Chirp-UWB系统关键技术研究与硬件设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国内外关于超宽带的研究主要集中于短距离、高速率应用,对中远距离应用较少涉及。基于中远距离超宽带的无线传输技术可以进一步拓展超宽带的应用范围,使其应用形式更加灵活、体系结构更加完整。特别是其固有的抗干扰及传输隐蔽能力强的技术优势,可以在公安、消防、救灾等多种特殊领域场合得到重要的应用。
     多种超宽带通信体制中,Chirp-UWB体制应用于中远距离通信有其独特优势。然而目前实用的Chirp-UWB技术主要定位于短距离、低速率、低成本应用。所以研究适用于中远距离的Chirp-UWB系统实现结构及与之相关的关键技术十分有意义。
     本文的主要研究工作如下:
     第一,Chirp-UWB信号产生技术。分别研究了基于模拟VCO及其非线性校正、直接数字合成(DDS)、DDS+锁相环、DDS+变频+倍频四种信号产生方案,详细分析了各自的性能及应用于Chirp-UWB通信系统的可行性。研究表明,基于DDS+倍频+变频的信号产生方案结合了模拟和数字信号产生技术的优点,是一种较好的大带宽Chirp-UWB信号产生方案。
     第二,Chirp-UWB信号采集处理技术。首先研究了利用高速ADC对Chirp-UWB信号进行采样并高速数字处理的实现方案,然后给出一种有源频谱压缩结合低速ADC采样的实现方案。后一方案利用时域相乘实现频域相关,从而将极大带宽的Chirp信号压缩为一个窄带信号,避免了高速采样及高速数字信号处理,是一种有效的Chirp-UWB信号采集处理方案。
     第三,Chirp-UWB系统硬件实现非理想因素分析。针对一种实用的Chirp-UWB实现结构,从工程实现角度分析了非理想因素的来源,通过建立数学模型,研究了其对系统性能的影响,并给出消除或降低这些影响因素的解决办法和思路。
     最后,基于以上研究,选择DDS+变频+倍频的信号产生方案及有源频谱压缩的接收结构,设计了Chirp-UWB系统基带及射频收发电路。
At present, both at home and abroad, the researches of Ultra-Wideband (UWB) focus on short-distance and high-speed application, scarcely touching upon medium or long distance applications. The wireless transmission technology based on the medium or long-distance UWB will further expanding the scope of UWB application, making its application form more flexible and its architecture more integrated. In particular, the strong technological superiority of anti-interference and capacity of covert communication make it very useful in the application of military, public security, fire safety, rescue and many other special occasions.
     Several of UWB system, the Chirp-UWB has unique advantage in the applications for medium or long-distance. But the current practical technique of Chirp-UWB is mostly used in the application of short-distance, low-speed and low-cost. So it is very useful to study the implement structure and the Key Technique of Chirp-UWB applications for medium or long distance.
     The main research contents include:
     Firstly, the techniques of Chirp-UWB signal generation. This thesis, studies on four signal generator programs:using analog VCO and its nonlinear correction technology, direct digital synthesis (DDS), DDS+PLL, DDS+mixer+frequency multiplier respectively, and gives detailed analysis of the performance of four programs used in the Chirp-UWB communication system. The results show that, DDS+mixer+frequency multiplier is a better Chirp-UWB signal generator programs that can generate a large bandwidth signal which combining analog signal processing technology and digital signal processing technology.
     Secondly, the techniques of Chirp-UWB signal sampling and processing. In this thesis, a program based on architecture of software radio is firstly studied, in which the signal is directly sampled by a high-speed ADC and then implements the digital signal processing program. Then, a program based on active spectrum compression and low-speed ADC sampling is given, which uses the character of signal that the time-domain multiply equals to frequency-domain correlative. This approach puts the extremely wideband Chirp-UWB signal compressed to a narrow-band signal in frequency domain, so as to avoid high-speed sampling and high-speed digital signal processing.
     Thirdly, the non-ideal factors of the Chirp-UWB system hardware design analyzed. Aim at a practical implementation structure of the Chirp-UWB, the thesis gives an analysis of the source of all non-ideal factors and their influence on system performance by setting up the mathematical model, and then gives the solutions or ideas to reduce or eliminate the impact of these factors.
     Finally, the thesis chooses the program of DDS+mixer+frequency multiplier to generate signal and the receive structure based on active spectrum compression and low-speed ADC sampling, designs the base band and RF circuit of Chirp-UWB receive and transmit system.
引文
[1]Sungbin Im, E.J.Powers. An Iterative Decorrelating Receiver for DS-UWB Multiple Access Systems Using Biphase Modulation[A]. In:Signal Processing Systems[C]. SIPS 2004. IEEE Workshop on,2004:59-64.
    [2]Y. Ishiyama, T. Ohtsuki. Performance Evaluation of UWB-IR and DS-UWB with MMSE Frequency Domain Equalization (FDE) [A]. In:Global Telecommunications Conference[C]. GLOBECOM'04. IEEE,2004:3093-3097.
    [3]Z.Z.Ye, A.S.Madhukumar, Xiaoming Peng, F.Chin. Performance Analysis of a DS-UWB System in the Presence of Narrowband Interference[A]. In:Vehicular Technology Conference[C] VTC 2004-spring. IEEE 59th,2004:2590-2594.
    [4]Wei Zhang, Xiang-Gen Xia, P.C.Ching. Achieving High-Diversity in MB-OFDM Systems[C]. 2005 International Conference on Wireless Networks, Communications and Mobile Computing,2005:1343-1347.
    [5]Yong-Bae Park, Chol-Soon Kim, Kyung-Ku Cho, Cheol-Jin Lee. Performance of UWB DS-CDMA/OFDM/MC-CDMA system[A]. In:The 47th IEEE International Midwest Symposium on Circuits and Systems[C]. MWSCAS'04,2004:37-40.
    [6]Y. Koike, S. Ishii, R. Kohno. Chirp UWB System with Software Defined Receiver for Industrial Mobile Ranging and Autonomous Control[A]. Ultra Wideband Systems [C]. Joint with Conference on Ultrawideband Systems and Technologies,2004:381-385.
    [7]M. Winkler. Chirp signals for communications[J]. IEEE WESCON Convention Record, vol. Pt.7,1962.
    [8]A. Springer, M. Huemer, L. Reindl. A robust ultra-broad-band wireless communication system using SAW chirped delay lines[J]. IEEE Transactions on Microwave Theory and Technologies,1998,46(12):2213-2219.
    [9]W.Gugler, A.Springer, R.Weigel. A chirp-based wideband spread spectrum modulation technique for WLAN applications[A]. Spread Spectrum Techniques and Applications [C]. IEEE Sixth International Symposium on,2000:83-87.
    [10]K. Hohkawa, H. Yoshida, C.Kaneshiro, K. Koh. Design Consideration on Ultra-Wideband SAW devices operating at GHz frequency range[C]. IEEE Ultrasonics Symposium,2003: 825-828.
    [11]R. Brocato, E Heller, J. Wendt, J. Blaich, G. Wouters, E. Gurule, G. Omdahl and D. Palmer. UWB communication using SAW correlators[C]. IEEE RAWCON,2004:267-270.
    [12]P. Zhang and H. Liu. An Ultra-Wide Band System with Chirp Spread Spectrum Transmission Technique[C].2006 6th International Conference on ITS Telecommunications, 2006:294-297.
    [13]H. Liu. Multicode Ultra-Wideband Scheme Using Chirp Waveforms[J]. IEEE Journal on Selected Areas in Communication,2006,24(4):885-891.
    [14]贺鹏飞.基于Chirp-BOK调制的超宽带无线通信系统研究[J].南京邮电大学学报,2006,26(2):21-25.
    [15]冯金振,郑国莘. Chirp-BOK-BPSK调制超宽带无线传输技术[J].应用电子学报,2008,26(2):123-126.
    [16]张文杰,王艳芬. Chirp-UWB无线通信技术在煤矿井下的应用研究[J].工矿自动化,2007(2):7-9.
    [17]张文杰,王艳芬.基于Chirp脉冲压缩技术的超宽带通信系统设计[J].电视技术,2007,31(7):62-64.
    [18]Nanotron Technologies. Chirp Modulation Confirmed for IEEE Standard[EB/OL].: Nanotron公司官方网站.
    [19]陆必应,梁甸农.调频线性度对线性调频信号性能影响分析[J].系统工程与电子技术.2005,27(8):1384-1386.
    [20]Peter J. Burke, P. E. Ultra-linear chirp generation via VCO tuning predistortion[C].1994 IEEE MTT-S Digest,1994:957-960.
    [21]沈涛,孙忠良.毫米波VCO电调特性的线性度校正方案研究[J].现代雷达.1997,19(1):91-100.
    [22]M. Christmann, M. Vossiek, M.Smith, G. Rodet. SAW based Delay Locked Loop concept for VCO linearization in FMCW Radar sensors[A]. European Microwave Conference[C]. 33rd European,2003:1135-1138.
    [23]沈涛,孙忠良.35GHz高线性VCO的研制[J].东南大学学报.1996,26(1):14-18.
    [24]Feng Zhenghe, Li Yang, Liang Liwan, Pan Weifeng, Chen Yaqin. Requirement analysis of linearity for fmcw source using Open-loop Correction [A]. Microwave and Millimeter Wave Technology[C]. ICMMT 2nd International Conference on,2000(2):679-682.
    [25]胡翔,王东进.一种提高LFMCW雷达调频线性度的新思路[J].中国科技大学学报.2001,31(1):63-67.
    [26]M. Ghosh, L.S.J.Chimakurthy, F.F.Dai, R.C.Jaeger. A novel DDS architecture using nonlinear ROM addressing with improved compression ratio and quantisation noise[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Conlrol,2006,53(2): 274-283.
    [27]Zhu Yuhong, Zhang Qishan, Chang Qin. Design of an algorithm of mapping from phase to sine amplitude in DDS of a GPS signal simulator system[J]. Journal of Beijing University of Aeronautics and Aslronautics,2005,31(12):1308-1311.
    [28]Tian Shulin, Wang Houjun, Xu Hongbin. A research of signal generator technology based on CORDIC algorithm[J]. Chinese Journal of Scientific Instrument,2002,23(3):150-153.
    [29]Chang Yong Kang, Swartzlander E.E.Jr. Digit-pipelined Direct Digital frequency Synthesis based on diferential CORDIC[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,2006,53(5):1035-1044.
    [30]V.Andrews, C.T.M. Chang, J.D. Cayo, S. Sabin. A Monolithic Digital Chirp Synthesizer Chip with I and Q Channels[J]. IEEE Journal of Solid-State Circuits.1992,27(10): 1321-1326.
    [31]J. E. Volder. The CORDIC Trigonometric Computing Technique[J]. IRE Trans. Electronics Computers.1959,8(3):330-334.
    [32]D. Panescu, Y.H. Hu, W.J. Tompkins. Fast pipelined CORDIC-based adaptive lattice predictor:algorithms and architecture[J]. IEE Proceedings-Vision, Image and Signal Processing.1995,10(5):339-344.
    [33]H.Samueli. The design of multiplierless FIR filters for compensating DA converter frequency response distortion[J]. IEEE Transactions on Circuits and Systems,1988,8(8): 1064-1066.
    [34]A. Bonfanti, F. Amorosa, C. Samori, A. Lacaita. A DDS-based PLL for 2.4-GHz frequency synthesis[J]. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing,2003,10(12):1008-1010.
    [35]P.V. Brennan, R. Walkington, A. Borkjak. Performance of PLL Synthesiser Based On DDS Feedback[J]. Electronics Letters,1998,12(23):2197-2199.
    [36]王立生.Ku频段低相噪捷变频频率综合器设计[J].电视技术,2008,48(6):74-77.
    [37]李永明,王海永,肖珺,张希鹏等译.锁相环设计、仿真与应用(第5版)[M].北京:清华大学出版社,2007:144-145.
    [38]吴晓燕,庞宏,文光俊.MMIC毫米波倍频器的研究[J].电子工程师,2007,33(4):10-13.
    [39]邢孟道,王彤,李真芳等译.雷达信号处理基础[M].北京:电子工业出版社,2008:147.
    [40]江涛.变频链路群时延特性研究[J].现代雷达,2008,30(5):112-115.
    [41]F. Perez-Martinez, M.Burgos-Garcia, Asensio-Lop. Group delay effects on the performance of wideband CW-LFM radars[J]. Radar, Sonar and Navigation, IEE Proceedings,2001, 148(2):95-100.
    [42]M. Burgos-Garcia, C. Castillo, S. Llorente, J. M. Pardo and J. C. Crespo. Digital on-line compensation of errors induced by linear distortion in broadband LFM radars[J]. Electronics Letters,2003,39(1):116-118.
    [43]Michael J. Flanagan, George A. Zimmerman. Spur-Reduced Digital Sinusoid Synthesis[J]. IEEE Transactions on Communications,1995,43(7):2254-2262.
    [44]胡仕兵,汪学刚,姒强.UWB雷达LFM脉压信号数字产生系统性能分析[J].现代雷达,2007,29(12):51-55.
    [45]胡仕兵,汪学刚,姒强,唐斌.超宽带LFM信号数字产生系统的误差分析[J].电子科技大学学报,2008,37(2):210-213.
    [46]R.G. Plumb. Antenna array beam steering using time-varying weights[J]. IEEE Transactions on Aerospace and Electronic Systems,1991,27(6):861-865.
    [47]Atmel Corporation. AT84AD001B Data Sheet [EB/OL].:Atmel公司官方网站,2007.
    [48]Analog Devices Inc. AD9779 Data Sheet [EB/OL].:ADI公司官方网站,2007.
    [49]Analog Devices Inc. ADL5372 Data Sheet [EB/OL].:ADI公司官方网站,2006.
    [50]Analog Devices Inc. ADF4360-7 Data Sheet [EB/OL].:ADI公司官方网站,2004.
    [51]Cypress Semiconductor Corporation. CY7C68013 Data Sheet [EB/OL].:Cypress公司官方网站,2004.
    [52]Digital Voice Systems Inc. AMBE-2000TM Vocoder Chip User's Manual [EB/OL].:DVSI公司官方网站,2007.
    [53]Mini-Circuits. AMK-3-452+Data Sheet [EB/OL].:Mini公司官方网站,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700