5052铝合金板材磁脉冲辅助冲压成形变形行为及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,节能和环保的要求使得以铝合金为代表的轻质结构材料在先进制造领域得到广泛应用。但是,与传统钢材相比,铝合金的室温成形性差,采用传统冲压工艺很难直接成形形状复杂的零件。磁脉冲辅助冲压成形(Electromagnetically assisted sheet metal stamping, EMAS)把高速率磁脉冲成形(EMF)技术的优点有机地结合到准静态冲压成形中,为以铝合金为代表的轻质、难成形板材复杂形状零件的室温成形提供了新的加工途径。由于该工艺尚处于初步工艺实现阶段,其变形机理还没被系统研究过。本文采用理论分析、耦合场数值模拟、工艺试验及微观分析相结合的方法对5052铝合金板材磁脉冲辅助冲压成形的变形行为和机理进行了系统研究。
     基于多物理场有限元分析软件ANSYS,结合磁脉冲辅助冲压成形中板坯变形的基本特点,给出了准静态冲压成形—高速率磁脉冲成形顺序耦合求解的有限元理论基础,包括板料冲压成形弹塑性理论、磁脉冲成形的电磁场基础理论、结构场的弹塑性理论和电磁-结构耦合场理论等,并在理论分析的基础上提出了基于ANSYS分析平台ANSYS Multiphysics/LS-DYNA分析模块的“多工步”松散耦合的磁脉冲辅助冲压成形有限元分析方案及流程,通过编制用户子程序实现连续变形过程的动态连接。
     针对磁脉冲辅助冲压成形中板坯的准静态—动态复合变形特点,建立了典型应变状态(单向拉伸、平面应变和双等拉伸)下的准静态—动态复合成形极限试验方案,并对准静态—动态复合加载下材料的动态响应进行了系统研究。结果表明:准静态—动态复合加载下,5052铝合金板材表现出显著高于准静态成形而略高于动态成形的塑性水平。复合成形过程塑性的提高归因于动态变形过程,且随着准静态预变形水平增加,动态变形过程的增塑效果增强。
     采用理论分析和微观分析相结合的方法对磁脉冲辅助冲压成形中动态变形行为和塑性失稳机理进行了研究。结果表明:动态变形中,惯性力的影响起主要作用。惯性力对板坯的结构失稳具有抑制作用,从而使板坯的塑性提高并产生分散失稳。微观机制表明:5052铝合金动态变形和准静态变形表现出相似的变形性质,不会产生特殊的组织结构,塑性变形微观机制均为位错滑移机制。准静态变形以均匀单系位错滑移为主,断裂伴随着位错的缠结和攀移;而动态变形位错滑移趋于多系开动,在大面积区域出现明显的交滑移现象,且滑移带较准静态成形时窄且密,位错组态更均匀。动态变形的多系滑移和位错均化作用可在比准静态变形高的多的塑性应变水平下形成,从而使材料具有较高的塑性和强度。
     针对筒形件传统拉深成形中存在的成形极限问题(底部圆角处破裂)进行了分析,建立了筒形件磁脉冲辅助拉深成形方案。采用提出的有限元分析方案对筒形件磁脉冲辅助拉深成形进行了仿真,分析了板坯的复合变形行为和规律,并结合试验研究和验证了磁脉冲辅助冲压成形在改善板材成形性方面的优势和特点。结果表明:提出的磁脉冲辅助冲压成形有限元分析方案,能成功实现磁脉冲辅助冲压成形中板坯复合变形行为的描述,变形规律与试验结果吻合较好。磁脉冲辅助冲压成形的思想能充分发挥磁脉冲成形在改善板材成形性方面的优势,并能实现与普通冲压成形工艺的有机结合。板坯变形过程中,高速变形的惯性效应和板坯与模具冲击作用显著,能抑制失效,分散变形。
     基于磁脉冲辅助冲压成形的思想,建立了U形件磁脉冲辅助弯曲成形工艺试验,分析了脉冲磁场力对弯曲回弹控制的作用,结果表明:将脉冲磁场力应用到弯曲角部能有效减小回弹。脉冲力的回弹控制作用主要表现为两个方面:脉冲力改善弯曲角部位应力应变分布的作用和脉冲力作用下形成的板坯与模具的冲击作用。两个过程均能实现对弯曲回弹的有效控制。弯曲变形过程中,采用小能量多次放电不仅可以控制回弹,而且可以有效地改善弯曲件角部的变形分布。
In recent years, the need to improve fuel economy and protect environment has led to extensive application of lightweight structural materials as represented by aluminum alloys in the field of advanced manufacturing. Unfortunately, the viability of the press forming of complex-shape aluminum parts is hindered by the fact that aluminum has much lower formability compared with steel at room temperature. Electromagnetically assisted sheet metal stamping (EMAS) integrates the high-speed forming advantages of electromagnetic forming (EMF) into the conventional quasi-static stamping process, which has provide a new way for room-temperature processing of complex-shape parts from lightweight, hard-forming materials as represented by aluminum alloys. As this technique is still in laboratory of initial realization, the deformation behavior and mechanism have not been well systematically studied. In this dissertation, the deformation behavior and mechanism of EMAS of 5052 aluminum alloy sheets are systematically investigated by theoretical analysis, coupled-field numerical simulation, experiments and microanalysis.
     Based on the basic characteristics of EMAS, the theoretical basis of FEA of stamping-EMF process is presented, including the elastic-plastic theory of sheet metal stamping, both the electromagnetic-field theory and the elastic-plastic theory of structural filed of EMF, and the coupled-field theory of electromagnetic and structural fields. A“multi-step”loose coupling numerical scheme for EMAS is proposed based on the ANSYS Multiphysics/LS-DYNA platform. The dynamic links of the successive deformation process is realized through establishing user-defined subroutines.
     Based on the hybrid quasi-static-dynamic deformation characteristics of sheets in EMAS, a series of quasi-static-dynamic forming limit experiments are established under the typical strain states (uniaxial tension, plane strain and equi-biaxial tension) of conventional FLDs, and the dynamic behaviors of material under complex-loading conditions are systematically investigated in traditional FLD space. Results show that the formability of 5052 aluminum alloy sheet undergoing a quasi-static-dynamic loading process is dramatically increased beyond that exhibited in quasi-static deformation process, and a little higher than that obtained in the fully dynamic EMF process. Analyzing from the loading conditions, we may reasonably attribute the hyperplasticity effect of quasi-static-dynamic process to high-velocity deformation. And with the increasing of quasi-static pres-training, the hyperplasticity effect of dynamic process increases.
     The plastic instability mechanism and deformation behavior of dynamic deformation process in EMAS are investigated by theoretical analysis and microanalysis. Results show that inertia force plays an important role in dynamic forming, which has the suppression effect on structural instability and thus improves the formability of sheet and spreads instability. Micromechanism shows that the nature of dynamic deformation is much similar with that of quasi-static deformation and no special deformation structures arise in dynamic process for 5052 aluminum alloy sheets. The deformation mechanism of both processes is dislocation slip mechanism. For quasi-static deformation, the dislocations show a uniform single-slip pattern, fracture combined with dislocation tangling and climbing. While for dynamic deformation, dislocation system tends to more slips, large areas showing clear cross-slip structures. The dislocation bands are more narrow and dense than those shown in the quasi-static process, and a much more uniform dislocation configuration is also exhibited after pulsed magnetic loadings. The characteristics of multi-slips and uniform effect of dislocations under pulsed magnetic loading conditions will result in much higher plasticity and strength of materials.
     In order to analyze the deformation behaviors of typical EMAS technology process, a limit forming problem (fracture at bottom corner) in conventional cylindrical deep drawing process is analyzed and the electromagnetically assisted cylindrical deep drawing scheme is established accordingly. On this basis, the former proposed FEA scheme of EMAS is firstly applied to investigate the hybrid deformation behaviors and deformation laws of sheets in EMAS, and then the efficacy and characteristics of EMAS on improving the sheet formability are established and validated experimentally. Results show that the proposed FEA scheme can successfully simulate the successive deformation process of EMAS, and the deformation law is validated by the experimental results. The forming limit experiments of EMAS of cylindrical parts shows that the idea of EMAS can successfully exploit the advantages of improving room-temperature formability of EMF, and the EMF phenomenon can successfully be integrated into conventional stamping process. In the deformation process of sheets metal, the effects of inertia and tool-sheet interaction are very remarkable, which can suppress damage evolution and stabilize deformation.
     Based on the idea of EMAS, the technology experiments of electromagnetically assisted bending of U-shape parts are established, and the involved springback-control effect of pulsed magnetic force is analyzed. Results show that the way of applying the pulsed magnetic force to the bending area can effectively reduce the springback. The springback control of magnetic force in EMAS is mainly presented in two aspects: the role of magnetic force changing the strain distributions of bending area and the role of tool-sheet interaction effect of high-speed loading. Both processes can successfully reduce the spingback. During the bending process, the way of many times of small discharges can not only control the springback, but also improve the deformation quality of bending area.
引文
1 M. Satio, S. Iwatsuki, K. Yasunaga. Development of Aluminum Body for the Most Fuel Efficient Vehicle. JSAE Review. 2000, 21(1): 511~516
    2王孟君,黄电源,姜海涛.汽车用铝合金的研究进展.金属热处理. 2006, 31(9): 34~38
    3潘复生,张丁非.铝合金及应用.化学工业出版社. 2006: 297~386
    4陆辛,费仁元,初红艳.复合冲压技术发展前景.锻压技术. 2001, (6): 23~25
    5李春峰,于海平,刘大海.铝合金磁脉冲辅助板材冲压技术研究进展.中国机械工程. 2008, 19(1): 108~113
    6 J. C. Benedyk. Superplastic Forming of Automotive Parts from Aluminum Sheet at Reduced Cycle Times. Light Metal Age. 2002, 60(6): 28~31
    7 S. F. Golovashchenko, A. Krause. Improvement of Formability of 6xxx Aluminum Alloys Using Incremental Forming Technology. Journal of Materials Engineering and Performance. 2005, 14(4): 503~507
    8 S. F. Golovashchenko. Material Formability and Coil Design in Electromagnetic Forming. Journal of Materials Engineering and Performance. 2007, 16(3): 314~320
    9 V. J. Vohnout. A Hybrid Quasi-static/Dynamic Process for Forming Large Sheet Metal Parts from Aluminum Alloys. Ph. D. Dissertation of Ohio State University. 1998: 1~199
    10 C. N. Okoye, J. H. Jiang, Z. D. Hu. Application of Electromagnetic-Assisted Stamping (EMAS) Technique in Incremental Sheet Metal Forming. International Journal of Machine Tools & Manufacture. 2006, (46): 1248~1252
    11 J. H. Shang. Electromagnetically Assisted Sheet Metal Stamping. Ph. D. Dissertation of Ohio State University. 2006: 1~214
    12李春峰.高能率成形技术.机械工业出版社. 2001: 1~65
    13 R. Neugebauer, F. Loschmann, M. Putz, et al. A Production-Oriented Approach in Electromagnetic Forming of Metal Sheets. Proceedings of 2nd International Conference on High Speed forming. Dortmund, 2006: 129~139
    14 V. J. Vohnout, G. S. Daehn, R. Shivpuri. A Hybrid Quasi-Static-Dynamic Process for Increased Limiting Strains in the Forming of Large Sheet Metal Aluminum Parts. Proceedings of the 6th ICTP. Nuremberg, 1999: 1359~1364
    15 V. J. Vohnout, J. H. Shang, G. S. Daehn. Improved Formability by Control of Strain Distribution in Sheet Stamping Using Electromagnetic Impulses. Proceedings of 1st International Conference on High Speed Forming. Dortmund, 2004: 211~220
    16 G. S. Daehn, V. J. Vohnout, S. Datta. Hyperplastic Forming: Process Potential and Factors Affecting Formability. Materials Research Society Symposium Proceedings. 2000, 601: 247~252
    17陈文峰,黄尚宇.电磁成形技术在铝合金成形中的应用前景.锻压装备与制造技术. 2003, (3): 40~43
    18 V. S. Balanethiram, G. S. Daehn. Enhanced Formability of Interstitial Free Iron at High Strain Rate. Scripta Metallurgica et Materialia. 1992, 27: 1783~1788
    19 V. S. Balanethiram, G. S. Daehn. Hyperplasticity: Increased Forming Limits at High Workpiece Velocity. Scripta Metallurgica et Materialia. 1994, 30(4): 515~520
    20 V. S. Balanethiram, X.Y. Hu, G. S. Daehn. Hyperplasticity: Enhanced Formability at High Rates. Journal of Materials Processing Technology. 1994, 45: 595~600
    21 D. E. Grady, D. A. Benson. Fragmentation of Metal Rings by Elctromagnetic loading. Experimental Mechanics. 1983, 12: 393~400
    22 X. Y. Hu, R. H. Wagoner, G. S. Daehn, S. Ghosh. The Effect of Inertia onTensile Ductility. Metallurgical Transactions. 1994, 25A: 2723~2735
    23 X. Y. Hu, G. S. Daehn. Effect of Velocity on Flow Localization in Tension. Acta Mater. 1996, 44(3): 1021~1993
    24 M. M. Altynova, X. Y. Hu, G. S. Daehn. Increased Ductility in High Velocity Electromagnetic Ring Expansion. Metallurgical and Materials Transactions. 1996, 27A: 1837~1844
    25 J. M. Imbert, S. L. Winkler, M. J. Worswick, D. A. Oliveira. The Effect of Tool–sheet Interaction on Damage Evolution in Electromagnetic Forming of Aluminum Alloy Sheet. Journal of Engineering Materials and Technology. 2005, 27: 127~153
    26 J. M. Imbert. Increased Formability and the Effects of the Tool/Sheet Interaction in Electromagnetic Forming of Aluminum Alloy Sheet. MS Thesis of University of Waterloo. 2005: 138~145
    27 J. M. Imbert, S. L Winkler, M. J. Worswick. Analysis of the Increased Formability of Sheet Metal Formed Using Electromagnetic Forming. SAE Technical Paper No. 2005-01-0082. 2005: 1~15
    28 M. Seth, V. J. Vohnout, G. S. Daehn. Formability of Steel Sheet in High Velocity Impact. Journal of Materials Processing Technology. 2005, 168: 390~400
    29 A. A. Tamhane, M. M. Altynova, G. S.Daehn. Effect of Sample Size on Ductility in Electromagnetic Ring Expansion. Scripta Metallurgica. 1996, 34: 1345~1350
    30 M. Vural, D. Rittel, G. Ravichandran. High Strain Rate Behavior of Metal Alloys at Large Strains. GALCIT Report. Graduate Aeronautical Laboratories, the California Institute of Technology, Pasadena, CA., 2004
    31 N. Triantafyllidis, J. R. Waldenmyer. Onset of Necking in Electro-Magnetically Formed Rings. Journal of the Mechanics and Physics of Solids. 2004, 52: 2127~2148
    32 J. D. Thomas, M. Seth, G. S. Daehn, J. R. Bradley, N. Triantafyllidis. Forming Limits for Electromagnetically Expanded Aluminum Alloy Tubes: Theory and Experiment. Acta Materialia. 2007, 55(8): 2863~2873
    33 J. D. Thomas, N. Triantafyllidis. Theory of Necking Localization in Unconstrained Electromagnetic Expansion of Thin Sheets. International Journal of Solids Structures. 2007, 44(21): 6744~6767
    34 P. S. Follansbee, U. F. Kocks. A Constitutive Description of the Deformation of Copper Based on the Use of Mechanical Threshold Stress as an Internal State Variable. Acta Metallica. 1988, 36(1): 81~93
    35 G. Regazzoni, U. F. Kocks, P. S. Follansbee. Dislocation Kinetics at High Strain Rates. Acta Metallica. 1987, 35(12): 2865~2875
    36 D. A. Gorham. An Effect of Specimen Size in the High-Strain Rate Compression Test. Journal De Physique III. 1991, 1: 411~418
    37 N. N. Dioh, P. S. Leevers, J. G. Williams. Thickness Effect in Split Hopkinson Pressure Bar Test. Polymer. 1993, 34: 4230~4234
    38 N. N. Dioh, A. Ivancovic, P. S. Leevers, et al. Stress Wave Propagation Effects in Split Hopkinson Pressure Bar Tests. Mathematical and Physical Sciences. 1995, 449: 187~204
    39 J. F. Michel, P. Picart. Size Effects on the Constitutive Behavior for Brass in Sheet Metal Forming. Journal of Materials Processing Technology. 2003, 141: 439~446
    40 L. D. Oosterkamp, A. Ivankovic, G. Venizelos. High Strain Rate Properties of Selected Aluminum Alloys. Materials Science and Engineering A. 2000, 278: 225~235
    41 A. Brosius, C. Beerwald, M. Kleiner. Determination of Flow Curves at High Strain Rates Using the Electromagnetic Forming Process and an Iterative Finite Element Simulation Scheme. J. Phys. IV France. 2003, 110: 537~542
    42 W. H. Gourdin, S. L. Weinland, R. M. Boling. Development of the Electromagnetically Launched Expanding Ring as a High-Strain-Rate Test Technique. Rev.Sci.Instrum. 1989, 60(3): 427~432
    43 P. J. Ferreira, J. B. Sande, M. A. Fortes. Microstructure Development during High-Velocity Deformation. Metallurgical and Materials Transactions. 2004, 35A (10):3091~3101
    44 F. W. Bach, L. Walden. Microstructure and Mechanical Properties of Copper Sheet after Electromagnetic Forming. ZWF Zeitschrift fur Wirtschaftlichen Fabrikbetrieb. 2005, 100 (7-8): 430~434
    45 Z. J. Zheng. A Study of Mechanical Inertial and the Related Thermal Effects during Electromagnetic Forming Processes. Master Thesis of University of Puerto-Rico. 1998
    46 L. Xin, H. Jintao, C. Kebing, et al. Research and Deformation Simulation on Electric-Magnetic Forming Process of Metal Plate. Proceedings of the 6th ICTP. Nuremberg, 1999: 2483~2488
    47耿长刚.铝合金油箱壳体电磁成形复合冲压试验研究.北京机电研究所硕士论文. 2006: 1~118
    48 Z. Li, C.F. Li. Effect of Velocity on Ductility under High Velocity Forming. Chinese Journal of Mechanical Engineering (English Edition). 2007, 20(2): 32~35
    49李忠.管坯电磁胀形及其成形极限研究.哈尔滨工业大学博士论文. 2007: 1~122
    50 G. K. Lai, M. J. Hillier. The Electrodynamics of Electromagnetic Forming. Int. J. Mech. Sci. 1968, (10): 491~500
    51 N. Takatsu, M. Kato, K. Sato, T. Tobe. High Speed Forming of Metal Sheets by Electromagnetic Force. Int. J. Jpn. Soc. Mech. Eng. 1988, 31(1): 142~148
    52 Y. Hashimato et al. Local Deformation and Buckling of a Cylindrical Al Tubeunder Magnetic Impulsive Pressure. Journal of Materials Processing Technology. 1999, 85: 209~212
    53 J. Jablonski, R. Winkler. Analysis of the Electromagnetic Forming Process. Int. J. Mech. Sci. 1978, 20(5): 315~325
    54 W. H. Gourdin. Analysis and Assessment of Electromagnetic Ring Expansion as a High-Strain-Rate Test. J. Appl. Phys. 1989, 65(2): 411~422
    55 Dong-Kyun Min, Dong-Won Kim. A Finite Element Analysis of Electromagnetic Tube-Compression Process. Journal of Materials Processing Technology. 1993, 38: 29~40
    56 M. Padmanabhan. Wrinling and Springback in Electromagnetic Sheet Metal Forming and Electromagnetic Ring Compression. MS Thesis of The Ohio University. 1997: 1~43
    57 Sung Ho Lee, Dong Nyung Lee. Estimationof the Magnetic Pressure in Tube Expansion by Electromagnetic Forming. Journal of Materials Processing Technology. 1996, 57: 311~315
    58 G. K. Fenton, G. S. Daehn. Modeling of Electromagnetically Formed Sheet Metal. Journal of Materials Processing Technology. 1998, 75(1~3): 6~16
    59 Y. Murakoshi, M. Takahashi, T. Sano. Inside Bead Forming of Aluminum Tube by Electro-Magnetic Forming. Journal of Materials Processing Technology. 1998, 80~81: 695~699
    60 B. Bendjima, M. Feliachi. Finite Element Analysis of Transient Phenomena in Electromagnetic Forming system. Proceedings of the 3rd International Conference on Computation in Electromagnetics. Bath, UK, 1996: 113~116
    61 H. Mohellebi, M. E.Latreche, M.Feliachi. Coupled Axisymmetric Analytical and Finite Element Analysis for Induction Devices Having Moving Parts. IEEE Transactions on Magnetics. 1998, 34(5): 3308~3310
    62 F. Azzouz, B. Bendjima, M. Feliachi. Application of Macro-Element andElement Coupling for the Behaviour Analysis of Magnetoforming System. IEEE Transactions on Magnetics. 1999, 35(3): 1845~1848
    63 A. Meriched, M. Feliachi, H. Mohellebi. Electromagnetic Forming of Thin Metal Sheets. IEEE Transactions on Magnetics. 2000, 36(4): 1818~1811
    64 A. El-Azab, M. Garnich, A. Kapoor. Modeling of the Electromagnetic Forming of Sheet Metals: State-of-the-Art and Future Needs. Journal of Materials Processing Technology. 2003, 142(3): 744~754
    65 S. Mahanian, D. B. Blackwell. Finite Element Analysis of Electromagnetic Forming of Tubes with Fittings. Proceedings of the ASME International Mechanical Engineering Congress and Exposition. Atlanta, USA, 1996: 323~329
    66 Y. B. Park, H. Y. Kim, S. I. Oh. Design and Strength Evaluation of Structural Joint Made by Electro-Magnetic Forming(EMF). Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes. Columbus, USA, 2004:1476~1484
    67 Y. B. Park, H. Y. Kim, S. I. Oh. Design of Axial/Torque Joint Made by Electromagnetic Forming. Thin-Walled Structures. 2005, 43(5): 826~844
    68 Y. B. Park, H. Y. Kim, S. I. Oh. Joining of Thin-Walled Aluminum Tube by Electromagnetic Forming (EMF). International Journal of Automotive Technology. 2005, 6(5): 519~527
    69 X. Zhang, Z. R. Wang, F. M. Song. Finite Element Simulation of the Electromagnetic Piercing of Sheet Metal. Journal of Materials Processing Technology. 2004, 151(1~3): 350~354
    70 F. M. Song, X. Zhang, Z. R. Wang. A Study of Tube Electromagnetic Forming. Journal of Materials Processing Technology. 2004, 151(1~3): 372~375
    71 S. Mehnert. FEM Simulation of Magnetic Forming Processes-Opportunities for Light Weight Suspensions. SAE Technical Paper Series 2000-01-1279
    72 M. Kleiner, A. Brosius. Determination of Flow Curves at High Strain Rates Using the Electromagnetic Forming Process and Iterative Finite Element Simulation Scheme. CIRP Annals-Manufacturing Technology. 2006, 55(1): 267~270
    73 A. G. Mamalis, A. Szalay, B. Raveau. Near Net-Shape Manufacturing of Metal Sheathed Superconductors by High Energy Rate Forming Techniques. Materials Science and Engineering B. 1998, 53(1~2): 119~124
    74 A. G. Mamalis, E. D. Manolakos. On the Electromagnetic Sheet Metal Forming: Numerical Simulation. Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes. Columbus, USA, 2004: 778~783
    75 A. G. Mamalis, D. E. Manolakos, A. G. Kladas. Physical Principles of Electromagnetic Forming Process: A Constitutive Finite Element model. Journal of Materials Processing Technology. 2005, 161(1~2): 294~299
    76 A. Giannoglou, A. Kladas, J. Tegopoulos. Electromagnetic Forming: A Coupled Numerical Electromagnetic-Mechanical-Electrical Approach Compared to Measurements. COMPEL: Int. J. for Computation and Maths. in Electrical and Electronic Eng. 2004, 23(3): 789~799
    77 J. M. Imbert, S. L. Winkler, M. J. Worswick. The Effect of Tool-Sheet Interaction on Damage Evolution in Electromagnetic Forming of Aluminum Alloy Sheet. Journal of Engineering Materials and Technology. 2005, 127(1): 147~153
    78 J. Imbert. Increased Formability and the Effects of the Tool/Sheet Interaction in Electromagnetic Forming of Aluminum Alloy Sheet. MS Thesis of University of Waterloo. 2005: 138~145
    79 J. Imbert, S. L. Winkler, M. J. Worswick. Analysis of the Increased Formability of Sheet Metal Formed Using Electromagnetic Forming. SAE Technical PaperSeries 2005-01-0082
    80 B. Svendsen, T. Chanda. Continuum Thermodynamic Formulation of Models for Electromagnetic Thermoinelastic Materials with Application to Electromagnetic Metal Forming. Continuum Mechanics and Thermodynamics. 2005, 17(1): 1~16
    81 P. H. Zhang. Joining Enabled by High Velocity Deformation. Ph. D. Dissertation of Ohio State University. 2003: 1~20
    82 D. A. Hopkins, F. Stefani, K. T. Hsieh. Analysis of Startup Behavior in a C-Shaped Armature Using Linked Emap3d/Dyna3d Finite Element Codes. IEEE Transactions on Magnetics. 1999, 35(1): 59~64
    83 G. Hainsworth, P.J. Leonard, D. Rodger. Finite Element Modeling of Magnetic Compression Using Coupled Electromagnetic-Structural Codes. IEEE Transactions on Magnetics. 1996, 32(3): 1050~1053
    84 D. A. Oliveira, M. J. Worswick. Electromagnetic Forming of Aluminium Alloy Sheet. Journal De Physique. IV: JP. 2003, 110: 293~298
    85 D. A. Oliveira, M. J. Worswick, M. Finn. Simulation of Electromagnetic Forming of Aluminum Alloy Sheet. SAE Technical Paper Series 2001-01-0824
    86 H. M. Panshikar. Computer modeling of Electromagnetic Forming and Impact Welding. M. S. Thesis of Ohio State University. 2000: 20~21
    87 B. Sevndsen, T. Chanda. Continuum Thermodynamic Formulation of Models for Electromagnetic Thermoinelastic Materials with Application to Electromagnetic Metal Forming. Continuum Mech. Thermodyn. 2005, 17: 1~16
    88 J. Unger, M. Stiemer, B. Svendsen, H. Blum. Multifield Modeling of Electromagnetic Metal Forming Processes. Journal of Materials Processing Technology. 2006, 177: 270~273
    89 M. Stiemer, J. Unger, H. Blum, B. Seendsen. Fully Coupled 3D Simulation of Electromagnetic Forming. Proceedings of the 2nd International Conference onHigh Speed Forming. 2006: 63~72
    90 J. Unger, M. Stiemer, M. Schwarze, B. Svendsen, et al. Strategies for 3D Simulation of Electromagnetic Forming. Journal of Materials Processing Technology. 2008, 199: 341~362
    91 J. Unger, M. Stiemer, A. Brosius, B. Svendsen, et al. Inverse Error Propagation and Model Identification for Coupled Dynamic Problems with Application to Electromagnetic Metal Forming. International Journal of Solids and Structures. 2008, 45: 442~459
    92李春峰,赵志衡,李建辉,李忠.电磁成形磁场力的研究.塑性工程学报. 2001, 8(2): 70~72
    93于海平,李春峰,李忠.基于FEM的电磁缩径耦合场数值模拟.机械工程学报. 2006, 43(7): 231~234
    94江洪伟,李春峰.电磁校形过程中磁场力耦合模拟分析.锻压技术. 2006, (6): 56~59
    95孙祥龙.平板毛坯电磁成形过程有限元分析.哈尔滨工业大学硕士论文. 2005: 1~50
    96于海平.管件电磁缩径失稳判据及变形分析.哈尔滨工业大学博士论文. 2006: 1~110
    97 H. P. Yu, C. F. Li. Study of Coil Length on Tube Compression in Electromagnetic Forming. Transactions of Nonferrous Metals Society of China. 2007, 17(6): 1270~1275
    98 S. Y. Huang, Z. H. Chang, Z. R. Wang et al. A Finite Element Analysis of Electromagnetic Sheet Metal Expansion on Process. Trans. Nonferrous Met. Soc. China. 1998, 8(3): 490~495
    99 L. F. Wang, Z. Y. Chen, C. X. Li, S. Y. Huang. Numerical Simulation of the Electromagnetic Sheet Metal Bulging Process. International Journal of Advanced Manufacturing Technology. 2006, 30 (5~6): 395~400
    100 R. Neugebauer, P. Blau, H. Braunlich, et al. The Potential for Electromagnetic Metal Forming for Plane (Car Body) Components. Proceedings of 1st International Conference on High Speed Forming. Dortmund, 2004: 269~274
    101 G. S. Daehn, J. H. Shang, V. J. Vohnout. Electromagnetically Assisted Sheet Forming: Enabling Difficult Shapes and Materials by Controlled Energy Distribution. TMS (The Minerals, Metals & MaterialsSociety). Energy Efficient Manufacturing Processes.USA: TMS, 2003: 117~128
    102 Ohio State University. Better Metal Forming: Magnetic Pulses Bump Metal into Shape. http://www.scienceblog.com/community/older/2002/D/2002456 2.html
    103 V. J. Vohnout, G. S. Deahn. Reducing Stamped Part Development Time with Pulsed Energy Assistance. http://www.matsceng.ohio-state.edu/~daehn /hyperplasticity/12mo_carsales. Pdf
    104 J. Larsson. Electromagnetic Forming of Tube and Sheet Metal for Automotive parts. http://europa.eu.int/ comm/research/transport /pdf /turin 1010_0950_en.pdf.
    105 M. Geiger, M. Merklein, M. Tolazzi. Metal Forming Ensures Innovation and Future in Europe. Proceedings of international conference on technology of plasticity. Verona, 2005
    106 S. Golovashchenko, N. Bessonov, R. Davies. Design and Testing of Coils for Pulsed Electromagnetic Forming. Proceedings of 2nd International Conference on High Speed Forming. Dortmund, 2006: 141~151
    107 Office of Advanced Automotive Technologies. Automotive Lightweighting Materials E: Electromagnetic Forming of Aluminum Sheet. http://www.eere.doe.gov/vehiclesandfuels/pdfs/program/2001_pr_auto_ltweight_mat.pdf.
    108 Office of Advanced Automotive Technologies. Automotive Lightweighting Materials D: Electromagnetic Forming of Aluminum Sheet. http://www. eere.energy.gov/ vehiclesandfuels/pdfs/program/2002_alm.pdf
    109 Office of Advanced Automotive Technologies. Automotive Lightweighting Materials C: Electromagnetic Forming of Aluminum Sheet. http://www.eere.energy.gov/vehiclesandfuels/pdfs/alm_03/2_automotive_aluminum.pdf
    110 Office of Advanced Automotive Technologies. Automotive Lightweighting Materials C: Electromagnetic Forming of Aluminum Sheet. http://www.eere.energy.gov/vehiclesandfuels/pdfs/alm_04/2d_davies.pdf
    111 Office of Advanced Automotive Technologies. Automotive Lightweighting Materials D: Electromagnetic Forming of Aluminum Sheet. http://www.eere.energy.gov/vehiclesandfuels/pdfs/alm_05/2d_davies.pdf
    112鄭東辰,蘇子可.金屬殼件之複合電磁成形技術研究.中華民國鍛造協會會刊. 2006, 15 (1): 6~16
    113 M. Kamal. A Uniform Pressure Electromagnetic Actuator for Forming Flat Sheets. Ph. D. Thesis of Ohio State University. 2005: 29~78
    114 L. F.蒙多尔福.铝合金的组织与性能.王祝堂,张振录,郑璇等译.冶金工业出版社. 1988: 268~748
    115甘卫平,许可勤,范洪涛.汽车车身铝化的研究及其发展.轻合金加工技术. 2003, 31(6): 14~16
    116石其年,熊惟皓.铝合金在汽车中的应用与发展.新技术新工艺. 2006. (12): 55~58
    117王钰.船舶用铝合金材料.轻合金, 1994, (6): 58~64
    118苏鸿英.日本铁路车辆用铝合金现状.中国有色金属. 2008, (8): 74
    119张少华.铝合金在汽车上应用的进展.汽车工业研究. 2003, (3): 36~39
    120肖永清.铝合金是现代汽车轻量化的首选材料.铝加工. 2005, (5): 36~39
    121 R. H. Wagoner, J. L. Chenot. Metal Forming Analysis. Cambridge University Press. 2001: 77~125
    122林忠钦.车身覆盖件冲压成形仿真.机械工业出版社. 2005: 1~22
    123蒋浩民,陈新平,吴华.有限元仿真技术在板材成形中的应用.金属成形工艺. 2000, 18: 35-39
    124赵海鸥. LS-DYNA动力分析指南.兵器工业出版社. 2003: 1~140
    125 K. J. Bathe. Finite Element Procedures. Prentice-Hall, Inc. 1996: 148~214
    126 Ted Belyschko, Wing Kam Liu, Brian Moran.连续体和结构的非线性有限元.庄茁译.清华大学出版社. 2002: 268~276
    127王仲仁.塑性加工力学基础.国防工业出版社. 1989: 15~58
    128金建铭.电磁场有限元方法.西安电子科技大学出版社. 1998: 1~7
    129 B. Bendjima. A Coupling Model for Analyzing Dynamical Behaviors of An Electromagnetic Forming System. IEEE Transactions on Magnetics. 1997, 33(2): 1638~1641
    130 ANSYS Theory Release 7.0. ANSYS Inc
    131 O. Biro, K. Preis. On the Use of the Magnetic Vector Potential in the Finite Element Analysis of Three-Dimensional Eddy Currents. IEEE Transactions on Magnetics. 1989, 25(4): 3145~3159
    132 ANSYS Online Manuals Release 5.5
    133白金泽. LS-DYNA3D理论基础与实例分析.科学出版社. 2006: 30~47
    134 A. G. Mamalis, D. E. Manolakos, A. G. Kladas, A. K. Koumoutsos. Electromagnetic Forming Tools and Processing Conditions: Numerical Simulation. Materials and Manufacturing Processes. 2006, 21: 411~423
    135李裕春,时党勇,赵远编著. ANSYS 11.0 LS-DYNA基础理论与工程实践.中国水利水电出版社. 2008: 398~415
    136何涛,杨竞,金鑫等编著. ANSYS 10.0/LS-DYNA非线性有限元分析实例指导教程.机械工业出版社. 2007: 148~150
    137 Y. S. Sato, Y. Sugiura, Y. Shoji, S. H. C. Park. Post-Weld Formability of Friction Stir Welded Al Alloy 5052. Materials Science and Engineering A. 2004, 369:138~143
    138 M. S. Dehra. High Velocity Formability and Factors Affecting It. Ph. D. Dissertation of The Ohio State University. 2006: 1~314
    139 R. H. Wagoner, N. M. Wang. An Experimental and Analytical Investigation of in-Plane Deformation of 2036-T4 Aluminum Sheet. Int. J. Mech. Sci. 1979, 21: 255~264
    140 L. X. Chen, P. Bhandhubanyong, W. Vajragupta, C. Somsiri. Plastic Properties of Low-Carbon Steel Sheets. Journal of Materials Processing Technology. 1997, 63: 95~99
    141 Y. G. An, H. Vegter, L. Elliott. A Novel and Simple Method for the Measurement of Plane Strain Work Hardening. Journal of Materials Processing Technology. 2004, (155-156): 1616~1622
    142 H. Aretz, O. S. Hopperstad, O. G. Lademo. Yield Function Calibration for Orthotropic Sheet Metals Based on Uniaxial and Plane Strain Tensile Tests. Journal of Materials Processing Technology. 2007, 186: 221~235
    143 L. X. Chen, P. Bhandhubanyong, W. Vajragupta, C. Somsiri. Plastic Properties of Low-Carbon Steel Sheets. Journal of Materials Processing Technology. 1997,
    63: 95~99
    144 R. Hill. A Theory of the Plastic Bulging of a Metal Diaphragm by Lateral Pressure. Philosophical Magazine, ser. 7. 1950, 41(322): 1133~1142
    145 S. S. Hecker. Formability of Aluminum Alloy Sheets. Journal of Engineering Materials and Technology. Transactions of ASME. 1975, 97H: 66~73
    146王礼力,余同希,李永池编.冲击动力学进展.中国科技大学出版社. 1992: 3~33 157~176
    147徐芝纶.弹性力学(第二版).高等教育出版社. 1982
    148 T. Z.布拉齐恩斯基.爆炸焊接、成形与压制.李富勤,吴柏青译.机械工业出版社. 1983: 76~143
    149 M. A. Meyers.材料的动力学行为.张庆明,刘彦,黄风雷,吕中杰译.国防工业出版社. 2006: 265~377
    150冯端等著.金属物理学(第一卷结构与缺陷).科学出版社. 2000: 248~349

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700