水下超高速航行体微惯性测量组合设计及其相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以超空化减阻技术运动的航行体在速度、灵活性等方面都有了全新的改善,改变了传统水下航行体普遍存在速度慢、航程短、精度低的缺点,开辟了水下超高速航行体更为广阔的发展空间,在水下超高速航行体上装置导航制导设备,将大大提高航行体的效能,随着航行体结构设计的不断优化,以及在体积、可靠性和抗冲击性能等诸多方面的要求更加突出,使得航行体内置惯导装置小型化发展成为一种必然趋势。随着微机电技术的发展,加之微惯性导航系统可在不依赖任何外部信息条件下实现全自主导航的突出优点,微惯性测量组合技术在水下超高速航行体上具有广阔的应用前景。但是,与传统的惯性测量组合相比,微惯性测量组合的精度明显偏低,这极大地限制了它的应用。如何充分发挥微惯性器件的优势,不断提高其测量精度,进而提高微惯性测量组合的测量精度,具有极其重要的意义。本文的研究工作正是针对提高微惯性元件和微惯性测量组合可靠性及精度这一中心展开的。
     进行了一种新型的九陀螺的微惯性测量组合设计,在设计中,采取斜置轴冗余配置方式,运用第4轴冗余信息实现对3个正交轴信息的校验和互补,系统的可靠性和精度较以往常用配置方式有一定的提高。
     对微机械陀螺漂移特性进行了分析,微机械陀螺的随机漂移比系统性漂移更复杂,对它的建模补偿对于提高测量信息精度非常重要。论文分别运用基于指数平滑的GM(1,1)模型和基于动窗平滑的GM(1,1)模型对漂移中的确定性趋势项进行了提取,并运用AR(3)模型对随机漂移进行了建模分析,经Allan方差分析表明,经GM-AR模型补偿后的漂移噪声有大幅度的降低。此外,通过对微机械陀螺同一日内的多组数据和不同日期的多组数据进行了重复性检验,结果表明,同一环境条件下的随机漂移数据具有很好的重复性,可以通过多次测量结果预先离线估计出来。在时间序列分析模型基础上,对微机械陀螺随机漂移信号进行了卡尔曼滤波处理,随机漂移信号在滤波后虽然没有完全消除,但却大幅度降低,在实际应用中,通过以上方法对微机械陀螺仪的输出信号进行滤波处理,得到了更高精度的测量结果。
     采用数据融合算法进一步提高本文设计系统精度。分别采用基于最优加权的最小二乘算法、有限窗加权最小二乘算法和测量方差自学习的最小二乘算法,综合利用分布在不同位置传感器的冗余和互补信息,降低了测量信息的不确定性,系统测量精度进一步提高。
     研究结果表明,适应水下超高速航行的复杂环境设计的新型微惯性测量组合,可以充分发挥微惯性器件高可靠性、抗动态冲击能力强的突出优点,使系统的可靠性和精度综合性能显著提高,通过漂移误差模型的补偿技术和数据融合方法,能够在现有的硬件基础上进一步提高微惯性测量组合的精度,具有良好的效果。
Underwater vehicles with supercavitating and drag reduction technologies have got considerable improvement in speed and flexibility, which overcomes the defects of traditional underwater vehicles such as low speed, short voyage and bad precision, opening a wider development area for underwater superspeed vehicles. Installation of navigation equipment in such vehivles becomes essential for raising the efficiency of vehicles. Following the continuing progress in design of vehicle's structure, we have higher requirements for volume, reliability and anti-shocking. Therefore the minimization of built-in inertial navigation system becomes more urgent. Micro inertial navigation system can realize a wholly-automated navigation independent of any external information. Combining micro mechatronic technique, the micro inertial measurement unit (MIMU) possesses wide application perspective for underwater superspeed vehicles. However, comparing with conventional inertial measurement components, MIMU has lower precision, which severely handicap its application. Hence,it is significant to know how to take full advantages of microscopic inertial parts and improve the measuring precision,so that the measuring precision of MIMU can be also improved. In the paper, a series of research work was performed for improvement of reliability and precision of MIMU.
     First, the MIMU with nine gyroscopes was designed, in which the 4th redundant information were used by the collocation method of inclined axis redundancy to realize check and complementation for information of 3 orthogonal axes, remarkably increasing the reliability and precision of this system compared to the conventional collocation methods.
     Then, the feasibility of increasing the precision of the system proposed in this thesis was discussed by using a data fusion algorithm. In order to further increase system measurement precision, redundant and complementary information coming from the sensors in different locations is synthetically utilized to reduce uncertainty of measured information by use of optimally weighted least square method (OW-LSM)and finite windowing weighted algorithm(FW-LSM) and the measuring variance self-learning weighted least squares (SL-LSM) respectively.
     Finally, the drift characteristics of micromechanical gyroscopes were analyzed by the method of collecting a large number of sample data. The stochastic drift of micromechanical gyroscopes is more complex than systematic drift, and its modeling and compensation are very important to increasing precision of measurement information. In this thesis, certainty trend terms in drifting were abstracted based on two improved GM(1,1) models, and modeling analysis was done on the stochastic drift using AR(3) model. Allan variance analysis shows that the drift noises after compensation of GM-AR models are greatly reduced.
     In addition, repeated tests were done on the micromechanical gyroscopes by using the multi group data in one day and different days, showing well information repeatability of the micromechanical gyroscopes. And the stochastic drift signals were processed using Kalman filter. Although not all the stochastic drift signals were removed, they were reduced substantially. Measurement results with higher precision can be obtained in practical application by using the method mentioned above.
     The research results in this thesis show that the design of MIMU can make full use of the advantages of micro inertial components, increasing the reliability and precision of the system. Compensation techniques of the data fusion algorithm and drift error model can further increase the precision of micromechanical gyroscopes under the condition of existing hardware, showing a good effect.
引文
[1]曹伟,魏英杰,王聪,等.超空泡技术现状、问题与应用.力学进展,2006,36(4):571-579.
    [2]李凝,杨飚.德国轻型超空泡鱼雷研发现状及展望.鱼雷技术,2008,16(2): 1-4,30.
    [3]丛敏,魏国福.美国海军的超空泡研究计划.飞航导弹,2009(1):17-20.
    [4]王鹏,王树宗.应用在鱼雷上的超空泡技术分析.舰船科学技术,2005,27(2):77-80.
    [5]熊天红,易文俊,刘怡听.小攻角对税校超高速射弹空泡形态的影响.弹道学报,2008,20(3):71-74.
    [6]Savchenko Y N. Experimental Investigation of Supercavitating Motion of bodies. VKI Special Course on Supercavitating Flows, Brussels, February. 12-16,2001. Brussels:RTO-AVT and VKI,2001:43-66P
    [7]Vlasenko Y D. Experimental Investigation of Supercaviting Regime of Flow around Self-Propelled Models. International Journal of Fluid Mechanics Research.2001,28(5):717-733P
    [8]Vlasenko Y D. Experimental Investigation of Supercavitation Flow Regimes at Subsonic and Transonic Speeds.5th Intermational Symposium on Cavitation, Hotel Osaka Sunpalace, Japan, November 1-4,2003.GS-6-006
    [9]杨莉,张庆明.超空泡技术的应用现状和发展趋势.战术导弹技术.2006,9(5):6-10页
    [10]Arndt REA, Balas G J, Wosnik M. Control of Cavitating Flows:A perspective. JSME International Journal Series B-Fluids and Thermal Engineering.2005,48(2):334-341P
    [11]Kuklinski R, Henoch C, Castano J. Experimental Study of Ventilated Cavities on Dynamic Test Model.4th International Symposium on Cavitation, California, June 20-23,2001. California:California Institute of Technology Pasadena,2001:Session B3.004
    [12]何友声,刘桦,赵岗.二维空泡流的脉动性态研究.力学学报.1997,29(1):1-7页
    [13]邓飞,张宇文,袁绪龙,等.水下超空泡航行体流体动力设计原理研究.西北工业大学学报.2004,22(6):806-810页
    [14]顾巍,何友声.空泡流非稳态现象的流动控制.力学学报.2001,33(1):19-26页
    [15]袁绪龙,宇文,王育才,等.水下航行体通气超空泡非对称性研究.力学学报.2004,36(2):146-150页
    [16]赵新华.超高速航行体动力学建模及控制研究.哈尔滨:哈尔滨工程大学,2008.
    [17]朱利安W加德纳,维贾伊K瓦拉丹,奥萨马O阿瓦德卡里姆.微传感器MEMS与智能器件.范茂军,鲁德双,刘光辉,译.北京:中国计量出版社,2007:2-8页
    [18]丁衡高.微系统与微米/纳米技术及其发展.微米/纳米科学与技术.2000,5(1):1-6页
    [19]周兆英,叶雄英,王晓浩,等.微型机电系统的技术特点及其产业化分析.微米/纳米科学与技术,2000,5(1):7-12页
    [20]黄良甫,贾付云.空间微机电系统的研究与进展.真空与低温.2002,8(12):187-196页
    [21]Weinberg M., Bernstein J., Cho S., King A.T., Kourepenis A., Maciel P. A Micro machined Comb-Drive Tuning Fork rate Gyroscope[C].Proceedings of the Institute of Navigation 49th Annual Meeting, Cambridge, MA, June 21-23,1993:595-602页
    [22]Helsel M., Gassner G., Robinson M. and Woodruff J.A. A Navigation Grade Micro-Machined Silicon Accelerometer[C]. Proceedings IEEE 1994 Position, Location and Navigation Symposium, Las Vegas, NV, April 11-15,1994:51-58页
    [23]Warren K. Electro statically Force-Balanced Silicon Accelerometer. NAVIGATION, Journal of the Institute of Navigation,1991,38(1):91-99页
    [24]Kourepenis A., Petrovich A. and Weinberg M. Low Cost Quartz Resonant Accelerometer for Aircraft inertial Navigation[C]. Proceedings of the IEEE International Conference on Solid State Sensors and Actuators,1991,June:24-28页
    [25]Tanaka K, Mochida Y, Suzimoto M, et al. A micro machined vibrating gyroscope. Sensors and Actuators,1995, A50:111-116页
    [26]Weinberg M, Bernstein J, Cho S, et al. A micro-machined comb drive tuning fork gyroscope for commercial applications[C]. In:2nd St. Petersburg International Conference on Gyroscopic Techno logy and Navigation. St. Petersburg, Russia, May,1995.
    [27]Hashimoto M, Cabaz C, Minami K, et al. Silicon resonant angular rate sensor using electromagnetic excitation and capactive detection. J Mircromech Microeng,1995,5:219-225页
    [28]李旭辉.MEMS发展应用现状.传感器与微系统.2006,25(5):7-9页
    [29]余丹铭,梁利华,许杨剑.微电子机械技术的研究和发展趋势.电子机械工程.2005(1):5-9页
    [30]罗 均,谢少荣.微型传感器及其应用.北京:化学工业出版社,2005:64-65页
    [31]何昆鹏.MEMS惯性器件参数辨识及系统误差补偿技术.哈尔滨:哈尔滨工程大学,2009.
    [32]Bradford S. Davis, Tim Denison, Jinbo Kaung. A monolithic high-g SOI-MEMS accelerometer for measuring projectile launch and flight accelerations. Shock and Vibration,2006,13(2):127-135页
    [33]T.Juneau, A.P.Pisano, J.H.Simth, Dual axis operation of a micromachined rate gyroscope[C], in Tech. Dig.9th Int. Conf. Sold-state Sensors and Actuators (Transducers'97), Chicago, IL, June1997:883-886页
    [34]W. A. Clark, R. T. Howe, and R. Horowitz, Surface Micromachined z-axis vibratory rate gyroscope[C], in Proc. Tech. Dig. Solid-State Sens. Actuator Workshop,Hilton Head Island, SC, June 3-6,1996:283-287页
    [35]T. Juneau, A. P Pisano, and J. H. Smith, Dual axis operation of a Micromachined rate gyroscope, in Tranducers, Chicago,1L,June 16-19,1997:883-886页
    [36]M.Lutz, W.golderer, J.Gerstenmeier, A precision yaw rate sensor in silicon micromachining[C], in Tech. Dig.9th Int. Conf. Solir-state Sensors and Actuators(Transducers'97), Chicago, IL, June1997:847-850页
    [37]F.Ayazi, K.Najafi, Design and fabrication of a high performance polysilicon Vibrating ring gyroscope[C], in Proc. IEEE Micro Electro Mechanical Systems workshop (MEMS'98) Heideberg, Germany, Feb.1998:621-626页
    [38]Varadan V V, Varadan V K.MEMS-IDT based micro accelerators and gyroscope[C].Royal Pines Resort, Queensland, Aurtualia:1999 SPICE comference on Electronics and Structures for MEMS,1999,891(3):134-144页
    [39]T. K. Tang et al. A packaged silicon MEMS vibratory gyroscope for microspacecraft[C]. in Proc.10th IEEE Int. Con. Microelectromechanical Systems, Nagoya, Japan, Jan.26-30,1997:500-505页
    [40]Y Mochida, M. Tamura, and K. Ohwada. A micromachined vibrating rate gyroscope with independent beams for the drive and detection modes[C]. in Proc.12th IEEE Int. Conf Microelectromechanical Systems, Orlando, FL,Jan.17-21,1999:618-623页
    [41]李荣冰,刘建业.基于MEMS技术的微型惯性导航系统的发展现.中国惯性技术学报,2004,12(6):88-94页
    [42]蒋庆仙.关于MEMS惯性传感器的发展及在组合导航中的应用前景.测绘通报,2006,9:5-8页
    [43]王寿荣.硅微型惯性器件理论及应用.东南大学出版社.2000.
    [44]丁衡高,王寿荣,黄庆安,等.微惯性仪表技术的研究与发展.中国惯性技术学报.2001.9(4)46-73页
    [45]杨金显,袁赣南,徐良臣,等.基于微机械陀螺的MIMU关键技术.中国惯性技术学报.2007,(1):19-24页
    [46]丁衡高.微型惯性测量组合.仪器仪表学报,1996,17(1):9-13页
    [47]丁衡高,章燕申,马新宇,等.微型惯性测量组合的关键技术.仪器仪表学报,1996,17(1):30-34页
    [48]BARBOUR N M,ELWELL J M.Inertial instruments:where to now? Saint Petersburg International Conference on Gyroscopic Technology,1994,5:25-26页
    [49]Neil Barbour and George Schmidt. Inertial Sensor Technology Trends.I EEE SENSORS JOURNAL,2001,1(4):332-339页
    [50]Nadim Maluf; Kirt Williams. An Introduction to Microelectro mechanical Systems Engineering(second edition)[M]. Attach House,2002
    [51]Jaffe, R.; Aston, T.; Madni, A.M.;Advances in Ruggedized Quartz MEMS Inertial Measurement Units[C]. Position, Location, And Navigation Symposium,2006 IEEE/ION.April 25-27,2006:390-399页
    [52]LAWRENCE A W.Micro-optic gyro,symposium gyro technology, Stuttgart 1983, Prociding an inexpensive gyro for the navigation mass market,1991.
    [53]刘金峰.无陀螺微惯性测量单元的配置方式研究.哈尔滨:哈尔滨工程大学,2007.
    [54]Valery Z G, VLADMIR M L,YURY A L.How ard musoff and george Schmidt,optimization of a strapdown attitude algorithm for a stochastic motion,Navigation:Journal of the Institute of Navigation,1997,44(2):163-170页
    [55]单茂华,周百令,李宏生.MIMU定位定向系统数据采集装置的设计.数据采集与处理,2002,17(4):390-394页
    [56]闻新,张 伟,黄勤珍.微型惯性测量装置的技术分析及发展建议.中国航天,2003(6):22-25页
    [57]邓正隆.惯性技术.哈尔滨:哈尔滨工业大学出版社.2006
    [58]刘俊,石云波,李杰,等.微惯性技术.电子工业出版社.2005
    [59]杨叔子,吴雅,轩建平.时间序列分析的工程应用[M].武汉:华中科技大学出版社,2007
    [60]许江宁,顾颖玲,卞鸿巍,等.AR模型在陀螺仪性能故障诊断中的应用研究.海军工程大学学报.2001,13(4):67-70页
    [61]柳贵福,邢艳丽,张树侠.光纤陀螺零偏稳定性的数据建模方法研究.中国惯性技术学报.2001,19(3):49-53页
    [62]张树侠,闫威.激光陀螺漂移的数据建模和滤波.中国惯性技术学报,1999,7(4):70-72页
    [63]Xu Lina, Deng Zhenglong. Research on Neural Networks for Compensated Error of The Gyro Starting Drift Rate.Proc.of The 3th World Congress on Intelligent Control and Automation. Hefei, China.2000:1156-1158页
    [64]张智勇,范大鹏,李凯,等.微机电陀螺零点漂移数据滤波方法的研究.中国惯性技术学报,2006,14(4):67-69页
    [65]IEEE STD 528-2001, IEEE Standard for Inertial Sensor Terminology, IEEE Aerospace and Electronic Systems Society,2001:1-20页
    [66]李晓莹,胡敏,张鹏,等.交叠式Allan方差在微机械陀螺随机误差辨识中的应用.西北工业大学学报,2007,25(2):225-228页
    [67]韩军良,葛升民,沈毅;基于总方差方法的光纤陀螺随机误差特性研究. 哈尔滨工业大学学报,2007(5):708-711页
    [68]李颖,陈兴林,宋申民.光纤陀螺漂移误差动态Allan方差分析.光电子.激光,2008,19(2):184-186页
    [69]Xu Lina, Deng Zhenglong. Research on Neural Networks for Compensated Error of The Gyro Starting Drift Rate.Proc.of The 3th World Congress on Intelligent Control and Automation. Hefei, China.2000:1156-1158页
    [70]杨东方,王仕成,刘志国,等.一种陀螺随机漂移的高精度组合建模方法.现代防御技术,2008,36(4):77-81页
    [71]陈伟,胡昌华,樊红东,等.基于最小二乘支撑矢量机的陀螺漂移预测.上海航天,2006(1):50-52页
    [72]Jiang Yu, Dong guanghui, Cao jun. Method of noise cancellation based on adaptive fuzzy neural networks algorithm for multi-sensory signals[C]//Proc. Int. Conf. on Machine Learning and Cybernetics.2006:2969-2972页
    [73]WU Xiaojuan, ZHU Xinjian, CAO Guang-yi, et al. Nonlinear modeling of a SOFC stack by improved neural networks identification. Journal ofZheJiang University Science 2007,8(9):1505-1509页
    [74]HARRISON J V,GAI E G.Evaluating sensor oriedtations for navigation performance and failure detection.IEEE Trans.Systems,1997(6):631-643.
    [75]龚元明,萧德云,王俊杰.多传感器数据融合技术.Metallurgical Industry Automation,2002(5):1-4页
    [76]殷艳华,王学伟,陈敏康.一种新的红外/雷达传感器数据融合算法.激光与红外,2008,38(7):727-729页
    [77]丁赤飚,毛示艺.基于雷达和成像传感器的融合跟踪.电子学报,1998(9):134-138页
    [78]杨利平,王颖龙.多传感器数据融合技术在防空C3I中的应用.现代防御技术,2008,36(2):91-95.
    [79]孟章荣.军事应用中的多源信息融合技术.现代防御技术,2001,29(2):27-30页
    [80]钟子发,李晶莹.多传感器数据融合处理在通信对抗系统中的应用研究.通信对抗,2008, (3):10-16页
    [81]杨常松,徐晓苏,汪丽云,等.信息融合技术在INS/GPS/DVL组合导航中的应用研究.中国惯性技术学报,2006,14(5):39-44页
    [82]FOXLIN E M. Generalized architecture for simultaneous lacalization auto-calibration map-building[A]. The IEEE/RSJ 2002 Inrernational Conference on Intelligent Robots and System[C].2002,527-533页
    [83]BROATCH S A,HENLEY A J.An integtated navigation system namager using federated Kalman filtering[A].Proceedings NACCON 1991[C].1991,1:422-426页
    [84]BLAIR W D.Least-aquares approach to asynchronous data fusion. SPIE,1992,1697:130-141页
    [85]LUO R C,LIN M,SCHERP P S.Dynamic multi-sensor data fusion system for interlligent robots.IEEE Journal of Robotics and Automation,1998,4(4):104-106页
    [86]IEEE Std 952-1997, IEEE standard specification format guide and test p rocedure for single2Axis interferometric fiber op tic gyros[S].
    [87]郭秀中,于波,陈云相.陀螺仪理论及应用.北京:航空工业出版社,1987:98-103页
    [88]万彦辉,裴听国,戴世荣.数字滤波器在微机械陀螺系统中的应用.传感器技术,2003,22(9):56-57页
    [89]黄艳辉.MTi中微机械陀螺误差测试、建模及补偿研究.哈尔滨:哈尔滨工程大学,2009
    [90]潘金艳,朱长纯,樊建民.微机械陀螺零位误差的研究.西安交通大学学报,2006,40(4):480-483页
    [91]NAVID Y, FARROKH A, KHALIL N. Micromachined Inertial Sensors.Proceedings of the IEEE,1998,86(8):1640-1659页
    [92]BEL O,BOURQUIN R.Effect of geometrical electrode defects on the bias and sensitivity of tuning fork angular rate sensor.Frequency Control Symposium and PDA Exhibition,Proceedings of the 2003 IEEE International,:502-506页
    [93]翁海娜.液浮陀螺漂移的试验建模研究.中国惯性技术学报,1999,7(2):30-34页
    [94]赵伟臣,付梦印,张启鸿,等.微机械IMU数据建模与滤波方法研究.中国惯性技术学报,2005,13(6):13-17页
    [95]彭秀艳.工程随机过程.哈尔滨:哈尔滨工程大学出版社.2000:136-158页,168-208页
    [96]张树京.齐立心.时间序列分析简明教程.清华大学出版社.2003
    [97]吴怀宇.时间序列分析与综合.武汉:武汉大学出版社,2003
    [98]D.W.Allan.Statistics of atomic frequency standards.Proceedings ofIEEE.1966,5(2):221-230页
    [99]刘付强.基于MEMS器件的捷联姿态测量系统技术研究.哈尔滨:哈尔滨工程大学,2007
    [100]DAVID A H,DNALD B. Wavelet variance, Allan variance,and leakage.IEEE Trans.on Instrumentation and Measurement,1995(3):94-97页
    [101]李迪,孙尧,李绪友,等.船用光纤陀螺随机漂移分析与研究.中国航海.2005(1):35-37页
    [102]QUANG M L,STAMATAKOS N,WOODRUFF C.Gyro modeling and estimation of its random noise sources.AIAA Guidance Navigation and Control Conference and Exhibit,2003(8):28-32页
    [103]HOU Haiying.Modeling inertial sensors errors using allan cariance.The University of Calgary's Master Degree Paper,2005.
    [104]HOU H,EL-SHEIMY N.inertial sensors errors modeling using allan cariance.proceeding of the institute of navigation ION GPS.GNSS,2003:2860-2867页.
    [105]夏克寒,牟建华,夏治寒.多惯性仪表冗余系统方案设计及其关键技术.导弹与航天云在技术,2007(6):21-24页
    [106]张洪钺.飞行传感器的故障诊断与识别.航空学报,1991,12(10):494-502页
    [107]邓正隆.惯性技术[M].哈尔滨:哈尔滨工业大学出版社,2006
    [108]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].沈阳:西北工业大学出版,1998
    [109]HALL S R.In-flight parity vector compensation for FDI.IEEE Trans.on Aerospace and Electronic Systems,1983,AES-19(5):668-675页
    [110]王民钢,樊英平,崔伟成,等.四冗余陀螺系统配置研究.弹舰与制导学报,2006(3):40-43页
    [111]金宏,张洪钺.余度捷联惯性测量装置的最佳测量,导弹与航天运载技术,1999(1):28-33页
    [112]顾颖玲,许江宁,卞鸿巍.陀螺随机漂移误差模型建模方法研究.海军工程大学学报,2000(1):80-83页
    [113]Cherkassky V, Mulier F. Vpnik-chervonenkis(VC)Learning theoryand its application. IEEE Trans on Neural Networks,1999,10(5):985-987页
    [114]Liu feng, et al. Modified kernel RLS-SVM based muhiuser detectionover multi path channels IEICE TRANSACTIONS on Fundamentals of Electronics Communications and Computer Sciences.2003,E86(8):1979-1984页
    [115]陈哲.捷联惯导系统原理[M].北京:国防工业出版社,1981
    [116]邓自立,郭一新.动态系统分析及其应用[M].沈阳:辽宁科学出版社,1985
    [117]高频贤.趋势项对时域参数识别的影响及消除.振动、测试与诊断.1994,(6):8-10页
    [118]王海,陈家斌,黄威,等.光纤陀螺随机漂移测试及分析[J].光学技术,2004,30(5):623-627页
    [119]朱奎宝,张春熹,张小跃.光纤陀螺随机漂移ARMA模型研究.宇航学报,2006,27(5):1118-1121页
    [120]王新龙,马闪.光纤陀螺随机漂移误差补偿适用性方法.北京航空航天大学学报,2008,34(6):681-685页
    [121]周志杰,胡昌华,韩晓霞.基于非平稳时间序列的陀螺漂移性能建模与预测方法研究.电光与控制,2005,12(3):23-27页
    [122]傅建国,王孝通,李博,等.微机械陀螺随机误差模型研究.传感器技术,2005,24(3):79-81页
    [123]张国良,曾静,邓方林.应用AR模型的IMU误差系数漂移预测研究.探测与控制学报,2003,25(1):53-56页
    [124]GJB2426A-2004.光纤陀螺仪测试方法[S].国防科学技术工业委员会,2004.
    [125]王立平,付梦印,王美玲,基于LS-WSVM的光纤陀螺漂移辨识.中国惯性技术学报,2008,16(2):220-223页
    [126]罗超,贺林,孙蓉.光纤陀螺随机误差的测定方法研究.应用科技,2006,33(2):40-42页
    [127]邓聚龙.灰色系统基本方法:第2版[M].武汉:华中科技大学出版社,2005.
    [128]凌林本信息融合技术在微小型惯性测量系统中的应用研究[D]东南大学,2001
    [129]李程,张俭峰,郭创.基于小波分析和时间序列理论的陀螺仪随机漂移建模研究.飞行设计,2005(4):47-49页
    [130]臧荣春,崔平远.陀螺随机漂移时间序列建模方法研究.系统仿真学报,2005,17(8):1845-1847页
    [131]BROERSEN P M T.De WAELE S.Costs of order selection in time series analysis [C]//Instrumentation and Measurement Technology Ccnference Proceedings of the 19th IEEE,2002,1:303-308页
    [132]ZHOU Z J, HU C H, LIUY S, et al. Amethod based on reliability physics technology for antici-pation of inertial platform storage perfor-mance[C]//IMS2003,2003.
    [133]李战,冀邦杰,国琳娜,等.光纤陀螺零漂信号的Allan方差分析.鱼雷技术,2007,15(2):28-30页
    [134]XU Guoan, JING Hongwen, LI Kaige, et al. Development and application of intelligent prediction software for broken rock zone thickness of drifts. J China Univ of Mining& Tech. (English Edition),2005,15(2):86-90页
    [135]Sameh N. Improving the Inertial Naviga tion System(INS) Error Model for INS and INS/DGPS Applications[R]. UCGE Reports Number 20183, November,2003
    [136]HOU Haiying. Modeling inertia 1 sensors errors using allan variance [R]. UCGE Reports Number 20201, September 2004
    [137]张伟,胡昌华,焦李成,等.遗忘因子最小二乘支持向量机及在陀螺仪漂移预测中的应用研究.字航学报,2007,28(2):448-451页
    [138]姬伟,李奇.光纤陀螺信号误差分析与滤波算法的研究.传感技术学报,2007,20(4):847-852页
    [139]吉训生,王寿荣.硅微陀螺漂移数据滤波方法研究.传感技术学报,2008,21(2):333-336页
    [140]侯青剑,缪栋.惯性测量组合中激光陀螺随机噪声分析.战术导弹技术,2006(4):72-75页
    [141]王国宏,陆大绘.多传感器信息融合及应用[M].北京:电子工业出版社,2001
    [142]程建兴,史仪凯.基于多传感器数据融合的鲁棒自适应滤波算法.自动化仪表,2008,9(6):65-67页
    [143]仲崇权,张立勇,杨素英,等.基于最小二乘原理的多传感器加权数据 融合算法.仪器仪表学报,2003,24(4):427-430页
    [144]周军,王志胜,周凤歧.基于线性均方估计的数据融合理论.宇航学报,2003,24(4):364-367.页
    [145]涂国平,叶素萍.一种传感器数据融合算法.传感器技术,2003,22(3):30-33页
    [146]杨宾峰,罗飞路.一种改进的一致性多传感器数据融合算法.计量技术,2005(6):25-28页
    [147]罗本成,原魁,陈晋龙,等.一种基于不确定分析的多传感器信息动态融合方法.自动化学报,2004,30(3):408-414页
    [148]胡振涛,刘先省.基于相对距离的一种多传感器数据融合方法.系统工程与电子技术,2006,28(2):196-198页
    [149]程建兴,史仪凯.动态加权的-致性多传感器数据融合算法.火力与指挥控制,2008,27(8):75-78页
    [150]张怡,贾民平.自适应窗长方差估计在多传感器数据融合中的应用.传感技术学报,2008,28(8):1398-1401页
    [151]Kil,Rhee M,Seon Hee.Seunghwan,Optimum Window Size for Time Series Prediction[C].Engineering in Medicine and Biology Society, 1997.proceedings of the 19th annual international conference of theIEEE,1997,4:1421-1424页
    [152]HU Shiqiang,JING Zhongliang,LEUNG H.A Robust fusion algorithm for multi sensor tracking[C].Intelligent Transportation Systems.Proceeding2003 IEEE,2002,2:919-923页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700