伞枝犁头霉Absidia corymbifera AS2生物转化富集黄芪甲苷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄芪甲苷(ASI)是中药黄芪中一种具有多种药理活性的皂苷类化合物,为黄芪制剂质量鉴定的指标成分。黄芪甲苷生物活性突出,中药一类新药“黄芪甲苷葡萄糖注射液”作为治疗缺血性心肌炎的药物正在进行Ⅲ期临床研究。但由于黄芪甲苷结构复杂,无法进行化学全合成,因此其来源主要依靠从黄芪植物中提取。而其在黄芪中含量又非常低,需要大量植物资源和有机溶剂,使大规模制备成为瓶颈。
     微生物转化反应具有专一性强、污染少和转化率高的优点,广泛用于天然产物的结构改造。本研究在国家重大科技专项(2009ZX09301-011)的资助下,借鉴前人的研究经验,采用微生物转化富集技术,以黄芪总皂苷作为底物,通过发酵转化提高黄芪甲苷含量。主要内容是从筛选菌种开始,建立了发酵转化和从发酵液中分离提取黄芪甲苷的新方法,并成功分离获得新的关键酶—黄芪皂苷去乙酰化酶。此外,通过对可转化为黄芪甲苷的前体化合物的鉴定和转化研究,假设了一条全新的微生物去乙酰化富集黄芪甲苷的途径。具体研究结果如下:
     1、本研究首先从不同来源的霉菌中筛选到能够高效转化黄芪总皂苷生成黄芪甲苷的菌种—Absidia corymbifera AS2。以黄芪总皂苷为底物,在投料浓度为5g/L的情况下,转化60h,转化率最高达到90.3%,黄芪甲苷的含量是原料中的3倍。产物黄芪甲苷主要集中在发酵上清液中,经D101大孔吸附树脂分离纯化后,总回收率最高达到了62%,产品色谱纯度达到95%以上。该发酵及纯化工艺黄芪甲苷收率高,成本低,操作简便,避免使用有机溶剂,有利于其工业化生产。
     2、本研究对黄芪总皂苷中可能转化为黄芪甲苷的前体化合物进行了分析。采用常规硅胶柱和反相硅胶柱分离的方法,并以A. corymbifera AS2微生物转化为指导,进行前体化合物的分离和确认,最终共分离到4个可转化为黄芪甲苷的皂苷类化合物。经结构鉴定4个前体化合物分别是astragaloside Ⅰ (AS-Ⅰ), isoastragaloside Ⅰ (isoAS-Ⅰ), astragaloside Ⅱ (AS-Ⅱ)和isoastragaloside Ⅱ (isoAS-Ⅱ)。通过ELSD检测与DAD扫描相结合的方法对四个前体化合物进行纯度鉴定,并采用ELSD吸收图谱的归一化法对四个标准品的纯度进行标定,结果分别为AS-Ⅰ(97%)、isoAS-Ⅰ(97.4%).AS-Ⅱ(98%)和isoAS-Ⅱ(98.7%).建立了黄芪甲苷和4个前体化合物HPLC分析方法和标准曲线,通过对发酵转化以及酶转化过程的实时分析,进行代谢途径的研究。
     3、从化学结构分析来看,AS-Ⅰ(2'3'-di-OAc)和isoAS-Ⅰ(2'4'-di-OAc)比黄芪甲苷多两个乙酰基;AS-Ⅱ(2'-OAc)和isoAS-Ⅱ(3'-OAc)比黄芪甲苷多一个乙酰基。这些结构均可完全被A.corymbifera AS2转化为黄芪甲苷,提示该菌株可能存在去乙酰化酶。为了进一步研究微生物转化黄芪总皂苷生成黄芪甲苷的机制,本研究继续对该微生物中可能存在的去乙酰化酶进行分离纯化。首先采用硫酸铵分步沉淀法浓缩粗酶液中的目标蛋白,再进行Q-sepharose HP离子交换层析,在0.1mol/L氯化钠洗脱组份中发现了较高的酶活性。该组份经phenyl-sepharose6FF疏水层析,收集在0.7mol/L硫酸铵洗脱的活性组份继续进行CHT陶瓷型羟基磷灰石柱层析,在24.5mmol/L磷酸钾洗脱组份中发现有较高的活性。最后采用1mL Resource Q预装柱层析获得电泳纯的活性蛋白。酶活力回收率和蛋白回收率分别为0.32%和0.075‰。
     4、进一步对分离获得的黄芪皂苷去乙酰化酶进行酶学性质研究。以p-NPA为底物在pH7.0和30℃条件下的动力学常数:米氏常数Km值为3.76mmol/L;最大反应速率Vmax为1.64mmol/min/mg.以p-NPA为底物的最适反应pH为8.0,在pH7.0-9.5范围内稳定;最适反应温度为35-45℃;在小于45℃温度范围内相对稳定。MS检测分子量为36067Da。采用SPITC修饰的PSD-MALDI质谱进行序列分析,显示该酶可能为之前没有报道过的新酶。
     5、最后对黄芪皂苷去乙酰化酶的酶解途径进行研究。结果显示4个前体化合物的转化途径分别是:AS-Ⅱ→ASI;isoAS-Ⅱ→AS-Ⅱ→ASI;AS-Ⅰ→(AS-Ⅱ、 isoAS-Ⅱ)→ASI:isoAS-Ⅰ→AS-Ⅱ→ASI.
Astragaloside IV (ASI) is believed to be the main active constituent that is normally used as a marker for quality control of Radix Astragali. ASI has been proved to have special biological activities. A new medicine, ASI glucose injection, for treatment of ischemic myocarditis is on the third period clinical research. Now ASI is mainly obtained from plant extraction for lacking of total synthesis method. Due to the low content of ASI in natural plants, the isolation of ASI from natural products is extremely difficult and cost.
     Microbial transformation which has high specificity and environmental compatibility is increasingly being used as a useful tool in the structure modification of natural compounds. In this study, a new method by microbial transformation to enrich ASI was reported. A new deacetylase was purified from A. corymbifera AS2by combination of different traditional protein purification chromatographics. Four precursors were identified and a new hydrolyzing pathway of these four precursors by the purified deacetylase was conjectured. The dissertation is thankful to the financial support of Chinese National Science and Technology Major Project (2009ZX09301-011).
     1, Absidia corymbifera AS2, which has the highest ability of biotransforming astragalosides to ASI was screened from various fungi. Total astragalosides as substrate with the concentration of5g/L, transformed for60h, the mol degree of conversion arrived at90.3%in5L flask. The yield of ASI was improved by about3folds and the product of ASI was mainly found in the supernatant. A simple, stable and effective method for isolation and purification of ASI from fermentation medium with D101resin was established. After purification, the chromatographic purity and recovery of ASI arrived at95%and62%, respectively.
     2.. The precursors of astragalosides which can be transformed to ASI by microorganisms were investigated. By the methods of silica gel and reverse-phase silica gel chromatography and microbial transformation tracking, Astragaloside I (AS-Ⅰ), Isoastragaloside Ⅰ (isoAS-I), Astragalside Ⅱ (AS-Ⅱ) and Isoastragaloside Ⅱ (isoAS-Ⅱ) were finally separated and identified. These four precursors were analyzed by HPLC-ELSD-DAD to assure the quantity level. A convenient HPLC method for studying the metabolic pathways was established and used to study the metabolic pathways of ASI, AS-Ⅰ, isoAS-Ⅰ, AS-Ⅱ and isoAS-Ⅱ.
     3、Compared with the chemical structure of ASI, there are two more acetyls on3-xylose residue of AS-Ⅰ (2'3'-di-OAc) and isoAS-Ⅰ (2'4'-di-OAc), and one more acetyls on3-xylose residue of isoAS-II (3'-OAc) and AS-Ⅱ (2'-OAc). It points that A. corymbifera AS2has deacetylases which can hydrolyze acetyls residues of some astragalosides to ASI. The purification of deacetylases from A. corymbifera AS2was continued to be studied. Finally, one deacetylase was purified from A. corymbifera AS2by combination of different traditional protein purification chromatographics: ammonium sulfate precipitation, ion-exchange chromatography, hydrophobic chromatography, CHT ceramic hydroxyapatite and Resource Q prepacked column. The activity recovery and the protein recovery of the purified enzyme were0.32%and0.075%o, respectively.
     4、The properties of the purified enzyme were also studied. The molecular weight (MW) of enzyme subunits was38KDa by SDS-PAGE and36067Da by MS. The purified deacetylase had optimal activities at pH8.0and was stable within pH7.0-9.5. The enzyme had optimal temperature of35-45and was stable lower than45℃. The kinetic parameters, Km and Fmax values, of the purified enzyme against p-NPA were determined by typical Lineweaver-Burk double reciprocal plots under pH7.0and30℃. The Km values was3.76mmol/L and the Vmax values was17.64mmol/min/mg. The amino acid sequences of deacetylase were further analyzed with the PSD-MALDIMS method sulfonated by SPITC.
     5、The hydrolyzing pathway of the four precursors by the purified deacetylase was further studied. The result showed that the hydrolyzing pathways were AS-Ⅱ→ASI; isoAS-Ⅱ→-AS-Ⅱ→ASI; AS-Ⅰ→(AS-Ⅱ、isoAS-Ⅱ)-ASI; isoAS-Ⅰ-AS-Ⅱ-ASI。
引文
[1]中国药典[S].一部,2005.
    [2]Kitagawa I, Wang HK, Takagi A, et al. Saponin and sapogenol. XXXIV. Chemical constituents of astragali radix, the root of Astragalus membranaceus Bunge. (1). Cycloastragenol, the 9,19-cyclolanostane-type aglycone of astragalosides, and the artifact glycone astragenol [J]. Chem. Pharm. Bull.,1983, 31:689-697.
    [3]Kitagawa I, Wang HK, Saito M, et al. Saponin and sapogenol. XXXV. Chemical constituents of astragali radix, the root of Astragalus membranaceus Bunge. (2). Astragalosides Ⅰ, Ⅱ and Ⅳ, acetylastragaloside Ⅰ and isoastragalosides Ⅰ and Ⅱ [J]. Chem. Pharm. Bull,1983,31:698-708.
    [4]Kitagawa I, Wang HK, Saito M, et al. Saponin and sapogenol. ⅩⅩⅩⅥ. Chemical constituents of astragali radix, the root of Astragalus membranaceus Bunge. (3). Astragalosides Ⅲ, Ⅴ, and Ⅵ [J]. Chem. Pharm. Bull.,1983,31:709-715.
    [5]Kitagawa I, Wang HK, Yoshikawa M. Saponin and sapogenol. ⅩⅩⅩⅦ. Chemical constituents of astragali radix, the root of Astragalus membranaceus Bunge. (4). Astragalosides Ⅶ and Ⅷ [J]. Chem. Pharm. Bull.,1983,31: 716-722.
    [6]Qu YZ, Li M, Zhao YL, et al. Astragaloside Ⅳ attenuates cerebral ischemia-reperfusion-induced increase in permeability of the blood-brain barrier in rats [J]. Eur. J. Pharmacol.,2009,606:137-141.
    [7]Luo YM, Qin Z, Hong Z, et al. Astragaloside IV protects against ischemic brain injury in a murine model of transient focal ischemia [J]. Neurosci. Lett.,2004, 363:218-233.
    [8]Qi HY, Wei L, Han YF, et al. Proteomic characterization of the cellular response to chemopreventive triterpenoid astragaloside IV in human hepatocellular carcinoma cell line HepG2 [J]. Int. J. Oncol.,2010,36:725-735.
    [9]Lv L, Wu SY, Wang GF et al. Effect of Astragaloside IV on Hepatic Glucose regulating Enzymes in Diabetic Mice Induced by a High-fat Diet and Streptozotocin [J]. Phytother. Res.,2010,24:219-224.
    [10]Yu J, Zhang Y, Sun S. Inhibitory effects of astragaloside IV on diabetic peripheral neuropathy in rats [J]. Can. J. Physiol. Pharmacol.,2006,84:579-587.
    [11]Wang SG, Li JY, Huang H. Anti-hepatitis b virus activities of astragaloside IV isolated from radix astragali [J]. Biol. Pharm. Bull.,2009,32:132-135.
    [12]Liu H, Wei W, Sun WY, et al. Protective effects of astragaloside IV on porcine-serum-induced hepatic fibrosis in rats and in vitro effects on hepatic stellate cells [J]. J. Ethnopharmacol.,2009,122:502-508.
    [13]Zhang WD, Zhang C, Liu RH, et al. Preclinical pharmacokinetics and tissue distribution of a natural cardioprotective agent astragaloside IV in rats and dogs [J]. Life Sci.,2006;79:808-815.
    [14]Yan MM, Chen CY, Zhao BS, et al. Enhanced extraction of astragalosides from Radix Astragali by negative pressure cavitation-accelerated enzyme pretreatment[J]. Bioresource Technol.,2010,101:7462-7471.
    [15]Ma XQ, Shi Q, Duan JA, et al. Chemical Analysis of Radix Astragali (Huangqi) in China:A Comparison with Its Adulterants and Seasonal Variations [J]. J. Agric. Food. Chem.,2002,5:4861-4866.
    [16]Peng JY, Dong FQ, Qi Y, et al. Preparative Separation of Four Triterpene Saponins from Radix Astragali by High-speed Counter-current Chromatography Coupled with Evaporative Light Scattering Detection [J]. Phytochem. Anal., 2008,19:212-217.
    [17]张宇等.黄芪总皂甙水解为黄芪甲苷的工艺研究[J].黑龙江医药科学,2001,24(4):136-137.
    [18]彭树林,李锐,丁立生等.一种黄芪甲苷的制备方法[P].专利公开号CN1869010A.
    [19]刘玫,周晶,张庆伟等.氨液水解法用于提高黄芪中黄芪甲苷含量的工艺研究[J].中国中药杂志,2008,33(4):635-638.
    [20]张金红,周晶,宋慧琴等.碱水解法提高黄芪药材中黄芪甲苷的工艺研究[J].时珍国医国药,2010,21(11):2935-2937.
    [21]鱼红闪,金凤燮.酶法水解黄芪皂苷糖基制备黄芪甲苷的方法[P].专利公开号CN 101130802A.
    [22]毛羽,鱼红闪,金凤燮.黄芪皂苷糖苷酶产生菌的筛选及其酶反应条件[J].大连轻工业学院学报,2005,24(1):19-21.
    [23]肖丽丽,吴晓倩,鱼红闪.黄芪皂苷生物转化物质的分离提取[J].大连轻工业学院学报,2006,25(2):86-88.
    [24]刘景利,王何,付绍平.大孔吸附树脂纯化黄芪皂苷生物转化物质的研究[J].大连工业大学学报,2007,26(2):128-131.
    [25]许平平,谭银春,鱼红闪等.酶转化法提高黄芪甲苷的得率[J].大连工业大学学报,2009,28(1):20-22.
    [26]刘超,毛羽,肖丽丽等.产黄芪甲苷酶的酶反应条件[J].大连工业大学学报,2008,27(2):113-116.
    [27]Ye L, Zhou CQ, Zhou W, et al. Biotransformation of ginsenoside Rb1 to ginsenoside Rd by highly substrate-tolerant Paecilomyces bainier 229-7 [J]. Bioresource Technol.,2010;101:7872-7876.
    [28]Zhou W, Yan Q, Li JY, et al. Biotransformation of Panax notoginseng saponins into ginsenoside compound K production by Paecilomyces bainier sp.229 [J]. J. Appl. Microbiol.,2008; 104:699-706.
    [29]Yan Q, Zhou W, Li XW, et al. Purification Method Improvement and Characterization of a Novel Ginsenoside-hydrolyzing P-Glucosidase from Paecilomyces Bainier sp.229 [J]. Biosci. Biotechnol. Biochem.,2008,72(2): 352-359.
    [30]Yan Q, Zhou XW, Zhou W, et al., Purification and Properties of a Novel β-Glucosidase, Hydrolyzing Ginsenoside Rbl to CK, from Paecilomyces Bainier [J]. J. Microbiol. Biotechnol.,2008,18(6),1081-1089.
    [31]葛慷艳,张群智.CAMAG薄层扫描法测定不同产地黄芪中黄芪甲苷的含量[J].江西中医药,2009,40(10):76-77.
    [32]Yi L, Qi LW, Li P, et al. Simultaneous determination of bioactive constituents in Danggui Buxue Tang for quality control by HPLC coupled with a diode array detector, an evaporative light scattering detector and mass spectrometry [J]. Anal. Bioanal. Chem.,2007,389:571-580.
    [33]覃红萍,鲁静,林瑞超.HPLC-ELSD法测定黄芪药材中黄芪皂苷Ⅰ、Ⅱ、Ⅲ、Ⅳ[J].中草药,2009,40(3):471-473.
    [34]黄绳武,吴智慧.大孔吸附树脂分离纯化黄芪皂苷的工艺研究[J].中药材,2006(12):1352-1355.
    [35]滕兴隆,常洋,裴福成.大孔吸附树脂对黄芪总皂苷分离纯化的研究[J].黑龙江医药,2002(5):340-341.
    [36]高越,李翔,朱臻宇等.大孔树脂吸附法对黄芪皂苷Ⅳ富集纯化工艺的研究[J].第二军医大学学报,2006(3):334-336.
    [37]Song JZ, Yiu HHW, Qiao CF, et al. Chemical comparison and classification of Radix Astragali by determination of isoflavonoids and astragalosides [J]. J. Pharmaceu.Biomed,2008,47:399-406.
    [38]Liu XH, Ye L, Feng MQ, et al. Microbial transformation of astragalosides to astragaloside Ⅳ by Absidia corymbifera AS2 [J]. Process Biochem., 2011,46:1724-1730.
    [39]Ivet K, Corrado G, Sotir Z, et al. Heterologous expression, purification, crystallization, X-ray analysis and phasing of the acetyl xylan esterase from Bacillus pumilus [J]. Biochimica. Biophysica. Acta.,2005,1748,222-230.
    [40]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal. Biochem.,1976,72(1-2):248-254.
    [41]Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature,1970,227(5259):680-685.
    [42]Reisfeld RA, Lewis UJ, Williams DE. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels [J]. Nature,1962,195:281-283
    [43]Lineweaver H, Burk D, The determination of enzyme dissociation constants [J]. J. Am. Chem. Soc.,1934,56:658-666.
    [44]严钦.拟青霉菌sp.229中人参皂苷p-葡萄糖苷酶的分离纯化及其酶学性质研究[D].上海:复旦大学,2008.
    [45]Poutanen K, Sundberg M, Korte H, et al. Deacetylation of xylans by acetyl esterases of Trichoderma reesei [J]. Appl. Microbiol. Biotechnol., 1990,33:506-510.
    [46]Sundberg M, Poutanen K, Markkanen P, et al. An extracellular esterase of Aspergillus awamori [J]. Biotechnol. Appl. Biochem.,1990,12:670-680.
    [47]Halgasova N, Kutejova E, Timko J. Purification and some characteristics of the actyl xylan esterase from Schizophyllum commune [J]. Biochem. J.,1994, 298:751-755.
    [48]Egana L, Gutierrez R, Caputo V, et al. Purification and characterization of two acetyl xylan esterases from Penicillium purpurogenum [J]. Biotechnol. Appl. Biochem.,1996,24:33-39
    [49]Blum DL, Li XL, Chen H, et al. Characterization ofan acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2 [J]. Appl. Environ. Microbiol., 1999,65(9):3990-3995.
    [50]Shao W, Wiege J. Purification and Characterization of Two Thermostable Acetyl Xylan Esterases from Thermoanaerobacterium sp. strain JW/SL-YS485 [J]. Appl.Environ. Microb.,1995,61(2),729-733.
    [51]Lanz WW, Williams PP. Characterization of esterase produced by a ruminal bacterium identified as Butyrivibrio fibrisolvens [J]. J. Bacteriol.,1973, 113:1170-1176.
    [52]McDermid KP, Forsberg CW, MacKenzie CR. Purification and properties of an acetylxylan esterase from Fibrobacter succinogenes S85 [J]. Appl. Environ. Microbiol.,1990,56(12):3805-3810.
    [53]Bachman SL, McCarthy AJ. Purification and Cooperative activity of enzymes constituting the xylan-degrading system of Thermomonospora fusca [J]. Appl. Environ. Microbial.,1991,57(8):2121-2130.
    [54]Degrassi G, Okeke BC, Bruschi CV, et al. Purification and characterization of an acetyl xylan esterase from Bacillus pumius [J]. Appl.Environ. Microbiol.,1998, 64(2):789-792.
    [55]Chungool W, Thongkam W, Raweesri P, et al. Production, purification, and characterization of acetyl esterase from Streptomyces sp. PC22 and its action in cooperation with xylanolytic enzymes on xylan degradation [J]. World J. Microb. Biot.,2008,24:549-556.
    [56]Basaran P, Hang YD, Purification and characterization of acetyl esterase from Candida guilliermondii [J]. Lett.Appl. Microbiol.,2000,30,167-171.
    [57]Kunihiko M, Takashi O, Tatsuhiko O, et al. Purification and Characterization of an Esterase Involved in Cellulose Acetate Degradation by Neissria sicca SB [J]. Biosci. Biotechnol. Biochem.,1999,63(10),1708-1713.
    [58]Mukhopadhyay A, Hazra PP, Sengupta T, et al. Acetyl esterase production by Termitomyces clypeatus. Biotechnol. Lett., [J].1997,19 (2),159-161.
    [59]Marti'nez-Marti'nez I, Navarro-Ferna'ndez J, Lozada-Rami'rez JD, et al. YesT:A new rhamnogalacturonan acetyl esterase from Bacillus subtilis [J]. Proteins 2008, 71:379-388.
    [60]Vladimir ES, Nicole HCP., Identification of a bacterial pectin acetyl esterase in Erwinia chrysanthemi 3937[J]. Mol. Microbiol.,1997,24(6),1285-1301.
    [61]Latha GM, Muralikrishna G., Purification and Partial Characterization of Acetic Acid Esterase from Malted Finger Millet (Eleusine coracana, Indaf-15) [J]. J. Agric. Food Chem.2007,55,895-902.
    [62]Kormelink FJM, Lefebvre B, Strozyk F, et al. Purification and characterization of an acetyl xylan esterase from Aspergillus niger [J]. J. Biotechnol.,1993,27: 267-282.
    [63]Degrassi G, Kojic M, Ljubijankic G, et al.The acetyl xylan esterase of Bacillus pumilus belongs to a family of esterases with broad substrate specificity [J]. Microbiology,2000,146:1585-1591.
    [64]Yan Q, Zhou W, Shi XL, et al. Biotransformation pathways of ginsenoside Rb1 to compound K by β-glucosidases in fungus Paecilomyces Bainier sp.229 [J]. Process Biochem.,2010,45:1550-1556.
    [1]中国药典[S].一部,2005.
    [2]Zu YG, Yan MM, Fu YJ, et al. Determination and quantification of astragalosides in Radix Astragali and its medicinal products using LC-MS [J]. J. Sep. Sci.,2009, 32:517-525.
    [3]Xu Q, Ma XQ, Liang XM. Determination of Astragalosides in the Roots of Astragalus spp. using Liquid Chromatography Tandem Atmospheric Pressure Chemical Ionization Mass Spectrometry [J]. Phytochem. Anal.,2007, 18:419-427.
    [4]北川勋.日本药学会第101次年会讲演要旨集[M].熊本.1981:504.
    [5]Kitagawa I, Wang HK, Takagi A, et al. Saponin and sapogenol. XXXIV. Chemical constituents of astragali radix, the root of Astragalus membranaceus Bunge. (1). Cycloastragenol, the 9,19-cyclolanostane-type aglycone of astragalosides, and the artifact glycone astragenol [J]. Chem. Pharm. Bull.,1983, 31:689-697.
    [6]Kitagawa I, Wang HK, Saito M, et al. Saponin and sapogenol. XXXV. Chemical constituents of astragali radix, the root of Astragalus membranaceus Bunge. (2). Astragalosides Ⅰ, Ⅱ and Ⅳ, acetylastragaloside Ⅰ and isoastragalosides Ⅰ and Ⅱ [J]. Chem. Pharm. Bull.,1983,31:698-708.
    [7]Kitagawa I, Wang HK, Saito M, et al. ⅩⅩⅩⅥ. Chemical constituents of astragali radix, the root of Astragalus membranaceus Bunge. (3). Astragalosides Ⅲ, Ⅴ, and VI [J]. Chem. Pharm. Bull.,1983,31:709-715.
    [8]Kitagawa I, Wang HK, Yoshikawa M. Saponin and sapogenol.ⅩⅩⅩⅥ. Chemical constituents of astragali radix, the root of Astragalus membranaceus Bunge. (4). Astragalosides Ⅶ and Ⅷ [J]. Chem.Pharm.Bull.,1983,31: 716-722.
    [9]Song JZ, Yiu HHW, Qiao CF, et al. Chemical comparison and classification of Radix Astragali by determination of isoflavonoids and astragalosides [J]. J. Pharmaceu. Biomed.,2008,47:399-406.
    [10]Ma XQ, Q. Shi Q, J. A. Duan JA, et al. Chemical Analysis of Radix Astragali (Huangqi) in China:A Comparison with Its Adulterants and Seasonal Variations [J]. J. Agric. Food. Chem.,2002,5:4861-4866.
    [11]冯祚臻,俸小平,官东秀.黄芪甲苷的提取及含量测定研究进展[J].中国药业,2005,14(11):80-82.
    [12]Yan MM, Liu W, Fu YJ, et al. Optimisation of the microwave-assisted extraction process for four main astragalosides in Radix Astragali [J]. Food Chem.,2010, 119:1663-1670.
    [13]Yan MM, Chen CY, Zhao BS, et al. Enhanced extraction of astragalosides from Radix Astragali by negative pressure cavitation-accelerated enzyme pretreatment [J]. Bioresource Technol.,2010,101:7462-7471.
    [14]Peng JY, Dong FQ, Qi Y, et al. Preparative Separation of Four Triterpene Saponins from Radix Astragali by High-speed Counter-current Chromatography Coupled with Evaporative Light Scattering Detection [J]. Phytochem.Anal.,2008, 19:212-217.
    [15]金赞敏,鱼红闪,金凤燮.人参皂苷2α-鼠李糖苷酶分离提取及其酶性质[J].大连轻工业学院学报,2003,22(2):103-106.
    [16]张宇等.黄芪总皂甙水解为黄芪甲苷的工艺研究[J].黑龙江医药科学,2001,24(4):136-137.
    [17]彭树林,李锐,丁立生等.一种黄芪甲苷的制备方法[P].专利公开号CN1869010A.
    [18]刘玫,周晶,张庆伟等.氨液水解法用于提高黄芪中黄芪甲苷含量的工艺研[J].中国中药杂志,2008,33(4):635-638.
    [19]张金红,周晶,宋慧琴等.碱水解法提高黄芪药材中黄芪甲苷的工艺研究[J].时珍国医国药,2010,21(1]):2935-2937.
    [20]鱼红闪,金凤燮.酶法水解黄芪皂苷糖基制备黄芪甲苷的方法[P].专利公开号CN 101130802A.
    [21]毛羽等.黄芪皂苷糖苷酶产生菌的筛选及其酶反应条件[J].大连轻工业学院学报,2005,24(1):19-21.
    [22]刘超,毛羽,肖丽丽等.产黄芪甲苷酶的酶反应条件[J].大连工业大学学报,2008,27(2):113-116.
    [23]肖丽丽,吴晓倩,鱼红闪.黄芪皂苷生物转化物质的分离提取[J].大连轻工业学院学报,2006,25(2):86-88.
    [24]刘景利,王何,付绍平等.大孔吸附树脂纯化黄芪皂苷生物转物质的研究[J].大连工业大学学报,2007,26(2):128-131.
    [25]许平平,谭银春,鱼红闪等.酶转化法提高黄芪甲苷的得率[J].大连工业大学学报,2009,28(1):20-22.
    [26]王旭,徐威,游松.微生物转化在药学中的应用[J].沈阳药科大学学报,2006,23(7):477-482.
    [27]石海莲,吴大正,胡之璧.黄芪皂苷甲的研究进展[J].中国药学杂,2008,43(8):565-567.
    [28]Bedir E, Pugh NC, Pasco DS, et al. Immunostimulatory effects of cycloartane-type triterpene glycosides from Astragalus species [J]. Biol. Pharm. Bull.,2000,23:834-837.
    [29]Ihsan C,Yoshihisa T, Yasukazu O, et al. Effects of triterpene saponins from Astragalus species on in vitro cytokine release [J]. J. Ethnopharmacol.,2005, 96:71-77.
    [30]Qi HY, Wei L, Han YF, et al. Proteomic characterization of the cellular response to chemopreventive triterpenoid astragaloside Ⅳ in human hepatocellular carcinoma cell line HepG2 [J]. Int. J. Oncol.,2010,36:725-735.
    [31]曹丽萍,沈洪,刘丽等.黄芪甲苷、p-榄香烯对SGC7901胃癌细胞COX-2及PGE2表达的影响[J].现代中西医结合杂志,2010,19(7):798-800.
    [32]Su CC, Chiou TL, Chan MH, et al. Astragaloside Ⅳ increases MMP-2 mRNA and protein expression in human lung cancer A549 cells [J]. Mol. Med. Rep., 2009,2:107-113.
    [33]张娟,陈建宗,张金等.黄芪甲甙体外抗乙型肝炎病毒的作用[J].第四军医大学学报,2007,28(24):2291-2293.
    [34]Wang SG, Li JY, Huang H, et al. Anti-hepatitis B Virus Activities of Astragaloside IV Isolated from Radix Astragali [J]. Biol. Pharm. Bull.,2009, 32:132-135.
    [35]Zhang YY, Zhu HY, Huang CG, et al. Astragaloside IV Exerts Antiviral Effects Against Coxsackievirus B3 by Upregulating Interferon-y [J]. J.Cardiovasc. Pharmacol. TM,2006,47:190-195.
    [36]Jiang B, Yang Y, Jin H, et al. Astragaloside IV Attenuates Lipolysis and Improves Insulin Resistance Induced by TNFa in 3T3-L1 Adipocytes [J]. Phytother. Res.,2008,22:1434-1439.
    [37]陈建国,桂定坤,牟利军等.黄芪甲苷对高糖刺激下的足细胞黏附功能的保护作用及机制[J].中华肾脏病杂志,2009,25(3):227-232.
    [38]Chen JG, Gui DK, Chen YF, et al. Astragaloside IV improves high glucose-induced podocyte adhesion dysfunction via α3β1 integrin upregulation and integrin-linked kinase inhibition [J]. Biochem. Pharmacol.,2008, 76:796-804.
    [39]桂定坤,陈建国,陈宜方等.黄芪甲苷抑制高糖诱导的足细胞凋亡作用及机制[J].中华中医药学刊,2010,28(4):822-824.
    [40]Lv L, Wu SY, Wang GF, et al. Effect of Astragaloside IV on Hepatic Glucose-regulating Enzymes in Diabetic Mice Induced by a High-fat Diet and Streptozotocin [J]. Phytother. Res.,2010,24:219-224.
    [41]Wei X, Wu SG, Rao JJ, et al. Antiinflamatory activity of astragaloside IV is mediated by inhibition of NFkappa B activation and adhesion molecule expression [J]. Thromb. Haemost.,2003,90:904-914.
    [42]Yu JX, Zhang YD, Sun S, et al. Inhibitory effects of astragaloside IV on diabetic peripheral neuropathy in rats [J]. Can. J. Physiol. Pharmacol.,2006,84:579-587.
    [43]Liu H, Wei W, Sun WY, et al. Protective effects of astragaloside IV on porcine-serum-induced hepatic fibrosis in rats and in vitro effects on hepatic stellate cells [J]. J. Ethnopharmacol.,2009,122:502-508.
    [44]Du Q, Chen Z, Zhou LF, et al. Inhibitory effects of astragaloside IV on ovalbumin-induced chronic experimental asthma [J]. Can. J. Physiol. Pharmacol., 2008,86:449-457.
    [45]Luo YM, Qin Z, Hong Z, et al. Astragaloside IV protects against ischemic brain injury in a murine model of transient focal ischemia [J]. Neurosci. Lett.,2004, 363:218-223.
    [46]曲友直,李敏,赵燕玲等.黄芪甲苷对大鼠脑缺血再灌注后血-脑屏障的保护作用及ZO-1蛋白表达的影响[J].临床神经病学杂志,2009,22(4):278-208.
    [47]曲友直,赵燕玲,李敏等.黄芪甲苷对脑缺血再灌注后血脑屏障的保护作用及occludin蛋白表达的影响[J].卒中与神经疾病,2010,17(2):92-96.
    [48]王畅,张艳军,冯英等.黄芪甲苷对短暂性前脑缺血模型大鼠海马神经再生的影响[J].中草药,2009,40(5):754-758.
    [49]Zhu SQ, Lei QI, Rui YF, et al. Astragaloside IV inhibits spontaneous synaptic transmission and synchronized Ca2+ oscillations on hippocampal neurons [J]. Acta. Pharmacol. Sin.,2008,29:57-64.
    [50]柴丽娟,钟佩茹,周志焕等.黄芪甲苷对体外神经干细胞增殖作用影响的研究[J].中国药理学通报,2010,(5):670-673.
    [51]Chan WS, Siva SKD, Lu JH, et al. Neuroprotective effects of Astragaloside IV in 6-hydroxydopamine-treated primary nigral cell culture [J]. Neurochem. Int., 2009,55:414-422.
    [52]Navarrete A. ARRIETA J.CAUS I, et al. Gastroprotective effect of astragaloside Ⅳ:role of prostaglandins, sulfhydryls and nitric oxide [J]. J. Pharm. Pharmacol., 2005,57(8):1059-1064.
    [53]Zhang WD, Zhang C, Wang XH, et al. Astragaloside IV dilates aortic vessels from normal and spontaneously hypertensive rats through endothelium-dependent and endothelium-independent ways [J]. Planta. Med., 2006,72:621-626.
    [54]Liu J, Hu XG, Yang Q, et al. Comparison of the Immunoregulatory Function of Different Constituents in Radix Astragali and Radix Hedysari [J]. J.Biomed. Biotechnol.,2010,1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700