一种反馈式无功补偿方案及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功率因数低、谐波含量大和不对称性是现代电力牵引负荷的三大技术特点。解决这三大问题的技术措施是设置无功补偿装置。本文对一种反馈式无功补偿方案进行了研究,指出了其特点,提出了改进方法和简化方案。
     本文是根据中国实用新型专利(2488215Y,2002-4-10)的构思来开展研究工作的。本文分析了这种反馈式无功补偿方案的工作原理,稳态下各电流之间的关系,变压器变比的确定方法,滤波能力和暂态过程。经过分析发现,这种补偿方案存在一些问题,如滤波能力低,补偿装置体积大,占地面积多,接线复杂;并且如果在投切过程中不将升压变压器高压侧回路断开,存在着发生铁磁谐振的危险。本文分析了解决铁磁谐振的各种方法。由于这些方法都存在严重不足,这种反馈式无功补偿方案是不可行的。
     由于这种反馈式补偿方案存在一些问题,本文分析了它的简化形式,即通过调节降压变压器低压侧的母线电压来调节滤波器的无功出力的补偿方案。本文分析了其工作原理,变压器变比的确定方法,滤波能力计算方法。这种补偿方案由于在晶闸管关断时降压变压器相当于空载,不存在暂态过程的不稳定问题;所用的变压器数目少;占地面积较少;接线相对较简单。
     本文最后还对这种反馈式补偿方案和它的简化形式进行了技术、经济效益分析。通过仿真发现,这两种补偿方案在技术方面的差别不大:两相补偿模式下,在降低负序和滤波方面,效果都不明显;对提高功率因数的作用显著。在此情况下,补偿方案的选择问题就变成了经济效益的比较问题。由于如上所述的原因,本文推荐使用这种反馈式无功补偿方案的简化形式。
At present, low power factor, abundant harmonics and negative sequence are the three main characters of electrical railway traction load. Setting compensator is the vital technical measure to solve the problems. In this paper, a feedback reactive power compensator is studied, its characters are pointed out, and improved measures and simplified scheme are put forward.
    This paper is based on New-style Practical Patents of China (2488215Y, 2002-4-10). It analyses the working principle of the novel reactive power compensator, the relationship of currents in stable states, algorithm of filtering capacity and transient process. Based on the analysis of the paper, we can draw the conclusion that this device has several issues to be solved to put into use, such as low filtering capacity, large bulk and area the device occupies, complexity of connection, and the hazard of ferro-resonance existing when switching without disconnecting the circuit of the step-up transformer. Several settlements are analyzed to eliminate ferro-resonance. Since these settlements have disadvantages, the feedback reactive power compensator is infeasible.
    On account of the disadvantages of the feedback reactive power compensator, a device of its simplified scheme is studied in this paper, in which the reactive power is adjusted by regulating the voltage of the low-voltage side of the transformer. The working principle, the method to calculate the ratio of transformation and algorithm of filtering capacity are also studied in this paper. As the step-down transformer has no load when the SCR is turned off, the system is stable during switching. Less transformers, small area the device occupies, the relative simplicity of connection are the other advantages.
    Technical and economic benefit of the feedback reactive power compensator and its simplified form is calculated at the last of this
    
    
    
    
    paper. On the calculation, we can hold the conclusion that the two kinds of compensators have no distinct difference at the technical aspect under circumstances of two-phased compensation. The effect of decreasing negative sequence current and harmonics ratio is indistinct, however, both are effective in increase power factor. Thus the selection of the three schemes consists in the economic benefit. Based on the analysis above, the its simplified form of the feedback reactive power compensator is recommended.
引文
[1] 李群湛.电气化铁道并联综合补偿及其应用.北京:中国铁道出版社,1993
    [2] 林海雪,李世林,刘慧民.电压电流频率和电能质量国家标准应用手册.北京:中国电力出版社,2001,(5)
    [3] IEEE Working Group on Power System Harmonics. Power System Harmonics: An Overview. IEEE Transactions on Power Apparatus and Systems, Vol. PAS-102, No. 8, August 1983
    [4] T W Preston, J P Sturgess. Effect of electrically generated harmonics on the design an performance of electrical machines.Sources and Effects of Harmonic Distortion in Power Systems (digest No: 1997/096), IEE Colloquium on, 5 Mar 1997
    [5] Bennett P.C, Darley V, Abbott S.M. The Effects of Harmonic Distortion on Equipments. Sources and Effects of Harmonic Distortion in Power Systems (digest No: 1997/096), IEEColloquiumon, 5Mar 1997
    [6] Purkayastha I, Savoie P.J. Effect of Harmonics on Power Measurement. Petroleum and Chemical Industry Conference, 1989,Record of Conference Papers, Industrial Applications Society, 36th Annual, 11-13 Sep 1989
    [7] Subjak J.S, McQuilkin J.S. Harmonics-Causes, Effects,Measurements and Analysis-Update. Cement Industry Technical Conference, 1989. ⅩⅩⅩⅠ. Record of Conference Papers, IEEE, 15-17 May 1989
    [8] Girgis A.A, Nims J.W, Jacamino J, Dalton J.G, Bishop A. Effect of Voltage Harmonics on the Operation of Solid State Relays in Industrial Applications. Industry Applications Society Annual Meeting, 1990, Conference Record of the 1990 IEEE, 7-12 Oct 1990
    [9] Cividino L. Power factor, harmonic distortion, causes, effects and considerations. Telecommunications Energy Conference, 1992.INTELEC '92, 14th International, 4-8 Oct 1992
    [10] Wen-Inne Tsai, Ming-Tsung Tsai, York-YihSun. Effects of Voltage
    
    Unbalance and Harmonics on Three-phase SPWM AC-to-DC Converters with Instantaneous Power Feedback. Power Conversion Conference, 1993.Yokohama 1993, Conference Record of the 19-21 Apr 1993
    [11] Ching-Yin Lee, Bin-Kwie Chen, Wei-Jen Lee, Yen-Feng Hsu. Effects of Various Unbalanced Voltages on the Operation Performance of an Induction Motor under the Same Voltage Unbalance Factor Condition.Industrial and Commercial Power Systems Technical Conference, 1997,Conference Record, Papers Presented at the 1997 Annual Meeting, IEEE 1997, 11-16 May 1997
    [12] Ching-Yin Lee. Effects of Unbalanced Voltage on the Operation Performance of a Three-phase Induction Motor. Energy Conversion, IEEE Transactions on, Volume. 14 Issue 2, Jun 1999
    [13] manjure D.P, Makram E.B. Effect of Nonlinearity and Unbalance on Power Factor. Power Engineering Society Summer Meeting, 2000, IEEE,Volume. 2, 2000
    [14] Yaw-Juen Wang. Analysis of Effects of Three-phase Voltage Unbalance on Induction Motors with Emphasis on the Angle of the Complex Voltage Unbalance Factor. Power Engineering Society Winter Meeting, 2002, IEEE, Volume. 2, 2002
    [15] 张丽等.新型无功可调补偿方案及其仿真.全国电压电流等级和频率标准化技术委员会.电能质量国际研讨会,北京,2002.电能质量国际研讨会组委会,2002
    [16] 张丽,李群湛.TSC在牵引变电所无功补偿中的应用.铁道学报.2000,Vol.22(2)
    [17] Barili A, Brambilla A, Cottafava G, Dallago E. A Simulation Model for the Saturable Reactor. Industrial Electronics, IEEE Transactions on, Volume. 35 Issue 2, May 1988
    [18] Shinya K, Saito K, Miyazawa E. Design of Saturable Reactor for the Magnetic Frequency Trip]er. Magnetics, IEEE Transactions on, Volume. 23 Issue 5, Sep 1987
    [19] 张矩.静补装置及其在电力系统中的应用.电力电容器.1982,(3)
    
    
    [20] 郑国旋.静止无功补偿装置.电气传动自动化.2000,Vol.22(2)
    [21] 翟铁久.晶闸管相控电抗器无功功率补偿装置方案介绍.电气化铁道.2000,(3)
    [22] 任强.SVC补偿原理及其应用.电力电容器.2001,(1)
    [23] San-Yi Lee, Chi-Jul Wu. Combined Compensation Structure of an SVC and an Active Filter for Unbalanced Three Phase Distribution Feeders with Harmonic Distortion. Advances in Power System Control,Operation and Management, 1997. APSCOM-97. Fourth International Conference on (Conf. Publ. No. 450), Volume. 2, 11-14 Nov 1997
    [24] Tso, S.K, Liang J, Zeng Q. Y, Lo K. L, Zhou X.X. Coordination of TCSC and SVC for Stability Improvement of Power Systems. Advances Power System Control, Operation and Management, 1997. APSCOM-97.Fourth International Conference on (Conf. Publ. No. 450), Volume. 1,11-14 Nov 1997
    [25] You jie Ma, Shousun Chen, Baolin Zhang. AStudy on Nonlinear SVC Control for Improving Power System Stability. TENCON '93. Proceedings.Computer, Communication, Control and Power Engineering. 1993 IEEE Region 10 Conference on Issue O, 19-21 Oct 1993
    [26] 李夏青.用静止无功补偿电源实现牵引变电所的综合补偿.铁道学报.2000,Vol.22(3)
    [27] 翁利民,张广祥,舒立平,张启春.静止型无功补偿装置的应用.供用电.2000,Vol.17(5)
    [28] 朱罡.电力系统静止无功补偿技术的现状及发展.电力电容器.2001(4)
    [27] 王金全,杨守城,郭铁英,唐友怀.供电系统的无功补偿与谐波抑制.解放军理工大学学报(自然科学版).2001,Vol.2(6)
    [29] 梁志勇.静止无功补偿设备运行综述.电力电容器.1997(2)
    [30] 秦华标,李心广,赖声礼,陈鸿青.电网综合补偿技术的研究.华南理工大学学报(自然科学版).2000,Vol28.(11)
    [31] 米勒.电力系统无功功率控制.北京:水利电力出版社,1990
    [32] 王兆安,杨君,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社,1998
    [33] 李力,左丽,陈立松.牵引变电所采用SVG实现无功和负序综合补偿方
    
    法.现代电力.2001,Vol.18(1)
    [34] 刘文华.采用GTO的新型静止无功发生器.电力系统自动化.1997(3)
    [35] 李心广,赖声礼.电网的无功及三相不平衡综合补偿研究.电网技术.2001,Vol.25(10)
    [36] 李群湛,贺建闽.高压降压低压晶闸管可调无功补偿装置.中国实用新型专利:2488215Y,2002-4-10
    [37] 汤蕴璆,史乃.电机学.北京:机械工业出版社,1999
    [38] 李巧芬.整体费用最小的变压器容量选择法.福建建设科技.2002,(3)
    [39] 翁双安.配电变压器的经济负荷系数与容量选择.变压器.1997,Vol.34(9)
    [40] SD205-87,高压并联电容器技术条件[S].
    [41] The MathWorks, Inc. MATLAB 6.1 帮助文件 saturabletransformer.html
    [42] H.W.Dommel. 电力系统电磁暂态计算理论.李永庄,林集明,曾昭华译.北京:水利电力出版社,1991
    [43] 陈维贤.电网过电压教程.北京:中国电力出版社,1996.164-168
    [44] 郭育华,连级三等.自动过电分相过电压的仿真分析.铁道学报.1999,Vol.21增刊
    [45] 郭育华,连级三等.自动过分相对电力机车的影响.机车电传动.2000,(2)
    [46] 李群湛,贺建闽.单调谐滤波器优化设计及滤波结果.铁道学报.1995,Vol.17增刊
    [47] 靳龙章,丁毓山.电网无功补偿实用技术.北京:中国水利水电出版社,1997
    [48] 许业清.实用无功功率补偿技术.合肥:中国科学技术大学出版社,1998
    [49] 简克良.电力系统分析.成都:西南交通大学出版社,1992
    [50] 王勇.电气化铁路滤波器的优化设计.电气化铁道.1999,(3)
    [51] 曹建猷.电气化铁道供电系统.北京:中国铁道出版社,1993
    [52] 薛定宇.控制系统计算机辅助设计——MATLAB语言及应用.北京:清华大学出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700