客机总体综合分析与优化及其在技术评估中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
总体分析与优化是飞机总体设计技术路线中必须具备的重要环节,对飞机总体方案的最终形成具有决定性的作用。现代客机的研制对总体设计的要求进一步提高,必须充分结合客机总体设计的特点,探索适合现代客机的总体分析与优化方法。本文针对客机总体分析与优化问题,研究主要学科分析模型的理论算法,构建完整的客机总体分析与优化技术流程,开发总体分析与优化的集成程序系统。在此基础上,应用总体分析与优化方法,研究中短程客机的总体参数分析、方案优化以及先进技术评估等问题。论文主要内容如下:
     1)针对客机总体设计特点,总结和归纳了现代飞机总体设计中所用到的总体分析方法和各个专业学科的工程计算模型。对现有分析方法进行改进和修正,对精度要求较高的专业分析模型,则从其微分方程数值模型出发结合特定假设条件推导解析计算方法。
     2)采用Matlab软件环境实现分析模型的程序设计开发,并且以统一MAT格式数据文件管理分析程序的各类数据,完成总体数据存储和交换;按照学科组成关系与数据关联形式构建总体综合分析程序系统的集成框架,并组合成适合不同总体分析任务类型的分析流程。选取公开资料中发表的各类相关数据,对主要分析模型的精度进行验证。应用总体综合分析程序系统对新一代中短程客机进行参数敏感性分析,给出初步评估结果。
     3)在iSight和Optimus两种集成优化软件环境下集成总体综合分析程序,构建总体优化的计算环境,并针对不同的总体优化问题建立不同的集成优化流程。应用总体优化计算环境进一步研究中短程客机的总体优化问题,包括总体方案优化、不同设计目标对参数优化的影响以及面向客机族的系列化总体优化等。
     4)选取先进推进系统、放宽静稳定度、翼梢小翼、自然层流机翼四类先进技术作为中短程客机总体方案设计中技术评估的研究对象,应用客机总体分析与优化方法,分析先进技术应用对方案主要指标的影响,评估先进技术的综合收益。
     分析模型的精度验证表明,本文所建立的主要学科分析模型满足飞机总体设计阶段的数据精度要求。中短程客机总体设计应用研究也充分表明,本文所建立的总体分析与优化方法具有计算速度快、分析精度高、架构清晰以及运行方式灵活等特点,适合于完成客机总体设计阶段的总体分析与优化任务,也适合于客机总体方案中先进技术的综合评估。
In the process of aircraft conceptual design, the integrated analysis and optimization is an essentialpart, and plays a decisive role for generating configuration. With the increasing requirements ofmodern airliners, there is a need to further investigate the integrated analysis and optimization whichis fitted into the conceptual design of modern airliners. This thesis focuses on the issues of theintegrated analysis and optimization in the conceptual design of airliners, including analysis models ofseveral key disciplines, the framework of integrated analysis and optimization, and the computerprogram of integrated analysis and optimization. Based on those achievements, the integrated analysisand optimization methods were applied to solve the problems of primary parameters analysis, designoptimizations and advanced technology assessments in the conceptual design of a short/medium haulairliner. The main contents of the thesis are summarized as follows:
     1) The characteristics and analysis models of the civil transport conceptual design were reviewed.The existing analysis methods were improved and corrected synthetically, and the analytical methodswere derived from its numerical model of differential equation with the specific assumptions for somedisciplines with higher accuracy. The output of this work is that the analysis models of the maindisciplines were established for airliner conceptual design.
     2) Matlab software environment was used to implement codes for analysis models, and a MATformat data file was used to manage the data storage and exchange for all analysis models. Accordingto the relationship of subjects and the association of data, the integrating framework was formed forthe integrated analysis program, and some analysis processes were established jointly for differenttypes of integrated analysis tasks. The precision of main analysis models was validated by thecomparison to the data published in the refereneces. After that, the integrated analysis program wasapplied to the sensitivity analysis of primary parameters and determination of the primary parametersfor the conceptual design of the new generation short/medium haul airliner.
     3) The intergrated optimization framework for the conceptual design of airliner was established inthe optimization software environments (iSight and Optimus), through the use of the integratedanalysis program. The different integrated optimization processes were established for differentoptimization problem for the conceptual design of the airliners. The integrated optimization systemwas applied to further research on the optimization problems for short/medium haul airliner, includingpreliminary design optimization, impacts of different design goals on the values of design variables,and the optimization for conceptual design of airliner family.
     4) Four advanced technologies, such as advanced propulsion system, relaxed static stability,winglets, and natural laminar flow wings, were selected as examples for the assessments of advancedtechnology applications in the short/medium haul airliner design. The integrated analysis andoptimization methods were used to assess the effects of the advanced technology applications on theairliner performance and costs.
     The precisions of the analysis models are verified, and indicate that the disciplines analysis modelestablished in the thesis could satisfy the accuracy requirements for the conceptual design phase ofairliners. The applications in the conceptual design of short/medium haul airliner also indicate that theintegrtaed analysis and optimization methods established in this thesis have the expectedcharacteristics, i.e. quick calculating speed, high precision, concise flowchart, and flexible operation.In summary, the methods established in this thesis are able to be used for the integrated analysis andoptimization, and the assessments of advanced technology applications in the conceptual design ofairliners.
引文
[1] Kundu A K. Aircraft design. Cambridge (UK): Cambridge University Press,2010:19~37.
    [2]余雄庆,徐惠民,昂海松.飞机总体设计.北京:航空工业出版社,2000:2~16.
    [3] Raymer D P. Enhancing aircraft conceptual design using multidisciplinary optimization,[PhDThesis]. Stockholm (Sweden): Royal Institute of Technology (KTH),2002.
    [4] Kristian Amadori. On aircraft conceptual design: a framework for knowledge based engineeringand design optimization,[PhD Thesis]. Linkoping (Sweden): Linkoping University,2008.
    [5] La Rocca G, Van Tooren M J L. Enabling distributed multi-disciplinary design of complexproducts: a knowledge based engineering approach. Journal of Design Research,2007,5(3):333~352.
    [6]叶格尔(著),张锡纯,吴文正(译).飞机设计.北京:国防工业出版社,1987:23~104.
    [7]顾诵芬.飞机总体设计.北京:北京航空航天大学出版社,2001.
    [8]金海波,丁运亮.飞机概念设计中的外形参数化模型的研究.南京航空航天大学学报,2003,35(5):540~544.
    [9]李靖谊,陈炳发等.交互式计算机图形学.北京:航空工业出版社,2000:95~125.
    [10] Hahn A S. Vehicle sketch pad: a parametric geometry modeler for conceptual aircraft design.AIAA-2010-0657,2010.
    [11]苏波,钱若军等.利用能量守恒和径向基函数插值的流固耦合界面数据传递方法.西安交通大学学报,2009,43(9):114~119.
    [12] Matthew West, Julian Fowler. Developing high quality data models. European ProcessIndustries STEP Technical Liaison Executive (EPISTLE), Version2.0, Issue2.1.
    [13] Simpson T W, Peplinski J, Koch P N, et al. Meta-models for computer-based engineering design:survey and recommendations. Engineering with Computers,2001,17(2):129~150.
    [14] Kim H, Malone B. A distributed, parallel, and collaborative environment for design of complexsystem. AIAA-2004-1848,2004.
    [15]曹名.计算机辅助飞机设计基本原理.南京:南京航空学院,1987:1~12.
    [16] Lee V A, Ball G H. Parametric aircraft synthesis and performance analysis. AIAA-66-795,1966.
    [17] Wennagel G J, Mason P W, Rosenbaum J D. IDEAS, integrated design and analysis system.SAE680728,1968.
    [18] Boyles Q R. Aircraft design augmented by a man-computer graphic system. Journal of Aircraft,1968,5(5):486~497.
    [19] English C H. Computer aided design-drafting (CADD)–engineering/manufacturing tool.AIAA-73-793,1973.
    [20] Straub L W. Managerial implications of computerized aircraft design synthesis. Journal ofAircraft,1974,11(3):129~135.
    [21] Oman B H. Vehicle design evaluation program. NASA CR-145070,1977.
    [22] Ardema D M, Williams J L. Automated synthesis of transonic transports. AIAA-72-794,1972.
    [23] Anderson O L, Calvery A L, Davis D A, et al. Development of integrated programs foraerospace-vehicle design (IPAD). NASA CR-181274,1977.
    [24] Glatt C R, Hague D S. ODIN: Optimal design integration system. NASA CR-2492,1975.
    [25] Ames Research Center (NASA). GASP–General aviation synthesis program (Vol. I–mainprogram). NASA CR-152303,1978.
    [26] Sliwa S M, Arbuckle P D. OPDOT: A computer program for the optimum preliminary design ofa transport airplane. NASA TM-81857,1980.
    [27] McCullers L A. Aircraft configuration optimization including optimized flight profiles. NASA87N11743,1984.
    [28] Jayaram S, Myklebust A. ACSYNT–A standards-based system for parametric computer aidedconceptual design of aircraft. AIAA-1992-1268,1992.
    [29] Antoine N E. Aircraft optimization for minimal environmental impact,[PhD Thesis]. Stanford(CA, USA): Stanford University,2004.
    [30] Bil C. ADAS–a design system for aircraft configuration development. AIAA-89-2131,1989.
    [31] Haberland C, Fenske W, Thorbeck J. A computer-augmented procedure for commercial aircraftconfiguration development and optimization. Journal of Aircraft,1986,23(5):390~397.
    [32] Vaziry-Z M A F, Fielding J P. Computer aided conceptual aircraft design (CACAD) fortransport aircraft. COA report No.9608, Bedford (England): Cranfield University,1996.
    [33]刘甲,蒙茂洲.利用Advanced Aircraft Analysis软件进行飞机设计. CAD/CAM与制造业信息化,2008,00(10):54-56.
    [34] Roskam J. Airplane Design. Ottawa (KS, USA): Roskam Aviation and Engineering Corporation,1985.
    [35] Simos D. Piano-X aircraft emissions and performance user’s guide. Woodhouse Eaves (UK):Lissys Ltd,2008.
    [36] Simos D. Computer methods for the preliminary design and operational optimisation of twinengine propeller driven aircraft,[PhD Thesis]. Loughborough (UK): Loughborough University,1984.
    [37] PACE Documentation Library. Pacelab suite for preliminary design: customer benefits andfunctional description (Pacelab Whitepaper). Berlin (Germany): PACE Aerospace Engineeringand Information Technology GmbH,2007.
    [38] Torenbeek E. Synthesis of subsonic airplane design. Delft (The Netherlands): Delft UniversityPress&Dordrecht (The Netherlands): Kluwer Academic Publishers,1982.
    [39] PACE Documentation Library. Pacelab aircraft preliminary design (product description). Berlin(Germany): PACE Aerospace Engineering and Information Technology GmbH,2008.
    [40] Werner-Westphal C, Heinze W, Horst P. Multidisciplinary integrated preliminary design appliedto future green aircraft configurations. AIAA-2007-655,2007.
    [41] Rizzi A. Modeling&simulating aircraft stability&control–the SimSAC project.AIAA-2010-8238,2010.
    [42] Khrabrov A, Sidoryuk M. Non-symmetrical general aviation aircraft and its flight control lawdesign using CEASIOM software. AIAA-2010-284,2010.
    [43] Isikveren A, Melin T. QCARD–A modelling and optimisation tool for transport aircraft design.Linkoping (Sweden):5thEuropean Workshop on Aircraft Design Education,2002.
    [44]程不时.计算机辅助飞机设计.上海:上海市708设计院,1977.
    [45]程不时.飞机总体方案设计优化程序“FJSJ-2”.航空学报,1979,00(2):21~30.
    [46]郭莹芳.从7760CAD/CAM系统展望数据库未来.航空计算技术,1988,00(2):1~13.
    [47]沈漳.计算机辅助飞机总体方案设计系统设计对象模型与设计过程模型.航空学报,1994,15(7):800~805.
    [48]罗明强,刘虎,武哲.开放式飞机总体设计环境的原型研究.航空学报,2008,29(4):954~959.
    [49]高鸣燕,陆文,魏生民.一种多功能计算机辅助飞机外形造型原型系统.西北工业大学学报,1993,11(1):67~72.
    [50]胡峪,李为吉.飞机多学科设计的分级优化方法.西北工业大学学报,2001,19(1):144~147.
    [51]石波.飞机总体设计优化及软件开发,[硕士学位论文].西安:西北工业大学,2005.
    [52]余雄庆.飞机总体多学科设计优化的现状与发展方向.南京航空航天大学学报,2008,40(4):417~426.
    [53]余雄庆,姚卫星,薛飞,等.关于多学科设计优化计算框架的探讨.机械科学与技术,2004,23(3):286~289.
    [54] Beam J, Heigenreich J, Miller R. Development of a distributed integrated modelingenvironment to study the impact of subsystem performance on an air vehicle design.AIAA-2005-5573,2005.
    [55] Padula S L, Gillian R E. Multidisciplinary environment: a history of engineering frameworkdevelopment. AIAA-2006-7083,2006.
    [56] McCullers L A. Flight optimization system (Release7.40) user’s guide. Hampton (VA, USA):NASA Langley Research Center,2008.
    [57] Antoine N, Kroo I. A framework for aircraft conceptual design and environmental performancestudies. AIAA-2004-4314,2004.
    [58]谢岳峰.飞机概念设计与优化的计算环境研究,[硕士学位论文].南京:南京航空航天大学,2008.
    [59]张晓萍.联接翼飞机气动/结构一体化设计研究,[硕士学位论文].南京:南京航空航天大学,2006.
    [60] Gunawan S, Papalambros P, Chan K Y, et al. Software integration for simulation-based analysisand robust design automation of HMMWV rollover behavior. SAE-2007-01-0140,2007.
    [61]刘通,徐元铭.基于Model Center平台的智能优化算法插件开发及应用.民用飞机设计与研究,2010,00(3):14~17.
    [62] Keane J A, Nair P B. Computational approaches for aerospace design. West Sussex (England):John Wiley&Sons Ltd,2005.
    [63]余雄庆,丁运亮.多学科设计优化算法及其在飞行器设计中的应用.航空学报,2000,21(1):1~6.
    [64]丁运亮.现代飞机设计理论与技术.南京:南京航空航天大学,2006:76~112.
    [65]胡晓煜.下一代窄体客机发动机最新进展.航空发动机,2010,36(1):52~56.
    [66]陈光.用于波音787客机的GEnx发动机设计特点.航空发动机,2010,36(1):1~5.
    [67]成磊.聚焦GEnx发动机.航空维修与工程,2012,00(3):22.
    [68]陈光. PW1000G齿轮传动风扇发动机设计特点.国际航空,2009,00(12):71~74.
    [69]胡晓煜. A320/B737客机2020年后换代,开式转子发动机显露希望.燃气涡轮试验与研究,2009,22(3):60~62.
    [70] Perez R E, Liu H T, Behdinan K. Relaxed static stability aircraft design via longitudinalcontrol-configured multi-disciplinary design optimization methodology. Canadian Aeronauticsand Space Journal,2006,52(1):1~14.
    [71]江永泉.飞机翼梢小翼设计.北京:航空工业出版社,2009.
    [72] Ide Y, Yoshida K, Ueda Y. Stability characteristics of supersonic natural laminar flow wingdesign concept. AIAA-2012-0021,2012.
    [73] Jenkinson L R, Simpkin P, Rhodes D. Civil jet aircraft design. London: Arnold,1999.
    [74] Jenkinson L R, Simpkin P, Rhodes D. Civil jet aircraft design, data sets–data B.Waltham(USA): Butterworth–Heinemann,2001. http://www.elsevierdirect.com/companions/9780340741528/appendices/data-b/default.htm
    [75] Kouibia A, Pasadas M, Rodriguez M L. Numerical approximation by discrete interpolatingvariational splines. Applied Numerical Mathematics,2012,62(9):1109~1118.
    [76] Isikveren A T. Quasi-analytical modelling and optimisation techniques for transport aircraftdesign,[PhD Thesis]. Stockholm (Sweden): Royal Institute of Technology (KTH),2002.
    [77] Schaufele R D. The elements of aircraft preliminary design. Santa Ana (CA): Aries Publications,2000.
    [78] Howe D. Aircraft Conceptual Design Synthesis. London and Bury St Edmunds: ProfessionalEngineering Publishing Ltd,2000.
    [79] Mink G, Behbahani A. The AFRL ICF generic gas turbine engine model. AIAA-2005-4538,2005.
    [80] Svoboda C. Turbofan engine database as a preliminary design tool. Aircraft Design,2000,3(1):17~31.
    [81]李杰. LEAP-X发动机的创新性技术.航空科学技术,2011,00(4),12~14.
    [82]张帅,余雄庆.面向飞机总体设计的开式转子发动机分析模型.航空动力学报,2012,27(8):1801~1808.
    [83] Baum J A, Dumais P J, Mayo M G, et al. Prop-fan data support study. NASA CR-152141,1978.
    [84] Jeracki R J, Mikkelson D C, Blaha B J. Wind tunnel performance of four energy efficientpropellers designed for mach0.8cruise. NASA TM-79124,1979.
    [85] Bellocq P, Sethi V, Cerasi L, et al. Advanced open rotor performance modelling formultidisciplinary optimization assessments [R]. ASME GT2010-22963,2010.
    [86]尚义.航空燃气涡轮发动机[M].北京:航空工业出版社,1995.
    [87] GE Aircraft Engines GE36Project Department. Full scale technology demonstration of amodern counterrotating unducted fan engine concept. NASA CR-180867,1987.
    [88] ESDU. Geometrical properties of cranked and straight tapered wing planforms. EngineeringScience Data Units (ESDU),76003,1976.
    [89] AIAA. Aerospace design engineers guide (5thedition). Reston (VA): America Institute ofAeronautics and Astronautics Inc.(AIAA),2003.
    [90] Thomas J G B, Finney R L. Calculus and Analytical Geometry (7thedition). Boston (MA):Addison-Wesley Pulishing Company,1988.
    [91] Abbott I H, Von Doenhoff A E. Theory of wing sections. Minoela (NY): Dover Publications Inc.,1949.
    [92] Pitts W C, Nielsen J N, Kaattari G E. Lift and centre of pressure of wing-body-tail combinationsat subsonic, transonic and supersonic speeds. NACA TR-1307,1954.
    [93] Schaufele R D, Ebeling A W. Aerodynamic design of the DC-9wing and high-lift system.AIAA-67-0846,1967
    [94] Young A D. The aerodynamic characteristics of flaps. Ministry of Supply (United Kingdom):Aeronautical Research Council Reports and Memoranda,1953.
    [95] Feagin R C, Morrison W D. Delta method, an empirical drag buildup technique. NASACR-151971,1978.
    [96] Raymer D P. Aircraft design: a conceptual approach (4thedition). Reston (VA): AmericaInstitute of Aeronautics and Astronautics Inc.(AIAA),1999.
    [97] Boppe C W. Aircraft drag analysis methods. AGARD Report LS,1991.
    [98] Gur O, Mason W H, Schetz J A. Full configuration drag estimation. AIAA-2009-4109,2009.
    [99] Kuhlman J M. Optimised aerodynamic design process for subsonic transport wing fitted withwinglets. NASA CR-159180,1979.
    [100] McDonnell Douglas Astronautics Company. The USAF stability and control digital DATCOM,Volume I/II/III. ADA086557.
    [101]张帅.操稳特性快速评估及其在飞机设计中的应用,[硕士学位论文].南京:南京航空航天大学,2008.
    [102] Chai S, Crisafulli P, Mason W H. Aircraft center of gravity estimation in conceptual/preliminary design. AIAA-1995-42762,1995.
    [103] Flight Operations Support&Line Assistance (Airbus). Getting to grips with aircraftperformance. Blagnac (France): Airbus Customer Services,2002.
    [104]方振平,陈万春,张曙光.航空飞行器飞行动力学.北京:北京航空航天大学出版社,2005.
    [105]张帅,余雄庆.客机航线性能分析的分段解析方法.飞行力学,2012,30(6):502~506.
    [106]于玺强.民用飞机直接运营成本分析与建模,[硕士学位论文].南京:南京航空航天大学,2004.
    [107]李南.工程经济学.北京:科学出版社,2004:37~44.
    [108] Van Bodegraven G W. Commercial aircraft DOC methods. AIAA-1990-3224,1990.
    [109]王修方.干线飞机直接使用成本的计算方法.民用飞机设计与研究,1995,00(3):39~43.
    [110] Lord W K. Aircraft noise source reduction technology. Pratt&Whitney. Airport NoiseSymposium: Palm Springs, CA, March2,2004.
    [111] Clark B J. Computer program to predict aircraft noise levels. NASA TP-1913,1981.
    [112] Volders, M. and Slingerland, R., Environmental harm minimization during cruise forpreliminary long-range aircraft design. AIAA-2003-6803,2003.
    [113] ICAO. ICAO Engine Emissions Data Bank. Dec10,2010.
    [114] Baughcum S L. Scheduled civil aircraft emission inventories for1992: database develops.NASA Langley Research Center,1996.
    [115] Houghton J T, Jenkins G J, and Ephraums J J (eds.). Climate Change: The IPCC ScientificAssessment. Cambridge University Press, Cambridge,1990.
    [116] Boeing Commercial Airplane Group.737Airplane characteristics for airport planning. BoeingD6-58325-6,2005.
    [117] Training&Flight Operations Support Division. A319/A320/A321technical training manual.Toulouse (France): Airbus Industrie,2000.
    [118] Obert E. Aerodynamic design of transport aircraft. Amsterdam (The Nethelands): IOS PressBV,2009.
    [119] Boeing Commercial Airplane Group.737-800weight and balance control and loading manual.Boeing D043A580-BEJ1,2005.
    [120]张庆伟,林左鸣.世界民用飞机手册.北京:航空工业出版社,2009:237.
    [121] Mozdzanowska A, Hansman R J. Evaluation of regional jet operating patterns in thecontinental united states. Boston (MA): Massachusetts Institute of Technology (MIT),BostonInternational Center for Air Transportation Report ICAT-2004-1,2004.
    [122] Smith N R, Blessing B, Dixon J, et al. Conceptual design of an environmentally responsible150-passenger commercial aircraft. AIAA-2010-1392,2010.
    [123] Jenkinson L R. Regional fanjet aircraft optimization studies. AIAA Journal of Aircraft,1993,30(2):168-177.
    [124]王宇,余雄庆.考虑不确定性的飞机总体参数优化方法.航空学报,2009,30(10):1883-1888.
    [125] Kroo I. Aircraft Design: Synthesis and Analysis. Stanford (CA): Desktop Aeronautics, Inc.,1997. http://adg.stanford.edu/aa241/.
    [126] Caves B E, Jenkinson L R, Rhodes D P. Adapting civil aircraft conceptual design methods toaccount for broader based constraints. AIAA-1997-5595,1997.
    [127] Antoine N, Kroo I, Willcox K, Barter G. A framework for aircraft conceptual design andenvironmental performance studies. AIAA-2004-4314,2004.
    [128]雍明培,余雄庆.基于模块化产品平台的飞机族设计技术探讨.飞机设计,2006,00(6):30-37.
    [129] Henne P A. MD-90transport aircraft design. AIAA-89-2023,1989.
    [130]李学国.主动控制技术在飞机设计中的应用.北京:北京航空航天大学出版社,1985,7~32.
    [131] Perez E R, Liu H T. Early aircraft and control design integration through Multidisciplinaryoptimization and surrogate models. AIAA-2004-5356,2004.
    [132]吴森堂,费玉华.飞行控制系统.北京:北京航空航天大学出版社,2005.
    [133] Dahlin J A. Aerodynamic evaluation of winglets for transport aircraft. AIAA-81-1215,1981.
    [134] Bhatia K G, Nagaraja K S. Winglet effects on the flutter of twin-engine-transport-type wing.AIAA-84-0905,1984.
    [135] Qin N. Towards Substantial Drag Reduction for Transonic Wings Using AerodynamicOptimisation with Shock Control Through Reduced Wing Sweep. The28th InternationalSymposium on Shock Waves, Manchester, July2011.
    [136] Kruse M, Wunderlich T, Heinrich L. A conceptual study of a transonic NLF transport aircraftwith forward swept wings. AIAA-2012-3208,2012.
    [137] Seitz A, Kruse M, Wunderlich T. The DLR project LamAiR: design of a NLF forward sweptwing for short and medium range transport application. AIAA-2011-3526,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700