of branch, the heritability of0.09locus was109890; The results of Plink analysis showed that17loci were identified with height, the most significant p-value was6.09×10-5for locus111604,17loci were identified with ground diameter, the most significant p-value was7.87×10-5 for locus106346,4loci were associated with number of branch, the most significant p-value was5.29×10-5for locus130018. The result of BLAST showed that most loci were predicted gene for the genome of Poplar had not been annotated. The two models was tested by comparison of result. It showed that the loci founded based on two different method existed overlap, it meaned that the two ways to identify loci associated with important traits were available.
引文
薄文浩.藏川杨遗传多样性及杂交子代遗传变异研究[D]:北京林业大学,2012.
    陈罡,邢兆凯,潘文利,等.辽宁地区主栽杨树品种的SRAP标记遗传多样性分析[J].东北林业大学学报,2010,(10):19-22.
    陈幸良.林木育种及其成果产业化研究[D]:南京林业大学,2008.
    冯锦霞,张川红,郑勇奇,等.利用荧光SSR标记鉴别杨树品种[J].林业科学,2011,(06):167-174.
    韩艳英,叶彦辉,张昆林,等.不同造林技术措施对藏川杨生理生化特性的影响[J].西北林学院学报,2012,(06):101-104.
    何凤霞,马学俊.基于R软件的正态性检验的功效比较[J].统计与决策,2012,(18):17-19.
    何贵平,陈益泰,唐雪元,等.枫香地理种源幼林生长性状变异研究[J].江西农业大学学报,2006,27(4):585-589.
    贾会霞,胡建军,卢孟柱.基于CE-AFLP的5个美洲黑杨新品种指纹图谱分析[J].林业科学研究,2013,(03):281-286.
    贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,(04):2-11.
    金永焕,周莉,代力民,等.延边地区天然赤松林幼树分枝特性研究[J].沈阳农业大学学报,2004,34(4):263-266.
    黎裕,贾继增,王天宇.分子标记的种类及其发展[J].生物技术通报,1999,(04):21-24.
    刘洋,贝蓓,黄大庄,等.藏川杨与中林46光合特性比较[J].北华大学学报(自然科学版),2010,(01):69-72.
    罗霆,杨海霞,岑华飞,等SCoT分子标记在割手密遗传图谱构建中的应用[J].植物遗传资源学报,2013,(04):704-710.
    潘锡样,唐初明.广西荔浦县伐区巨尾桉地径材积表研制[J].林业勘查设计,2012,(3):47-51.
    邱显钦,唐开学,王其刚,等.云南长尖叶蔷薇自然居群遗传多样性分析[J].植物遗传资源学报,2013,14(1):85-90.
    苏晓华,丁昌俊,马常耕.我国杨树育种的研究进展及对策[J].林业科学研究,2010,(01):31-37.
    苏晓华,黄秦军,张冰玉,等.中国杨树良种选育成就及发展对策[J].世界林业研究,2004,17(1):46-49.
    孙小艳.SSR检测新技术和响叶杨×银白杨遗传连锁图谱构建[D]:南京林业大学,2007.
    孙振久,王亚娟,张显.黄瓜分子标记辅助育种研究进展[J].西北植物学报,2006,(06):1290-1294.
    谭碧玥,曹友志,徐立安,等.杨树黑斑病菌Marssonina brunnea的有丝分裂过程和染色体数观察(英文)[J].南京林业大学学报(自然科学版),2012,(01):21-27.
    唐宇丹,普布次仁,次旦卓嘎.地域环境对青藏高原特有植物藏川杨生物学特性的影响[J].中国野生植物资源,2012c,(02):24-28.
    田有圳,涂育合.凹叶厚朴地径材积方程的研究[J].福建林业科技,2002,29(3):14-17.
    万雪琴,张帆,钟宇,等.中国西南地区乡土杨树基因资源的保护与利用[J].林业科学,2009,(04):139-144.
    王克晶,李向华.中国野生大豆(Glycine soja)遗传资源主要形态、遗传变异和结构[J].植物遗传资源学报:2012 1-2.
    王庆斌,张玉波,邹威,等.杨树新品种生长性状遗传相关及通径分析[J].林业科技,2011,36(001): 5-7.
    王圣杰,黄大庄,闫海霞,等.4种经验模型在藏川杨光响应研究中的适用性[J].北华大学学报(自然科学版),2011,(02):208-212.
    王玉霞,张明兰,洛英,等.藏川杨的扦插繁殖技术[J].西藏农业科技,2012,(01):19-24.
    卫尊征.小叶杨遗传资源评价及重要性状的SSRs关联分析[D]:北京林业大学,2010.
    巫流民,米玛,张海武,等.藏青杨硬枝扦插育苗技术[J].林业实用技术,2009,(12):28-29.
    谢友超,曹福亮,姚志刚,等.截干对叶用银杏生长及树形的影响(英文)[J].南京林业大学学报,2000,(06):11-16.
    杨明博,熊友才,王红芳,等.黄土高原不同气象因子对中国沙棘亚居群遗传多样性的影响[J].应用生态学报,2008,(01):1-7.
    叶彦辉,韩艳英,赵垦田,等.不同造林技术措施对藏川杨林地土壤肥力的影响[J].西北农林科技大学学报(自然科学版),2012,(12):64-72.
    尹佟明,黄敏仁,王明庥,等.利用RAPD标记构建响叶杨和银白杨分子标记连锁图谱[J].植物学报,1999,(09):956-961.
    张赤红,张京,赵会英,等.应用SSR标记对61个国家大麦遗传多样性的研究[J].植物遗传资源学报,2008,(01):15-19.
    张海武,米玛次仁,巫流民.藏川杨硬枝扦插育苗技术[J].西藏科技,2008,(02):72-73.
    张婷,张文辉,郭连金,等.黄土高原丘陵区不同生境小叶杨人工林物种多样性及其群落稳定性分析[J].西北植物学报,2007,(02):340-347.
    张新叶,宋丛文,黄敏仁.杨树抗黑斑病相关基因表达谱分析(英文)[J].林业科学,2011,(01):85-94.
    张亚东,胡兴宜,宋丛文.利用新型分子标记EST-SSR鉴定湖北省内的主栽黑杨品种[J].分子植物育种,2009,(01):105-109.
    张志毅,林善枝,张谦.中国杨树分子遗传改良的研究现状(英文)[J]. Forestry Studies in China, 2002,(02):1-8.
    赵罕,郑勇奇,李斌,等.白皮松天然群体遗传结构的地理变异分析[J].植物遗传资源学报,2013,(03):395-401.
    朱彩梅,张京.应用SSR标记分析中国糯大麦种质的遗传多样性[J].植物遗传资源学报,2010,(01):57-64.
    朱建华,潘丽梅,秦献泉,等.不同生态类型龙眼种质亲缘关系的1SSR分析[J].植物遗传资源学报,2013,14(1):61-66.
    朱磊.水稻苯达松敏感致死基因bel的精细定位[D]:南昌大学,2005.
    Agrawal A A, Conner J K, Johnson M T, et al. Ecological genetics of an induced plant defense against herbivores:additive genetic variance and costs of phenotypic plasticity[J]. Evolution,2002,56(11): 2206-2213.
    Ahmad R, Lim C J, Kwon S. Glycine betaine:a versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses[J]. Plant biotechnology reports,2013,7(1):49-57.
    Akey J M, Zhang G, Zhang K, et al. Interrogating a high-density SNP map for signatures of natural selection[J]. Genome research,2002,12(12):1805-1814.
    Alheit K, Maurer H, Reif J, et al. Genome-wide evaluation of genetic diversity and linkage disequilibrium in winter and spring triticale (x Triticosecale Wittmack)[J]. BMC genomics,2012,13(1):235.
    Allendorf F W, Luikart G H, Aitken S N. Conservation and the genetics of populations[M]:Wiley.
    Altshuler D, Pollara V J, Cowles C R, et al. An SNP map of the human genome generated by reduced representation shotgun sequencing[J]. Nature,2000,407(6803):513-516.
    Antao T, Lopes A, Lopes R, et al. LOSITAN:a workbench to detect molecular adaptation based on a Fst-outlier method[J]. BMC bioinformatics,2008b,9(1):323.
    Aranzana M J, Abbassi E, Howad W, et al. Genetic variation, population structure and linkage disequilibrium in peach commercial varieties[J]. BMC genetics,2010,11(1):69.
    Asadi A A, Monfared S R. Characterization of EST-SSR markers in durum wheat EST library and functional analysis of SSR-containing EST fragments[J]. Molecular Genetics and Genomics,2014: 1-16.
    Auld J R, Agrawal A A, Relyea R A. Re-evaluating the costs and limits of adaptive phenotypic plasticity [J]. Proceedings of the Royal Society B:Biological Sciences,2010,277(1681):503-511.
    Baird N A, Etter P D, Atwood T S, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers[J]. PloS one,2008a,3(10):e3376.
    Barendse W, Harrison B E, Bunch R J, et al. Genome wide signatures of positive selection:The comparison of independent samples and the identification of regions associated to traits[J]. BMC genomics,2009,10(1):178.
    Blair M W, Cortes A J, Penmetsa R V, et al. A high-throughput SNP marker system for parental polymorphism screening, and diversity analysis in common bean (Phaseolus vulgaris L.)[J]. Theoretical and Applied Genetics,2013,126(2):535-548.
    Brachi B, Faure N, Horton M, et al. Linkage and association mapping of Arabidopsis thaliana flowering time in nature[J]. PLoS Genetics,2010,6(5):e1000940.
    Bradshaw A D. Evolutionary significance of phenotypic plasticity in plants[J]. Advances in genetics,1965, 13(1):115-155.
    Bremer K. Branch support and tree stability[J]. Cladistics,1994,10(3):295-304.
    Brookes A J. The essence of SNPs[J]. Gene,1999,234(2):177-186.
    Buckler E S, Holland J B, Bradbury P J, et al. The genetic architecture of maize flowering time[J]. Science, 2009,325(5941):714-718.
    Buetow K H, Edmonson M, Macdonald R, et al. High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J]. Proceedings of the National Academy of Sciences,2001,98(2):581-584.
    Cao K, Wang L, Zhu G, et al. Genetic diversity, linkage disequilibrium, and association mapping analyses of peach (Prunus persica) landraces in China[J]. Tree Genetics & Genomes,2012,8(5):975-990.
    Catchen J M, Amores A, Hohenlohe P, et al. Stacks:building and genotyping loci de novo from short-read sequences[J]. G3:Genes, Genomes, Genetics,2011,1(3):171-182.
    Chapman M A, Mandel J R, Burke J M. Sequence Validation of Candidates for Selectively Important Genes in Sunflower[J]. PloS one,2013,8(8):e71941.
    Charmantier A, Mccleery R H, Cole L R, et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population[J]. Science,2008,320(5877):800-803.
    Chevin L, Lande R, Mace G M. Adaptation, plasticity, and extinction in a changing environment:towards a predictive theory[J]. PLoS biology,2010,8(4):e1000357.
    Clayton D G, Walker N M, Smyth D J, et al. Population structure, differential bias and genomic control in a large-scale, case-control association study[J]. Nature genetics,2005,37(11):1243-1246.
    Davidson A M, Jennions M, Nicotra A B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis[J]. Ecology Letters,2011,14(4):419-431.
    Dawson T P, Jackson S T, House J 1, et al. Beyond predictions:biodiversity conservation in a changing climate[J]. Science,2011,332(6025):53-58.
    Dewitt T J. Costs and limits of phenotypic plasticity:tests with predator-induced morphology and life history in a freshwater snail[J]. Journal of Evolutionary Biology,1998,11(4):465-480.
    Dewitt T J, Sih A, Wilson D S. Costs and limits of phenotypic plasticity [J]. Trends in Ecology & Evolution,1998,13(2):77-81.
    Dong M, de Kroon H. Plasticity in morphology and biomass allocation in Cynodon dactylon, a grass species forming stolons and rhizomes[J]. Oikos,1994:99-106.
    Donnelly P. Progress and challenges in genome-wide association studies in humans[J]. Nature,2008, 456(7223):728-731.
    Du F K, Xu F, Qu H, et al. Exploiting the Transcriptome of Euphrates Poplar, Populus euphratica (Salicaceae) to Develop and Characterize New EST-SSR Markers and Construct an EST-SSR Database[J]. PloS one,2013,8(4):e61337.
    Elshire R J, Glaubitz J C, Sun Q, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species[J]. PloS one,2011a,6(5):e19379.
    Epstein M P, Satten G A. Inference on haplotype effects in case-control studies using unphased genotype data[J]. The American Journal of Human Genetics,2003,73(6):1316-1329.
    Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study[J]. Molecular ecology,2005,14(8):2611-2620.
    Fakhrai Rad H, Pourmand N, Ronaghi M. PyrosequencingTM:an accurate detection platform for single nucleotide polymorphisms[J]. Human mutation,2002a,19(5):479-485.
    Famoso A N, Zhao K, Clark R T, et al. Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping[J]. PLoS genetics,2011, 7(8):e1002221.
    Fan J, Chen X, Halushka M K, et al. Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays[J]. Genome Research,2000,10(6):853-860.
    Fan J, Lv J. Sure independence screening for ultrahigh dimensional feature space[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology),2008,70(5):849-911.
    Fischer M, Husi R, Prati D, et al. RAPD variation among and within small and large populations of the rare clonal plant Ranunculus reptans (RanuncuIaceae)[J]. American Journal of Botany,2000,87(8): 1128-1137.
    Frankham R, Ballou J D, Briscoe D A. A primer of conservation genetics[M]:Cambridge University Press, 2004.
    Frascaroli E, Schrag T A, Melchinger A E. Genetic diversity analysis of elite European maize (Zea mays L.) inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs[J]. Theoretical and Applied Genetics,2013,126(1):133-141.
    Gamperle E, Schneller J J. Phenotypic and isozyme variation in< i> Cystopteris fragilis(Pteridophyta) along an altitudinal gradient in Switzerland[J]. Flora-Morphology, Distribution, Functional Ecology of Plants,2002,197(3):203-213.
    Ganal M W, Durstewitz G, Polley A, et al. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome[J]. PloS one,2011,6(12):e28334.
    Geraldes A, Pang J, Thiessen N, et al. SNP discovery in black cottonwood (Populus trichocarpa) by population transcriptome resequencing[J]. Molecular Ecology Resources,2011,11(s1):81-92.
    Gibbs R A, Belmont J W, Hardenbol P, et al. The international HapMap project[J]. Nature,2003, 426(6968):789-796.
    Guerra F P, Wegrzyn J L, Sykes R, et al. Association genetics of chemical wood properties in black poplar (Populus nigra)[J]. New Phytologist,2013,197(1):162-176.
    Hamrick J L, Godt M J. W.1989. Allozyme diversity in plant species[J]. Plant Population Genetics, Breeding and Genetic Resources. Sunderland, United Kingdom:Sinauer Associates Inc:44-64.
    Han J, Zheng H, Cui Y, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus[J]. Nature genetics,2009,41(11): 1234-1237.
    Hoggart C J, Whittaker J C, De lorio M, et al. Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies[J]. PLoS genetics,2008,4(7):e1000130.
    Hohenlohe P A, Bassham S, Etter P D, et al. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags[J]. PLoS genetics,2010,6(2):e1000862.
    Huang X, Feng Q, Qian Q, et al. High-throughput genotyping by whole-genome resequencing[J]. Genome Research,2009,19(6):1068-1076.
    Huang X, Wei X, Sang T, et al. Genome-wide association studies of 14 agronomic traits in rice landraces[J]. Nature genetics,2010,42(11):961-967.
    Ingvarsson P K. Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae)[J]. Genetics,2005,169(2):945-953.
    Ingvarsson P K, Garcia M V, Luquez V, et al. Nucleotide polymorphism and phenorypic associations within and around the phytochrome B2 locus in European aspen (Populus tremula, Salicaceae)[J]. Genetics,2008,178(4):2217-2226.
    Ishikawa Y, Shibata N, Fukatsu S. Fabrication of highly oriented Si:SiO2 nanoparticles using low energy oxygen ion implantation during Si molecular beam epitaxy[J]. Applied physics letters,1996,68(16): 2249-2251.
    Isik K, Kara N. Altitudinal variation in Pinus brutia Ten. and its implication in genetic conservation and seed transfers in southern Turkey[J]. Silvae Genetica,1997,46(2):113-119.
    Jansen R K, Kaittanis C, Saski C, et al. Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences:effects of taxon sampling and phylogenetic methods on resolving relationships among rosids[J]. BMC Evolutionary Biology,2006,6(1):32.
    Jelinski D E, Cheliak W M. Genetic diversity and spatial subdivision of Populus tremuloides (Salicaceae) in a heterogeneous landscape[J]. American Journal of Botany,1992:728-736.
    Jordano P, Godoy J A. RAPD variation and population genetic structure in Prunus mahaleb (Rosaceae), an animal-dispersed tree[J]. Molecular Ecology,2000,9(9):1293-1305.
    Kaur G, Kumar S, Thakur P, et al. Involvement of proline in response of chickpea (< i> Cicer arietinum L.) to chilling stress at reproductive stage[J]. Scientia Horticulturae,2011,128(3):174-181.
    Kelly V R, Canham C D. Resource heterogeneity in oldflelds[J]. Journal of Vegetation Science,1992,3(4): 545-552.
    Kral A, Eggermont J J. What's to lose and what's to learn:development under auditory deprivation, cochlear implants and limits of cortical plasticity[J]. Brain Research Reviews,2007,56(1):259-269.
    Kump K L, Bradbury P J, Wisser R J, et al. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population[J]. Nature genetics,2011, 43(2):163-168.
    Lepoittevin C, Harvengt L, Plomion C, et al. Association mapping for growth, straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population[J]. Tree Genetics & Genomes, 2012,8(1):113-126.
    Lesica P, Allendorf F W. When are peripheral populations valuable for conservation?[J]. Conservation Biology,1995,9(4):753-760.
    Levy D, Ehret G B, Rice K, et al. Genome-wide association study of blood pressure and hypertension[J]. Nature genetics,2009,41(6):677-687.
    Li J, Butler J M, Tan Y, et al. Single nucleotide polymorphism determination using primer extension and time-of-flight mass speetrometry[J]. Electrophoresis,1999,20(6):1258-1265.
    Li J, Das K, Fu G, et al. The Bayesian lasso for genome-wide association studies[J]. Bioinformatics,2011, 27(4):516-523.
    Li W, Sadler L A. Low nucleotide diversity in man.[J]. Genetics,1991,129(2):513-523.
    Li Y, Huang Y, Bergelson J, et al. Association mapping of local climate-sensitive quantitative trait loci in Arabidopsisthaliana[J]. Proceedings of the National Academy of Sciences,2010,107(49): 21199-21204.
    Logsdon B A, Hoffman G E, Mezey J G. A variational Bayes algorithm for fast and accurate multiple locus genome-wide association analysis[J]. BMC bioinformatics,2010,11(1):58.
    Lowe A, Harris S, Ashton P. Ecological genetics:design, analysis, and application[M]:Wiley, com,2009.
    Lu H, Rate D N, Song J T, et al. ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response[J]. The Plant Cell Online,2003,15(10): 2408-2420.
    Ma T, Wang J, Zhou G, et al. Genomic insights into salt adaptation in a desert poplar[J]. Nature communications,2013,4.
    Maghuly F, Pinsker W, Praznik W, et al. Genetic diversity in managed subpopulations of Norway spruce [< i> Picea abies(L.) Karst.][J]. Forest Ecology and Management,2006,222(1):266-271.
    Manolio T A, Collins F S, Cox N J, et al. Finding the missing heritability of complex diseases[J]. Nature, 2009,461(7265):747-753.
    Mascher M, Wu S, Amand P S, et al. Application of genotyping-by-sequencing on semiconductor sequencing platforms:a comparison of genetic and reference-based marker ordering in barley[J]. PloS one,2013,8(10):e76925.
    Mccarthy M1, Abecasis G R, Cardon L R, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges[J]. Nature Reviews Genetics,2008,9(5):356-369.
    Mcclean P E, Burridge J, Beebe S, et al. Crop improvement in the era of climate change:an integrated, multi-disciplinary approach for common bean (Phaseolus vulgaris)[J]. Functional Plant Biology,2011, 38(12):927-933.
    Mckinney M L. Heterochrony:beyond words[J],2010.
    Myakishev M V, Khripin Y, Hu S, et al. High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers[J]. Genome Research,2001,11(1):163-169.
    Nemri A, Atwell S, Tarone A M, et al. Genome-wide survey of Arabidopsis natural variation in downy mildew resistance using combined association and linkage mapping[J]. Proceedings of the National Academy of Sciences,2010,107(22):10302-10307.
    Newton A C, Allnutt T R, Gillies A, et al. Molecular phylogeography, intraspecific variation and the conservation of tree species[J]. Trends in Ecology & Evolution,1999,14(4):140-145.
    Nickerson D A, Taylor S L, Weiss K M, et al. DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene[J]. Nature genetics,1998,19(3):233-240.
    Nicotra A B, Atkin O K, Bonser S P, et al. Plant phenotypic plasticity in a changing climate[J]. Trends in plant science,2010,15(12):684-692.
    Nielsen D M, Ehm M G, Zaykin D V, et al. Effect of two-and three-locus linkage disequilibrium on the power to detect marker/phenotype associations[J]. Genetics,2004,168(2):1029-1040.
    Nystedt B, Street N R, Wetterbom A, et al. The Norway spruce genome sequence and conifer genome evolution[J]. Nature,2013.
    Ohsawa T, Ide Y. Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains[J]. Global Ecology and Biogeography,2008,17(2):152-163.
    Ohsawa T, Saito Y, Sawada H, et al. Impact of altitude and topography on the genetic diversity of< i> Quercus serrata populations in the Chichibu Mountains, central Japan[J]. Flora-Morphology, Distribution, Functional Ecology of Plants,2008,203(3):187-196.
    Okamoto A, Kanatani K, Saito I. Pyrene-labeled base-discriminating fluorescent DNA probes for homogeneous SNP typing[J]. Journal of the American Chemical Society,2004,126(15):4820-4827.
    Olson M S, Robertson A L, Takebayashi N, et al. Nucleotide diversity and linkage disequilibrium in balsam poplar (Populus balsamifera)[J]. New Phytologist,2010,186(2):526-536.
    Pare-Brunet L, Glubb D, Evans P, et al. Discovery and Functional Assessment of Gene Variants in the Vascular Endothelial Growth Factor Pathway[J]. Human mutation,2014,35(2):227-235.
    Pinaud R, Tremere L A, Penner M R, et al. Complexity of sensory environment drives the expression of candidate-plasticity gene, nerve growth factor induced-A[J]. Neuroscience,2002,112(3):573-582.
    Poland J A, Brown P J, Sorrells M E, et al. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach[J]. PloS one,2012a,7(2): e32253.
    Poland J A, Brown P J, Sorrells M E, et al. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach[J]. PloS one,2012b,7(2): e32253.
    Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data[J]. Genetics,2000,155(2):945-959.
    Puglisi S, Lovreglio R, Attolico M. Subpopulation differentiation along elevational transects within two Italian populations of Scots pine (Pinus sylvestris L.)[J]. Forest Genetics,1999,6:247-256.
    .Quiroga M P, Premoli A C. Genetic patterns in Podocarpus parlatorei reveal the long-term persistence of cold-tolerant elements in the southern Yungas[J]. Journal of Biogeography,2007,34(3):447-455.
    Relyea R A. Costs of phenotypic plasticity[J]. The American Naturalist,2002,159(3):272-282.
    Remington D L, Thornsberry J M, Matsuoka Y, et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome[J]. Proceedings of the National Academy of Sciences,2001,98(20): 11479-11484.
    Riedelsheimer C, Lisec J, Czedik-Eysenberg A, et al. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize[J]. Proceedings of the National Academy of Sciences, 2012,109(23):8872-8877.
    Saenz-Romero C, Guzman-Reyna R R, Rehfeldt G E. Altitudinal genetic variation among< i> Pinus oocarpa populations in Michoacan, Mexico:Implications for seed zoning, conservation, tree breeding and global warming[J]. Forest Ecology and Management,2006,229(1):340-350.
    Scheiner S M. Plasticity as a selectable trait:reply to Via[J]. American Naturalist,1993:371-373.
    .Schnable P S, Ware D, Fulton R S, et al. The B73 maize genome:complexity, diversity, and dynamics[J]. science,2009,326(5956):1112-1115.
    Segelbacher G, Cushman S A, Epperson B K, et al. Applications of landscape genetics in conservation biology:concepts and challenges[J]. Conservation Genetics,2010,11(2):375-385.
    Selezska K, Kazmierczak M, Musken M, et al. Pseudomonas aeruginosa population structure revisited under environmental focus:impact of water quality and phage pressure[J]. Environmental Microbiology,2012,14(8):1952-1967.
    Singh I, Kumar U, Singh S K, et al. Physiological and biochemical effect of 24-epibrassinoslide on cold tolerance in maize seedlings[J]. Physiology and Molecular Biology of Plants,2012,18(3):229-236.
    Slavov G T, Difazio S P, Martin J, et al. Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa[J]. New Phytologist,2012, 196(3):713-725.
    Slavov G T, Zhelev P. Salient biological features, systematics, and genetic variation of Populus. Genetics and Genomics of Populus[M]:Springer,2010a:15-38.
    Spigler R, Kalisz S. Phenotypic plasticity in mating system traits in the annual Collinsia verna[J]. Botany, 2013,(ja).
    Stolting K N, Nipper R, Lindtke D, et al. Genomic scan for single nucleotide polymorphisms reveals patterns of divergence and gene flow between ecologically divergent species[J]. Molecular ecology, 2013,22(3):842-855.
    Sultan S E, Bazzaz F A. Phenotypic plasticity in Polygonum persicaria. I. Diversity and uniformity in genotypic norms of reaction to light[J]. Evolution,1993:1009-1031.
    Taira H, Tsumura Y, Tomaru Y, et al. Regeneration system and genetic diversity of Cryptomeria japonica growing at different altitudes[J]. Canadian Journal of Forest Research,1997,27(4):447-452.
    Tian F, Bradbury P J, Brown P J, et al. Genome-wide association study of leaf architecture in the maize nested association mapping population[J]. Nature genetics,2011,43(2):159-162.
    Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society. Series B (Methodological),1996b:267-288.
    Truong C, Palme A E, Felber F. Recent invasion of the mountain birch Betula pubescens ssp. tortuosa above the treeline due to climate change:genetic and ecological study in northern Sweden[J]. Journal of evolutionary biology,2007,20(1):369-380.
    Tsukaya H. Mechanism of leaf-shape determination[J]. Annu. Rev. Plant Biol.,2006,57:477-496.
    Tuskan G A, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr.& Gray)[J]. Science,2006a,313(5793):1596-1604.
    Tuskan G A, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr.& Gray)[J]. Science,2006b,313(5793):1596-1604.
    Tuskan G A, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr.& Gray)[J]. Science,2006c,313(5793):1596-1604.
    Vretare V, Weisner S E, Strand J A, et al. Phenotypic plasticity in< i> Phragmites australis as a functional response to water depth[J]. Aquatic Botany,2001,69(2):127-145.
    126.Wegrzyn J L, Eckert A J, Choi M, et al. Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa, Salicaceae) secondary xylem[J]. New Phytologist,2010,188(2):515-532.
    Wen C S, Hsiao J Y. Altitudinal genetic differentiation and diversity of Taiwan lily (Lilium longiflorum var. formosanum; Liliaceae) using RAPD markers and morphological characters[J]. International Journal of Plant Sciences,2001,162(2):287-295.
    Wright S. Evolution and the genetics of populations:Vol.2. The theory of gene frequencies[M],1969.
    Wu T T, Chen Y F, Hastie T, et al. Genome-wide association analysis by lasso penalized logistic regression[J]. Bioinformatics,2009,25(6):714-721.
    Xu F, Feng S, Wu R, et al. Two highly validated SSR multiplexes (8-plex) for Euphrates'poplar, Populus euphratica (Salicaceae)[J]. Molecular ecology resources,2013,13(1):144-153.
    Xu Z, Taylor J A. SNPinfo:integrating GWAS and candidate gene information into functional SNP selection for genetic association studies[J]. Nucleic acids research,2009,37(suppl 2):W600-W605.
    Yang J, Benyamin B, Mcevoy B P, et al. Common SNPs explain a large proportion of the heritability for human height[J]. Nature genetics,2010,42(7):565-569.
    Yeh F C, Yang R C, Boyle T, et al. POPGENE, version 1.32:the user friendly software for population genetic analysis[J]. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, AB, Canada,1999.
    Zhao K, Tung C, Eizenga G C, et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa[J]. Nature communications,2011,2:467.
    Zou H, Hastie T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology),2005,67(2):301-320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700