新林林区地表死可燃物含水率分布模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林火灾是影响全球环境和社会经济发展的突发事件。国际上,很多项目在研究林火及其影响,我国是一个林火多发的国家。目前,森林地表死可燃物含水率的模型建立、数据处理与分析应用等还很滞后,主要表现在:(1)森林火险预测预报采用的是区域气象预测预报模式,用于解决森林防火中实际工作的应用,忽视了森林环境的多样性,致使需求的严重脱节;(2)在地表死可燃物载量的计算中,只能给出估计载量的计算结果,无法将计算结果与环境相结合;(3)根据实时可燃物含水率测量值的模型通常都是和气象因子进行拟合分析,而在利用可燃物含水率测量值在防火应用中,仅采用了单一的通报指导模式;(4)同一地区森林环境不同可燃物含水率也不同,是否可以应用其差异以及如何应用,在这方面还缺乏研究。
     为了解决上述问题,本文首先对相关问题进行理论研究,建立相应的理论模型,然后利用研究区中的样地实测资料进行实验分析和比较研究:(1)根据间接平差、非线性最最小二乘理论和样木资料,研究用森林可燃物载量和含水率估计森林火险的分析模型;(2)利用森林资源调查结果和样地资料,并结合地表死可燃物的分布图,研究和分析区域林型和样地地表死可燃物载量的精确估计模型,;(3)利用同质标准样实时测量的数值和样地类型资料,研究标准样测量值与森林环境预测含水率的拟合模型;(4)利用生物学特征、燃烧能量和样地资料,研究同一地区森林环境不同可燃物含水率的差异以及差异防火应用技术。
     本此研究的创新点主要有以下5个方面:(1)指出目前使用的森林火险预测预报与森林防火工作脱节的问题,给出了依据双因子控制改进火险预测数据处理,建立分布模型和变化模型:(2)导出了用二维分布图方法和样地调查,直观描述火险环境变化模型;(3)导出了由同质实测与样地调查建立对可燃物含水率进行实时估计的线性模型,以及实时提供可燃物温、湿度变化的分布模型;(4)给出了由可燃物差异分布和森林类型含水率非均衡分布状况下防火技术应用的一种新方法;(5)建立了地表死可燃物与含水率的二维分布图的拟合模型。
     本文主要有如下研究结论:(1)在解决森林可燃物含水率问题同时,提出了宜采用同质相拟森林环境火险预测法,指出不宜使用目前广泛使用的气象火险预测法;(2)在对森林地表死可燃物载量的计算过程中,需采用类型样地估测地表死可燃物的方法;(3)森林地表死可燃物载量计算的精度,主要取决于对该地区类型样地划分的影响;(4)由森林资源调查数据转换可燃物量时,采用本文表明的三分法模型,以便获得较高的森林地表死可燃物分布;(5)用样地的实测含水率和标准含水率,根据实时含水率变化估算同类型森林环境中的含水率,是一种更为实用的方法;(6)用本文所导出的实时变化估计模型对同一地区不同森林类型间的含水率分布进行转换,即可获得动态的可燃物含水率变化模型。
Forest fires are affecting the global environment and the socio-economic development in emergencies. Internationally, many projects in the researches of forest fires and their impact that China is a country prone to forest fires.Modeling of surface fuel moisture content, data processing and analysis applications still lags behind now, mainly in the:(1) Prediction of forest fire used the regional weather forecasting model for addressing forest fire in the application of practical work, ignoring the diversity of the forest environment, resulting in a serious gap between demand;(2)It can only give an estimated load results in calculations of the surface fuel load, the results can not be combined with the environment;(3) It is usually carried out regression analysis with meteorological factors according to real-time fuel moisture content measurement model, and when applications of the measured value in the fire, just using a single communication guide mode;(4) Fuel moisture content are different in the same forest area in different environments, whether we can apply its differences and how to apply, also a lack of research in this area;
     This paper study each issue and establish the appropriate theoretical model firstly to solve the above problems, then taking experimental analysis and interrelated comparative study using the measured data in the study area:(1) According to the theory of indirect adjustment, nonlinear least squares method and sample timber, studying on forest fuel load and moisture content, estimating analysis model of forest fire risk;(2) Using of forest resources and plot data, Research and analysis of regional forest type and the accurate estimation model of sample surface fuel load, and combining resources to form the distribution of fuel surface;(3) Using of real-time measurement data and the data of plots which is in Homogeneous standard sample to study the fit model of the measured value and predictive moisture content of the forest environment;(4) Using of biological characteristics, combustion energy and plots to study the difference of fuel moisture content in the same area but different environments and the corresponding technology of fire protection.
     This made a major research and innovation in the following five areas:(1) Pointed out the problem that the current forecast of forest fire out of touch with forest fire, given data processing to improve fire prediction based on two-factor control, established distribution model and change model.(2) Derived that using Two-dimensional maps methods and plot survey method describe environmental change model of fire intuitively;(3) Exported linear model estimated by real-time fuel moisture, provided distribution model of changing in temperature and humidity, established by sample investigation and homogeneity measured;(4) Given a new fire protection technology at the difference distribution in fuel and moisture content under non-equilibrium distribution;(5) Formed the fitted mode of moisture content of surface fuel and two-dimensional distribution;
     the conclusions In this papen(1) With solving the problem of forest fuel moisture content, the proposed that using of the homogeneous fit forest environment fire prediction method, not using the weather fire prediction method which widely used now;(2) In the calculations of forest floor fuel load, we should adopt the method of the type samples to estimate surface fuel;(3) The accuracy of calculation on forest floor fuel load mainly depends on the influence of the dipartition of sample in the region;(4) The paper used the trichotomy model when convert forest resources survey data to the fuel volume, so that to obtain a higher distribution of forest floor fuel;(5) According to changes of real-time moisture content to estimate the moisture content in the same type forest environment, it is a more practical approach;(6) Using the real-time changes estimated model in this paper to conduct the moisture content conversion in different forest types of the same area, it can access to a dynamic change model of combustible moisture content.
引文
1. Savage N.,顾聚兴.激光雷达传感器观察森林和树木[J].红外,2000, (4):33-34.
    2. 白帆,周大元,张丽平等.世界森林火灾预防与监控技术概述[J].林业劳动安全,2008, (3):20-22.
    3. 白景萍.精准林业与3S技术[J].山西林业科技,2008, (4):34-36.
    4. 白尚斌,张晓丽.林火预测预报研究综述[J].森林防火,2008, (2):22-25.
    5. 白雪梅.异方差性的检验方法及评述[J].东北财经大学学报,2002, (6):26-29.
    6. 曹云,杨劫,宋炳煜等.人工抚育措施对油松林生长及结构特征的影响[J].应用生态学报,2005,(3)
    7. 曾伟生,肖前辉,胡觉等.中国南方马尾松立木生物量模型研建[J].中南林业科技大学学报,2010, (5):50-56.
    8. 陈德祥,李意德,骆土寿等.海南岛尖峰岭鸡毛松人工林乔木层生物量和生产力研究[J].林业科学研究,2004, (5):598-604.
    9. 陈辉,任承辉,郑丽萍等.楠木人工林生物量模型的研究[J].福建林学院学报,1989,4(9):411-417.
    10.陈敏,安鸿志.时间序列中条件异方差性的检验[J].中国科学(A辑),1998, (11)961-971.
    11.陈奇伯,陈宝昆,董映成等.长江上游洋派河小流域生态修复研究[J].水土保持学报,2004, (1):154-157.
    12.陈育峰.气候—森林响应过程敏感性的初步研究——以四川西部紫果云杉群落为例[J].地理学报,1996, (S1):58-65.
    13.程根伟,罗辑.贡嘎山亚高山林地碳的积累与耗散特征[J].地理学报,2003, (2)179-185.
    14.代力民.长白山红松阔叶混交林生态系统倒木生态学研究[D].北京:中国科学院生态环境研究中心,2002.
    15.单延龙,张敏,于永波.森林可燃物研究现状及发展趋势[J].北华大学学报(自然科学版),2004, (3):264-269.
    16.邓湘雯,聂绍元,文定元等.南方杉木人工林可燃物负荷量预测模型的研究[J].湖南林业科技,2002,(1):24-27.
    17.丁圣彦.应用生物量的研究建立植物群落优化结构——以昆明地区滇石栎萌生灌木群落为例[J].河南大学学报(自然科学版),1995, (4):83-90.
    18.丁圣彦.生物量在建立优化群落结构中的应用——以昆明地区滇青冈萌生灌木群落为例[J].河南大学学报(自然科学版),1997, (04):83-90.
    19.董文明.成像雷达在生态研究方面的应用回顾[J].国外铀金地质,1998, (2):153-160.
    20.杜晓军,刘常富,金罡等.长白山主要森林生态系统根系生物量研究[J].沈阳农业大学学报,1998,(3):33-36.
    21.樊华英.数理统计在统计学中的地位分析[J].China’s Foreign Trade,2011,(8)105.
    22.方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001, (9):967-973.
    23.方精云,陈安平,赵淑清等.中国森林生物量的估算:对Fang等Science一文(science,2001,291:2320~2322)的若干说明[J].植物生态学报,2002, (2):243-249.
    24.方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产力[J].生态学报,1996,5(16):497-508.
    25.方磊.马尾松生物量模型的研究[D].南京:南京林业大学,2000.
    26.房用,慕宗昭,张淑萍等.杨树工业用材生物量的研究[J].水土保持研究,2004,(3):322-325.
    27.冯仲科.精准林业[M].北京:中国林业出版社,2002.
    28.冯仲科,郭清文,张彦林.单木生物量平差随机模型的比较与分析[J].北京林业大学学报,2005, (S2):9-13.
    29.冯仲科,罗旭,石丽萍.森林生物量研究的若干问题及完善途径[J].世界林业研究,2005, (3):25-28.
    30.冯仲科,王仲锋,罗旭.小陇山10个树种生物学特征系数的研究[J].北京林业大学学报,2005, (2):21-23.
    31.冯仲科,余新晓. “3S”技术及其应用[M].北京:中国林业出版社,1999.
    32.冯宗炜,王效科,吴刚军.我国森生态系统的生物量和生产力[M].北京:科学出版社,1999.
    33.冯宗炜,吴刚.中国主要五针松群落学特征及其生物量的研究[J].生态学报,1995,(3):260-267.
    34.高辉.异方差性的诊断方法及数据属性影响的实证分析[J].山西师范大学学报(自然科学版),2003, (4):1-6.
    35.龚秀芳,冯珍珍.几种异方差检验方法的比较[J].菏泽师范专科学校学报,2003,(4):19-22.
    36.郭利峰,牛树奎,阚振国.北京八达岭人工油松林地表枯死可燃物负荷量研究[J].林业资源管理,2007, (5):53-58.
    37.国庆喜,张锋.基于遥感信息估测森林的生物量[J].东北林业大学学报,2003, (2):13-16.
    38.何灿芝,田茂再.一类异方差半参回归模型的估计理论[J].湘潭大学自然科学学报,2001, (4):1-8.
    39.何其祥,郑明.一元线性模型异方差的局部多项式回归[J].系统工程理论方法应用,2003, (2):153-156.
    40.何长虹,黄全义,申世飞等.基于BP神经网络的森林可燃物负荷量估测[J].清华大学学报(白然科学版),2011, (2):230-233.
    41.何忠秋.森林可燃物含水量模型的研究[J].东北林业人学学报,1995, (2):15-16.
    42.何忠秋,张成钢,牛永杰.森林可燃物湿度研究综述[J].世界林业研究,1996, (5)27-31.
    43.何忠秋,张成钢,王天辉.森林可燃物负荷量模型研究[J].森林防火,1993, (3)11-13.
    44.贺东北,骆期邦,曾伟生.立木生物量线性联立模型研究[J].浙江林学院学报,1998,(3) : 76-81.
    45.贺萍,孟超,田丰.小兴安岭地区森林地被可燃物含水率变化规律及其与森林火险等级关系[J].黑龙江气象,2008, (3):25-27.
    46.胡海清.大兴安岭主要森林可燃物理化性质测定与分析[J].森林防火,1995, (1):27-31.
    47.胡海清,王强.利用林分因子估测森林地表可燃物负荷量[J].东北林业大学学报,2005, (6):17-18.
    48.胡跃清.回归模型中的异方差性检验及分析[J].东南大学学报,1995, (6):14-18.
    49.华彬文. 《概率统计原理和在测量中的应用》[J].测绘通报,1983, (4):49.
    50.黄树颜,胡小平.异方差性F的参数估计[J].统计研究,1990, (3):52-54.
    51.黄水生.山西太岳林区阔叶林生物量和生产力的研究[D].北京:北京林业大学,1999.
    52.江希钿,王素萍,杨锦昌.马尾松人工林种群自然稀疏模型的研究[J].热带亚热带植物学报,2001,(4):295-300.
    53.蒋延玲,周广胜.兴安落叶松林碳平衡及管理活动影响研究(英文)[J].植物生态学报,2002, (3):317-322.
    54.金花,王刚,毕湘虹等.大兴安岭几种主要可燃物化学组成与燃烧性[J].森林防火,1996, (1):22-24.
    55.金森,李绪尧,李有祥.几种细小可燃物失水过程中含水率的变化规律[J].东北林业大学学报,2000,(1):35-38.
    56.居恩德,陈贵荣,王瑞君.可燃物含水率与气象要素相关性的研究[J].森林防火,1993, (1):17-21.
    57.巨关升.辽西地区杨树人工林生长规律和树冠结构的研究[D]:中国林业科学研究院,2001.
    58.孔东民,毕秋侠.股票收益率波动的异方差:基于交易量及异质信息分解的检验[J].南开管理评论,2006, (3):92-97.
    59.兰嘉庆,余宛泠.异方差的游程检验[J].中山大学学报(自然科学版),2004,(S1):9-11.
    60.李高飞,任海.中国不同气候带各类型森林生物量和净第一性生产力[J].热带地理,2004,4(24):306-310.
    61.李浩,周汝良,高仲亮等.云南松林可燃物负荷量预测模型研究[J].广东林业科技,2011, (2):30-37.
    62.李惠敏,陆帆,唐仕敏等.城市化过程中余杭市森林碳汇动态[J].复旦学报(自然科学版),2004, (6):1044-1050.
    63.李克让,陈育峰.应用林窗模型研究全球气候变化对森林群落的可能影响——以四川西部紫果云杉群落为例[J].地理学报,1996, (S1):73-80.
    64.李世友,舒清态,马爱丽等.华山松人工林凋落物层细小可燃物含水率预测模型研究[J].林业资源管理,2009, (1):84-88.
    65.李晓康,郭三刚.概率论与数理统计课程的改革与实践[J].价值工程,2011, (7)246-247.
    66.李意德,曾庆波,吴仲民等.我国热带天然林植被C贮存量的估算[J].林业科学研究,1998,(2):41-47.
    67.李昱烨.森林可燃物含水率模型的研究[D]:东北林业大学,2010.
    68.李悦黎.测树学发展简介[J].陕西林业科技,1991, (2):29-30.
    69.梁建萍,韩有志,张云龙等.油松人工林根系生物量的研究[J].河南科学,1999,(S1):84-86.
    70.廖静娟.成像雷达在森林生态研究中的应用[J].遥感技术与应用,1998, (2):58-64.
    71.林金官,韦博成.加权非线性随机系数模型异方差性的Score检验[J].工程数学学报,2002a, (2):109-115.
    72.林金官,韦博成.非线性随机效应模型的异方差性检验[J].系统科学与数学,2002b,(2):245-256.
    73.林开敏,郑郁善,黄祖清等.杉木和马尾松幼林生物量模型研究[J].福建林学院学报,1993,4(13):351-356.
    74.林贤松.马尾松人工林地表可燃物负荷量动态模型的研究[J].福建林业科技,2007,(3):42-44.
    75.刘菲,胡海清.森林可燃物理化性质与燃烧性的研究综述[J].森林防火,2005, (1)28-30.
    76.刘广全,土小宁,倪文进.锐齿栎森林生态系统主要营养元素的层次分布[J].西北植物学报,2001, (2):237-246.
    77.刘巍,王培麟.加权拟线性回归方法[J].宁夏工学院学报,1994, (Z2):63-67.
    78.刘蔚秋,余世孝,王永繁等.黑石顶自然保护区森林生物量测定的比较分析[J].中山大学学报(自然科学版),2002, (2):80-84.
    79.刘蔚余,余世孝,王永繁等.广东黑石山生物量的三维估算[J].中山大学学报(自然科学版),2004,4(43):66-69.
    80.刘曦,金森.平衡含水率法预测死可燃物含水率的研究进展[J].林业科学,2007,(12) : 126-133.
    81.罗永忠,车克钧,蒋志荣.祁连山林区森林可燃物含水率变化规律研究[J].甘肃农业大学学报,2005, (2):239-244.
    82.骆介禹.森林燃烧能量学[M].哈尔滨:东北林业大学出版社,1992.
    83.骆期邦,曾伟生,贺东北等.立木地上部分生物量模型的建立及其应用研究[J].自然资源学报,1999, (3):80-86.
    84.马丽华,李兆山.大兴安岭6种活森林可燃物含水率的测试与研究[J].吉林林学院学报,1998,1(14):20-23.
    85.马志贵.云南松林可燃物含水量动态研究[M].成都:四川民族出版社,1993.
    86.闵志强,孙玉军.长白落叶松林生物量的模拟估测[J].应用生态学报,2010, (6)1359-1366.
    87.任海,彭少麟.鼎湖山森林生态系统演替过程中的能量生态特征[J].生态学报,1999,(6):817-822.
    88.桑卫国,苏宏新,陈灵芝.东灵山暖温带落叶阔叶林生物量和能量密度研究[J].植物生态学报,2002, (S1):88-92.
    89.舒立福,田晓瑞,李红等.我国亚热带若干树种的抗火性研究[J].火灾科学,2000,(2):1-7.
    90.覃先林,张子辉,易浩若等.一种预测森林可燃物含水率的方法[J].火灾科学,2001,(3):159-162.
    91.唐建维,张建侯,宋启示等.西双版纳热带次生林生物量的初步研究[J].植物生态学报,1998, (6):10-19.
    92.唐守正,张会儒,胥辉.相容性生物量模型的建立及其估计方法研究[J].林业科学,2000, (S1):19-27.
    93.田晓瑞,刘斌.林火动态研究与林火管理[J].世界林业研究,2011, (1):46-50.
    94.田晓瑞,舒立福,牛树奎等.森林防火学发展,2009.
    95.王福生,邸学颖,王宏良等.大兴安岭森林地表可燃物生物量与林分因子关系的研究[J].森林防火,1994,(2):16-18.
    96.王立海,邢艳秋.基于人工神经网络的天然林生物量遥感估测[J].应用生态学报,2008,(2):261-266.
    97.王强,金森.利用RS和林分因子估测帽儿山林场森林可燃物负荷量[J].东北林业大学学报,2008, (9):35-37.
    98.王淑君,管东生.神经网络模型森林生物量遥感估测方法的研究[J].生态环境,2007,(1):108-111.
    99.王玉辉,周广胜,蒋延玲等.基于森林资源清查资料的落叶松林生物量和净生长量估算模式[J].植物生态学报,2001, (4):420-425.
    100.王玉杰,张大克.长白山区几个主要造林树种苗木生物量积累与分配的仿生模拟[J].生物数学学报,1994,4(9):95-102.
    101.王仲锋,冯仲科.森林蓄积量与生物量转换的CVD模型研究[J].北华大学学报(自然科学版),2006, (3):265-268.
    102.文定元.森林防火基础知识[M].北京:中国林业出版社,1995.
    103.吴刚,冯宗炜.中国油松林群落特征及生物量研究[J].生态学报,1994,4(14):416-422.
    104.肖刚.国内外森林防火技术现状及趋势探讨[D]:天津大学,2006.
    105.肖君.南方型杨树人工林生长与收获模型的研究[D]:南京林业大学,2006.
    106.谢晋生,陈存及,何宗明等.37种针阔树种抗火性能及其综合评价的研究[J].林业科学,1995, (2):135-143.
    107.邢艳秋,王立海.基于森林调查数据的长白山天然林森林生物量相容性模型[J].应用生态学报,2007, (1):1-8.
    108.胥辉.一种生物量模型构建的新方法[J].西北农林科技大学学报(自然科学版)2001, (3):35-40.
    109.薛家翠,望胜玲,曾祥福等.鄂西林地可燃物含水率及火险等级的气象预报研究[J].华中农业大学学报,2006, (6):679-682.
    110.叶更新,叶希莹.林下可燃物含水率预测的一个多项式气象模型[J].东北林业大学学报,2011, (9):65-68.
    111.尹艳豹,曾伟生,唐守正.中国东北落叶松立木生物量模型的研建[J].东北林业大学学报,201O, (9):23-26.
    112.袁野,李虎,刘玉峰.基于改进型B-P神经网络的西天山云杉林生物量估算[J].福建师范大学学报(自然科学版),2011, (2):124-132.
    113.张广英,高永刚,曹晓波等.伊春市五营森林可燃物含水率预测模型初步研究[J].安徽农业科学,2007, (36):11956-11958.
    114.张会儒,唐守正,王奉瑜.与材积兼容的生物量模型的建立及其估计方法研究[J].林业科学研究,1999,(1)
    115.张会儒,王学利,王柱明.落叶松单木生物量生长变化规律的研究[J].林业科技通讯,2000, (2):15-18.
    116.张会儒,赵有贤,王学力等.应用线性联立方程组方法建立相容性生物量模型研究[J].林业资源管理,1999, (6):63-67.
    117.张荣基,张树美.异方差非简单样本的统计推断[J].广西民族学院学报(自然科学版),2002, (S1):21-22.
    118.张世利,刘健,余坤勇.基于SPSS相容性林分生物量非线性模型研究[J].福建农林大学学报(自然科学版),2008,(5):496-500.
    119.张五林,顾香凤,段秀英.死可燃物含水量变化规律[J].林业科技,1995, (2):44-46.
    120.赵立群,刘晓东,王军等.大兴安岭地区兴安落叶松林可燃物模型的研究[J].森林防火,1995, (3):8-9.
    121.赵宪文.森林火灾遥感监测评价[M].北京:中国林业出版社,1995:76-86.
    122.Adelson Paulo Araujo. Analysis of variance of primary data on plant growth analysis. Pesquisa Agropecuaria Brasileira,2003.38 (1)
    123. Al-Amin M. Ussif, Leif K. Sandal, Stein I. Steinshamn. A new approach of fitting biomass dynamics models to data. Mathematical Biosciences, March 2003,182:67-79
    124. Bi, Huiquan; Turner, John; Lambert, Marcia J. Additive biomass equations for native eucalypt forest tress of temperate Australia. Trees, July 2004,18 (4):467-479
    125. Brian S. Cade, James W. Terrell, Richard L. Schroeder. Estimating effects of limiting factors with regression quantiles. Ecology,1998,80 (1):311-323
    126. Carmela B.M. Arevalo, Timothy A. Volk, Eddie Bevilacqua, Lawrence Abrahamson. Development and validation of aboveground biomass estimations for four Salix clones in central New York. Biomass and Bioenergy, September 2006, In Press
    127. Carolina V. de Castilho. William E. Magnusson, R. Nazare'O. de Arau'jo. Variation in aboveground tree live biomass in a central Amazonian Forest:Effects of soil and topography. Forest Ecology and Management, June 2006, In Press
    128. Chuankuan Wang. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management,2006,222:9-16
    129. Dan Loeffler; David E Calkin; Robin P Silverstein. Estimating volumes and costs of forest biomass in Western Montana using forest inventory and geospatial data. Forest Products Journal, Jun 2006,56:31-38
    130. Daniel J. Zarin, Mark J. Ducey, Joanna M. Tucker, William A. Salas. Potential Biomass Accumulation in Amazonian Regrowth Forests. Ecosystems,2001,4:658-668
    131.Dimitris Zianis, Maurizio Mencuccini. On simplifying allometric analyses of forest biomass. Forest Ecology and Management January 2004,187 (23):311-332
    132. Euler Melo Nogueira, Bruce Walker Nelson, Philip M. Fearnside. Volume and biomass of trees in central Amazonia:influence of irregularly shaped and hollow trunks. Forest Ecology and Management May 2006,227 (15):14-21
    133. Feng, Zhong-Ke; Guo, Qing-Wen; Zhang, Yan-Lin. Comparison and analysis of random model of single tree biomass adjustment. Journal of Beijing Forestry University, December 2005,27 (SUPPL.2):9-13
    134. G. S. Haripriya. Biomass carbon of truncated diameter classes in Indian forests. Forest Ecology and Management,2002,168:1-13
    135. G. S. Haripriya. Estimates of biomass in Indian forests. Biomass and Bioenergy, October 2000,19:245-258
    136. G.S. Haripriya. Estimates of biomass in Indian forests. Biomass and Bioenergy 2000,19:245-258
    137. Guangsheng Zhou, Yuhui Wang, Yanling Jiang, Zhengyu Yang. Estimating biomass and net primary production from forest inventory data:a case study of China's Larix forests. Forest Ecology and Management,2002,169:149-157
    138. Jeffrey John Gerwing, Dami o Lopes Farias. Integrating liana abundance and forest stature into an estimate of total aboveground biomass for an eastern Amazonian forest. Journal of Tropical Ecology,2000,16:327-335
    139. Jing-yun Fang, G. Geoff Wang, Guo-hua Liu, Song-ling Xu. Forest biomass of China: An estimate based on the biomass-volume relationship. Ecological Applications,1998,8 (4):1084-1091
    140. Jonathan G Martin; Brian D Kloeppel; Tara L Schaefer; Darrin L Kimbler; Steven G.McNulty. Aboveground biomass and nitrogen allocation of ten deciduous southern Appalachian tree spacies. Canadian Journal of Forest Research, Nov 1998,28:1648-1659
    141. Suzana M. Salisa, Marco A. Assisb, Patricia P. Mattosc, Antonio C.S. Pi o. Estimating the aboveground biomass and wood volume of savanna woodlands in Brazil's Pantanal wetlands based on allometric correlations. Forest Ecology and Management, June 2006,228 (15):61-68
    142. Thomas G. Cole, John J. Ewel. Allometric equations for four valuable tropical tree species. Forest Ecology and Management,2006,229:351-360
    143. Thomas J. Brandeis, Matthew Delaney, Bernard R. Parresol, Larry Royer. Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume. Forest Ecology and Management, September 2006,233:133-142
    144. Till Neeff, Joa o Roberto dos Santos.. A growth model for secondary forest inCentral Amazonia. Forest Ecology and Management,2005,216:270-282
    145. JoseH Navar, Juan Najera, Enrique Jurado. Preliminary estimates of biomass growth in the Tamaulipan thornscrub in north-eastern Mexico. Journal of Arid Environments 2001,47:281-290
    146. Keryn Paul, Phil Polglase, Peter snowdon, Tivi Theiveyanathan, John Raison, Tim Grove, Stan Rance. Calibration and uncertainty analysis of a carbon accounting model to stem wood density and partitioning of biomass for Eucalyptus globulus and Pinus radiata. New Forest,2006,31:513-533
    147. Laurent Saint-Andrea, Armel Thongo M'Boub, Andre Mabiala etc. Age-related equations for above-and below-ground biomass of a Eucalyptus hybrid in Congo. Forest Ecology and Management, February 2005,205 (1):199-214
    148. Lewis Jordan; Ray Souter; Bernard Parresol; Richard F Daniels. Application of the Algebraic Difference Approach for Developing Self-Referencing Specific Gravity and Biomass Equations. Forest Science, Feb 2006,52:81-93
    149. Mary A Arthur; Steven P Hamburg; Thomas G Siccama. Validating allometric estimates of aboveground living biomass and nutrient contents of a northern hardwood forest. Canadian Journal of Forest Research, Jan 2001,31 (1):11-17
    150. M-C Lambert; C-H Ung; F Raulier. Canadian national tree aboveground biomass equations. Canadian Journal of Forest Research, Aug 2005,35 (8):1996-2018
    151. Min Zhao, Guang-Sheng Zhou. Estimation of biomass and net primary productivity of major planted forests in China based on forest inventory data. Forest Ecology and Management,2005,207:295-313
    152. N.Monteas, T. Gauquelin, W. Badri, V. Bertaudieare, El H. Zaoui. Anon-destructive method for estimating above-ground forest biomass in threatened woodlands. Forest Ecology and Management,2000,130:37-46
    153. P. Malet, F. Pkcaut, C. Bruchou. Beware of using cumulated variables in growth and development models. Agricultural and Forest Meteorology,1997,88:137-143
    154. Parresol, Bernard R. Assessing Tree and Stand Biomass:A Review with Examples and Critical Comparisons. Forest Science. November 1999,45:573-593
    155. Parresol, B.R. Additivity of nonlinear biomass equations. Canadian Journal of Forest Research,2001,31 (5):865-878
    156. [191] Patrick Vallet, Jean-Franc ois Dho te, Gilles Le Mogue'dec, Michel Ravart, Ge'ro me Pignard. Development of total aboveground volume equations for seven important forest tree species in France. Forest Ecology and Management,2006,229:98-110
    157. Philip M. Fearnside. Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management, January 1997,90:59-87
    158. Quirine M. Ketterings, Richard Coe, Meine van Noordwijk, Yakub Ambagau, CherylA.Palm. Reducing uncertainty in the use of allometric biomass equations for predictingabove-ground tree biomass in mixed secondary forests. Forest Ecology and Management,2001,146:199-209
    159. S D Pittman;E E C Turnblom. A study of self-thinning using coupled allometric equations:Implications for coastal Douglas-fir stand dynamics. Canadian Journal of Forest Research, Sep 2003,33:1661-1669
    160. ROTHERMEL R C. Predicting behavior of the 1988 Yellowstone fire:projections versus reality [J]. Int J Wildland Fire,1991,1 (1):1-10.
    161. PATTEN D T, CAVE GH. Fire temperatures and physical characteristics of a controlled burn in the Upper Sonoran Desert[J]. JRange Manage,1984,37:277-280.
    162. CATCHPOLE E A, CATCHPOLE W R. Modelling moisture damping for spread in a mixture of live and dead fuels [J].J Wildland Fire,1991,1 (2):101-106.
    163.BURGAN R E, ROTHERMEL R C. Behave:Fire Behavior Prediction and Fuel Modeling System-FUEL Subsystem[R]. Washington:USDA,1984.
    164. ANDREWSM P L. Behave:Fire Behavior Prediction and Fuel Modeling System-BURN Subsystem, Part 1 [R]. Washington:USDA,1984.
    165. Carmen, E. P. kent's mechanical engineer handbooks. Power Volume, Sec. Z, Combustion and fuels.12thed. John Wiley & Sons, Inc. New York.1950:39-41.
    166. Luke. R. H and A. G. McArthur. Heat yield and power out put in Bush fire in Australia. Australian Government publ. Serv.1978:26.
    167. Van Dyne. G. M., G. F. Payne and Thomas. Chemical Composition of individual range plants from the U. S, range station. Miles City. Montana. From 1955-1960. U. S. Atomic Energy Comm. ORN L-TM-1279.1965:24.
    168. Hough, W. A. Fuel and weather influence wildfires in sand pine forests. USDA. For. Ser. Res. Paper. SE-106,1973:11.
    169. Philpot, C. W. Seasonal change in heat content and other extractive content of Chamise. USDA. For. Serv. Res. Pap. INT-61,1969:10.
    170. Philpot, C. W. Diurnal fluctuation in moisture content of Ponderosa Pine and Whiteleaf Manzantia leaves. USDA. For. Serv. Res. Note Paw-67,1965:7.
    171. Jamison, D. A. Diurnal and seasonal fluctuations in moisture content of pinyon pine and Juniper. USDA. For. Serv. Res. Note RM-67,1966:7.
    172. Blackmarr, W. H. and W. B. Flanner. Seasonal and diurnal variation in moisture content of six species of Pocosin Shrubs. USDA. For. Serv. Res. Pap. Se-33,1968:
    173. Fosberg Michael A, Lancaster James W, Schroeder Mark J. Drying relation and standard and field conditions. For. Sci.,1970,16:121-128.
    174. Fosberg Michael A. Drying rates of heartwood below fibersaturation. For. Sci,1970,16:57-63.
    175. Mc Cammon, Bruce P. Suonpack influences on dead fuel moisture. For. Sci.,1976,22: 323-328.
    176. Forestry Canada Fire Danger Group. Development and Structure of the Canadian Forest Fire Behavior Prediction System. Information Report ST-X3. Published by Forestry Canada Science and Sustainable Development Directorate. Ottawa,1992.
    177. Ertugrul Bilgili, etc. A Dynamic Fuel Model for Use in Managed Even-aged Stand. Wildland Fire,1994,4 (2):177-185.
    178. Elane M. Brick and R. G. Bridges. Recurrent Fires and Fuel Accumulation in Even-aged Blackbute Forests. Forest Ecology and Management,1989,29:59-79.
    179. George E Gyull, etc. Fire and vegetation Trends in the Northern Rockies. Interpretations From 1781-1982 Photographs, General Technical Report INT-158,1983.
    180. Frandsen W.H., Andrews P.L.. Fire behavior in nonuniform fuels. USDA Forest service research paper INT-232,1979 International Forest and Range Experiment Station Forest Service, U.S. Departement of Agricature.
    181.Fons, W.L.Analyst of fire spread in light forest fuel. J.Agric. Res,1946,72:93-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700