新型液体除湿蒸发冷却空调系统的设计与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,人民生产、生活水平的提高,空调产品逐步进入千家万户。同时,传统的蒸汽压缩式制冷空调存在着能耗大、工质破坏臭氧层等问题,日益引起了人们的重视。作为常规压缩式制冷空调系统的强有力竞争者和替代者,液体除湿空调系统是一种对大气污染小、耗电少,可以利用各种低品位能源驱动的新型空调系统。
     在总结和借鉴前人研究的基础上,本文建立了一套改进的液体除湿蒸发冷却空调系统。在该系统中,环境空气作为新风进入除湿器与除湿溶液接触时被除去部分的水分;干燥的空气再通过蒸发冷却子系统处理,降低温度后送入空调房间达到对室内降温、调湿的目的;吸湿后的除湿溶液被喷入再生塔,在热源作用下再生,这样溶液就可以循环利用。
     本文用数值模拟的方法对建立的液体除湿空调系统进行研究。系统由若干子部件组成,每个子部件均用较成熟的数学模型进行模拟,然后将得到的子程序耦合起来形成一个完整的程序。应用这个程序对系统进行数值模拟研究,并且运用热力学第一、第二定律对比分析再生塔入口溶液温度、除湿塔中干空气与溶质的质量流量比、再生塔中干空气与溶质的质量流量比、大气温度与相对湿度这五个关键参数对于系统送风温度、送风含湿量、制冷量、系统性能系数、冷量火用、火用效率的影响。研究得出的规律为以后的系统优化设计打下了较好的基础。
Air-conditioners are more and more widely used in the social production and daily life as the development of society. At the same time, the conventional mechanical compression refrigeration system’s two big problems have attracted the attentions of investigators. One of the main disadvantages of that system is that it uses very large amount of electrical energy and the other is that the system’s working substance can pollute the environment. As the competitor and replacer of the conventional mechanical compression refrigeration system, the liquid desiccant air-conditioning system is energy saving and harmless for the environment. It can be driven by low grade energies, such as waste heat and solar energy.
     In this work, a novel energy efficient air-conditioning system utilizing liquid desiccant is introduced, after the author sums up the previous researches. At first, fresh air from the atmosphere is dehumidified by direct contact with strong liquid desiccant in the dehumidifier; after being cooled by the evaporative cooling sub-system the process air is blown into the air-conditioning space. The dilute solution is re-concentrated in the regenerator by the effect of heat energy, so the strong liquid desiccant solution can be produced uninterruptedly.
     The paper presents the application of numerical simulation method to study the proposed liquid desiccant air-conditioning system. And this system is composed of several sub-units; each of them is simulated by the mathematical model for building computer programs. These programs are linked to form an integrated C program simulator. Based on the simulation of the liquid desiccant system, this paper applies the first and second law of thermodynamics to research the effects of five key parameters on the performances of the proposed system, such as the supply air temperature and humidity, the cooling capacity and COP, the exergy of cooling capacity and exergy efficiency. These parameters are the inlet solution temperature in regenerator, the air-to-dehydrated desiccant mass flow rate ratios in dehumidifier and regenerator, ambient air temperature and relative humidity.
引文
[1] K.J.Kim, T.A.Ameel, B.D.Wood. Performance Evaluations of LiCl and LiBr for Absorber Design Applications in the Open-Cycle Absorption Refrigeration System. gy Engineering, 1997, 119:165-173 Energy Engineering, 1990, 112: Low Cost 20: 253-267
    [2] G.Scalabrin, G.Scaltriti. A Liquid Sorption-Desorption System for Air Conditioning with Heat at Lower Temperature. Journal of Solar70-75
    [3] Ameel.T.A, Gee K.G, Wood B.D. Performance Predictions of Alternative Absorbents for Open-cycle Absorption Solar Cooling. Solar Energy, 1995, 54(2): 65-73
    [4] Sanjeev Jain, P.L.Dhar, S.C.Kaushik. Experimental studies on the dehumidifier and regenerator of a liquid desiccant cooling system. Applied Thermal Engineering, 2000,
    [5] H.M.Hellmann, G.Grossman. Simulation and analysis of an open-cycle dehumidifier-evaporator-regenerator (DER) absorption chiller for low-grade heat utilization. International Journal of Refrigeration, 1995, 18(3): 177-189
    [6] J.P.Pohl, H.-M.Hellmann, G.Grossman. Investigation and comparison of two configurations of a novel open-cycle absorption chiller. International Journal of Refrigeration, 1998, 21(2): 142-149 [7] K.Gommed, G.Grossman, F.Ziegler. Experimental Investigation of a LiCl-Water Open Absorption System for Cooling and Dehumidification. Journal of Solar Energy Engineering, 2004, 126: 710-715 [8] K.Gommed, G.Grossman. A Liquid Desiccant System for Solar Cooling and Dehumidification. Journal of Solar Energy Engineering, 2004, 126: 879-885
    [9] K. Gommed, G. Grossman. Experimental investigation of a liquid desiccant system for solar cooling and dehumidification. Solar Energy, 2007, 81: 131-138
    [10] GOG.L?f. Cooling with solar energy. In: Congress on solar energy, Tucson, Arizona, 1955, 171-89 Journal of Ener
    [11] D.Pietruschka, U.Eicker, M.Huber, J.Schumacher. Experimental performance analysis and modeling of liquid desiccant cooling systems for air conditioning in residential buildings. Internationaigeration, 2006, 29: 110-124
    [12] W.Kessling, E.Laevemann, C.Kapfhammer. Energy storage for desiccant cooling systems component development. Solar Ene, 1998, 64(4-6): 209-221
    [13] Y.K.Yadav. Vapor-compression and liquid-desiccant hybrid solar hi. Proposed energy-efficient A.A.Kinsara, O.M.Al-Rabghi, M.M.Elsayed. Parametric study of an 2001, 21(12):1185-1202 applied in a demonstration building. Energy and Buildings, l Journal of Refrrgyspace-conditioning system for energy conservation. Renewable Energy, 1995, 6(7): 719-723
    [14] A.A.Kinsara, M.M.Elsayed, O.M.Al-Rabgair-conditioning system using liquid desiccant. Applied Thermal Engineering, 1996, 16: 791-806
    [15] energy-efficient air-conditioning system using liquid desiccant. Applied Thermal Engineering, 1997, 18(5): 327-335
    [16] Y.J.Dai, R.Z.Wang, H.F.Zhang, J.D.Yu. Use of liquid desiccant cooling to improve the performance of vapor compression air conditioning. Applied Thermal Engineering,
    [17] Q.Ma, R.Z.Wang, Y.J.Dai, X.Q.Zhai. Performance analysis on a hybrid air-conditioning system of a green building. Energy and Buildings, 2006, 38(5): 447-453
    [18] C.S.Khalid Ahmed, P.Gandhidasan, A.A.Al-Farayedhi. Simulation of a hybrid liquid desiccant based air-conditioning system. Applied Thermal Engineering, 1997, 17: 125-134
    [19] C.S.Khalid Ahmed, P.Gandhidasan, S.M.Zubair, A.A.Al-Farayedhi. Exergy analysis of a liquid-desiccant-based, hybrid air-conditioning system. Energy, 1998, 23: 51-59
    [20] 李震,江亿,陈晓阳,刘晓华. 溶液除湿空调及热湿独立处理空调系统.暖通空调, 2003, 33(6): 26-33 [21] 陈晓阳,江亿,李震. 湿度独立控制空调系统的工程实践. 暖通空调, 2004, 34(11): 103-109
    [22] X.H.Liu, K.C.Geng, B.R.Lin, Y.Jiang. Combined cogeneration and liquid-desiccant system2004, 36(9): 945-953
    [23] 丁云飞, 丁静, 杨晓西. 液体干燥剂冷却空调系统及其研究进展. 流体机械, 2004, 32(6): 43-47
    [24] 张小松, 殷勇高, 曹毅然. 蓄能型液体除湿冷却空调系统得建立与实验研究. 工程热物理学报, 2004, 25(4): 546-549
    [25] 赵云. 太阳能液体除湿空调系统:[东南大学博士学位论文]. 南京: 东南大学动力工程系, 2002
    [26] Alizadeh.S, Saman.W.Y. An experimental study of a forced flow solar collector/regenerator using liquid desiccant. Solar energy, 2003, 75(5): 345-362
    [27] 孙健,施明恒,赵云. 液体除湿空调再生性的实验研究. 工程热物理学报, 2003, 24(5): 867-869
    [28] 宫小龙,孙健,施明恒,刘培新,王云. 除湿溶液除湿性能的对比试验. 制冷与空调, 2005, 5(5): 81-84
    [29] 柳建华,邬志敏,丁育红,顾卫国. 液体除湿空调系统的除湿器性能试验.
    [30] 施明恒,杜斌,赵云. 太阳能液体除湿空调系统再生和蓄能特性的研究. 太阳能学报, 2006, 27(1): 49-54
    [31] 殷勇高,张小松,管振水. 盐溶液除湿冷却系统的潜能蓄冷研究. 太阳能学报2006, 27(5): 451-455
    [32] 何开岩,郑宏飞,赵华,陈子乾. 多效回热降膜蒸发式太阳能液体除湿空调溶液再生器的稳态试验. 太阳能学报, 2006, 27(9): 885-889
    [33] 代彦军,俞金娣,张鹤飞. 液体除湿空调系统的数学模型与性能分析. 太阳能学报, 1998, 19(3): 307-313
    [34] 杨英,李心刚,李惟毅,方承超,齐锡龄. 液体除湿特性的实验研究. 太阳能学报, 2000, 21(2): 155-159
    [35] 杨英,李心刚,李惟毅,方承超. 高温环境下太阳能液体除湿特性的实验研究. 河北建筑科技学院学报, 1999, 16(3): 40-45
    [36] 孙健,赵云,施明恒.太阳能液体除湿空调性能的实验研究. 节能技术与产品,2002, 4: 30-32
    [37] 袁秋霞,刘俊伟,谢慧炜. 液体除湿系统在低湿洁净环境中的应用研究. 河北建筑科技学院学报, 2005, 22(3): 21-23
    [38] 李村男,王瑾,柳建华,刘业风. 液体除湿空调系统应用分析. 制冷与空调, 2006, 6(5): 43-45
    [39] 吴安民, 李春林, 张鹤飞. 空调—海水淡化复合装置除湿特性研究. 流体机械, 2006, 34(10): 67-70
    [40] 赵云,施明恒. 太阳能液体除湿空调系统中除湿剂的选择. 工程热物理学报, 2001, 22: 165-168
    [41] 赵云,施明恒. 太阳能液体除湿空调系统中除湿器型式的选择. 太阳能学报, 2002, 23(1): 32-35
    [42] 张小松,费秀峰,施明恒. 曹毅然蓄能型溶液除湿蒸发冷却空调系统中除湿器研究. 东南大学学报, 2003, 33(1): 72-75
    [43] 徐学利,张立志,朱冬生. 液体除湿研究与进展. 暖通空调, 2004, 34(7): 22-26
    [44] 李震,江亿,陈晓阳,刘晓华. 溶液-湿空气热质交换过程的匹配研究. 暖通空调, 2005, 35(1): 103-109
    [45] 赵巍,朱瑞琪,阚怡松. 无泵循环液体除湿型空调系统的仿真研究. 西安交通大学学报, 2002, 36(1): 30-34
    [46] 张村,施明恒. 三种太阳能液体除湿空调系统除湿器的比较. 节能技术与产品, 2002, 6: 29-32
    [47] 王倩,郝红,卢建精. 液体除湿空调系统国内外研究进展. 煤气与热力, 2005,25(10): 73-76
    [48] 柳建华,顾卫国,路阳. 液体除湿器的数值模拟分析. 暖通空调, 2006, 36(6): 57-59
    [49] 方承超,孙克涛. 太阳能液体除湿空调系统模型的建立与分析. 太阳能学报,1997, 18(2): 128-133
    [50] 顾洁,唐钢. 液体除湿空调的经济性分析. 暖通空调, 2003,33(6): 117-118
    [51] 丁云飞,丁静,杨晓西. 液体干燥剂除湿式燃气空调系统及应用. 煤气与热力, 2003, 23(12): 738-740
    [52] 张小松,殷勇高,曹毅然. 蓄能型液体除湿蒸发冷却系统中除湿性能的实验研究. 热科学与技术, 2004, 3(1): 60-64
    [53] 张小松,殷勇高,曹毅然. 蓄能型液体除湿冷却空调系统的建立与实验研究. 工程热物理学报. 2004, 25(4): 546-549
    [54] 熊军,刘泽华,寇广孝. 燃气驱动液体除湿空调系统及其节能分析. 煤气与热力, 24(8): 448-450
    [55] 雄军,刘泽华,寇广孝. 燃气驱动的三级液体除湿空调系统及其特点分析. 建筑热能通风空调, 2004, 23(5): 35-37
    [56] 顾卫国,柳建华,周大汉,王瑾,路阳. 双级液体去湿冷却空调性能分析. 制冷与空调, 2004, 3:83-86
    [57] 赵华,郑宏飞,何开岩. 太阳能液体除湿空调的研究进展. 新能源与新材料, 2004, 6: 28-30
    [58] 张广丽,王瑾,柳建华,李含瑛. 蒸发冷却的液体除湿空调系统性能分析.制冷与空调, 2004, 4(6): 60-62
    [59] 张燕,丁云飞. 太阳能液体除湿处理热湿地区冷却顶板新风湿负荷. 建筑科学, 2006, 22(3): 70-73
    [60] 陈宏芳,杜建华. 高等工程热力学. 北京: 清华大学出版社,2003, 190-194
    [61] S.Younus Ahmed, P.Gandhidasan, A.A.Al-Farayedhi. Thermodynamic analysis of liquid desiccants. Solar Energy, 1998, 62: 11-18
    [62] H.Factor, G.A.Grossman. A Packed Bed Dehumidifier/Regenerator for Solar Air-Conditioning
    with Liquid Desiccant. Solar Energy, 1980, 24: 541-550
    [63] Robert.A P. ASHRAE handbook. Atlanta: ASHRAE Inc, 1997.
    [64] 彭美君. 间接蒸发冷却板式换热器火用效率评价及分析: [湖南大学硕士学位论文]. 长沙: 湖南大学机械与汽车工程学院, 2005: 37-39
    [65] A.Ertas, P.Gandhidasan, I.Kiris, E.E.Anderson. Experimental study on the performance of a regeneration tower for various climatic conditions. Solar Energy, 1994, 53(1): 125-130
    [66] S.Patnaik, T.G.Lenz, G.O.G.Lōf. Performance studies for an experimental solaopen-cycle liquid desiccant air dehumidification system. Solar Energy, 1990, 44(3):123-135
    [67] Ren Chengqin, Jiang Yi, Zhang Yianpin. Simplified analysis of coupled heat andmass transfer processes in packed bed liquid desiccant-air contact system. Solar Energy, 2006, 80: 121-131
    [68] X.C.Guo, T.S.Zhao. A parametric study of an indirect evaporative air cooler. Int. Comm. Heat Mass Transfer, 1998, 25(2): 217-226
    [69] 杨世铭,陶文铨. 传热学. 第三版. 北京: 高等教育出版社, 1998, 333-337
    [70] 张宗镒. 人员密集的商业建筑采用风机盘管的湿度问题. 制冷与空调, 2002, 4: 18-20
    [71] Afif.Akel.Hasan, D.Yogi.Goswami, Sanjay.Vijayaraghavan. First and second law analysis of a new power and refrigeration thermodynamic cycle using a solar heat source. Solar Energy, 2002, 73(5): 385-393
    [72] Ren Chengqin, Li Nianping, Tang Guangfa. Principles of exergy analysis in HVAC and evaluation of evaporative cooling schemes. Building and Environment, 2002, 37: 1045-1055

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700