水下动能射弹空泡形态及流体动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超空泡减阻技术是实现水下航行体高速航行的新原理和新途径。空泡流动是一种复杂的流动问题,包含了非定常、可压缩、相变、湍动等流体力学研究中比较复杂的流动现象,对空泡流的数值模拟和试验研究都带来了很大的困难。由于水下动能射弹超空泡流动的复杂性,本文采用数值模拟和试验相结合的方法对射弹空泡形态和流体动力特性进行研究,具体研究工作如下:
     介绍了研究水下动能射弹空泡形态和流体动力特性的数值方法,通过对超空泡流动模拟选用RANS方法中的四种湍流模型对比分析,并与试验结果进行比较,确立了适合数值模拟水下射弹的湍流模型,为后续研究奠定基础。
     采用上述数值模拟方法对圆柱体自然空泡流体动力特性进行了研究。得到了长细比和空化数以及圆柱体局部结构中头部锥角、倒角、表面凸起、凹槽对空化特性和阻力特性的影响,通过圆柱体射弹试验得到了空泡形态随空化数的变化规律,并和数值模拟结果进行了对比分析,两者吻合较好。
     研究了自然超空泡射弹空泡形态和流体动力特性的变化规律。得到空泡闭合位置对压差阻力系数、摩擦阻力系数、总阻力系数的影响。研究了水下射弹模型结构参数对自然超空泡减阻特性的影响:空化器直径、空化器长度、长细比、尾部形状及模型表面粗糙度在空泡形成过程中对空化特性和流体动力特性产生影响,形成超空泡后,空化器直径对阻力系数起决定作用。研究了射弹弹体和空化器有攻角时空泡形态、阻力特性和升力特性的变化规律;弹体有攻角时空泡形态偏移明显,空化器有攻角时,升力系数增加明显。研究了超空泡射弹的受力状况及减阻特性。研究了射弹发射后速度和射程的变化规律,得到了射弹质量、阻力系数、发射速度及发射深度对射程影响的规律。
     通过对水下射弹形成的局部空泡通气,得到了水下射弹的通气超空泡,实现了中等速度条件下超空泡射弹。研究了通气超空泡形态特性,数值模拟得到形成通气超空泡后阻力系数的变化规律以及不同空化数条件下形成超空泡需要的通气量。通过试验得到通气超空泡射弹的速度变化以及速度衰减量、位移值和阻力系数,并与同样速度的不通气射弹进行对比分析,通气超空泡射弹速度衰减慢,位移大,阻力系数小,对超空泡的减阻特性进行了验证。
     研究了水下射弹关联运动流体动力特性。得到了串列两圆柱体的减阻规律,并与单独圆柱绕流情况进行了对比研究。分析了两圆柱体的受力,得到了模型参数对减阻规律的影响,两射弹串列可以大幅度减阻。研究了三个圆柱体串列的情况,获得多个圆柱体串列运行时的超空泡减阻规律。研究了射弹尾部气泡运动情况,得到了射弹串列运行时尾部气泡对发射频率的影响。研究了并列发射时两个射弹相互影响情况下流体动力特性,得到了不同间距情况下射弹阻力系数的变化规律,当两射弹间距过小时射弹间会产生侧向力。
Supercavitation technology is a fresh theory and approach for the drag reduction of underwater bodies. Supercavitation flow is one of the most complicated multiphase hydrodynamics, which involves unsteady flow, compressibility, phase transformation, turbulence and other complicated hydrodynamics phenomena, and all of those behavior and properties involve great difficulties for the understanding of the cavity flow. In the content of this dissertation, numerical simulation methodology for vapor-filled and gas-filled cavity shape and drag behavior of kinetic energy projectiles is developed, and a matched laboratory experiments supercavitation kinetic energy projectiles were conducted. The major contributions of the present study are summarized below:
     The numerical simulation methodology of cavity shape and hydrodynamics characteristics of underwater kinetic energy projectile is conducted. The turbulence models used in supercavitation numerical simulation are analyzed. The numerical results are compared with the experimental results, and the suitable turbulence model is chosen for the future research.
     Numerical simulation studies on the hydrodynamics characteristics of the natural cavity flow over circular cylinder are conducted. The computation works include the analysis the influence of the aspect ratio on the cavity shape and drag characteristics, the cavitation number on the dimensionless length and diameter of the cavity, the cones, chamfer and flute on the circular cylinder on the cavitaion and drag characteristics. Direct comparisons experiments of circular cylinder kinetic energy projectile are conducted.
     The cavity shape and hydrodynamics of natural supercavitaion kinetic energy projectile are investigated. The influence of the location of the cavity closure on the pressure drag coefficient, friction drag coefficient and the total drag coefficien are analyzed. Numerical computation study on underwater projectile’s outline parameter, including diameter and length of cavitator, the aspect ratio of projectile, tails contour, and surface condition, And get the behavior and properties of cavitaion and drag reduction. The computation works are conducted on the influences of angle of attack of cavitator and angle of attack of projectile on the outline of cavity, drag, and lift behavior, the results show that the angle of attack of bodies induce displacement away from the axis of initial cavity, the angle of attack of cavitator make the lift coefficient increase greatly. The influences of projectile mass, drag coefficients, initial speed, and launch depth are investigated.
     When the partial natural cavitaion is ventilated, the ventilated supercavitation is obtained. The ventilated supercavitation projectiles are obtained at middle velocity, and the ventilated supercavitation shapes are investigated. The drag coefficients after the forming of supercavitation and the ventilation volume rate that can form supercavitation at different cavitation numbers are obtained. The velocity, velocity attenuation and displacement of projectile at different time obtained. Compaired with the unventilated projectile, the ventilated projectile has slow velocity attenuation, long displacement and small drag coefficient. The drag reduction characteristics of supercavitation are validated.
     The correlation motion hydrodynamic characteristics of underwater projectile are investigated. Using the numerical simulation the drag behavior of two circular cylinders in tandem arrangement is obtained, and compared with that of one circular cylinder. The force of two circular cylinders is analyzed, and the effect of model parameters on the drag is obtained. The results shows that the drag decreases a lot as two circular cylinders are arranged in tandem. The drag behavior of three circular cylinders in tandem arrangement is investigated, and the supercavitation drag reduction is obtained as multi circular cylinder is arranged in tandem. The bubble motion at tail of underwater projectile is studied, and the effect of bubble motion on launch frequency as multi circular cylinder is arranged in tandem. The hydrodynamic of two circular cylinders parallel arrangement is investigated, and the effect of distance on the drag coefficient of underwater projectile is studied. The side force appears when the distance is small.
引文
1傅金祝(译).超空泡—对未来水中兵器系统的挑战.水雷战与舰船防护. 2002, 10(2):18~23
    2柯贵喜,潘光,黄桥高.水下减阻技术研究综述.力学进展, 2009, 39(5):546~554
    3颜开,褚学森,许晟.超空泡流体动力学研究进展.船舶力学. 2006, 10(4):148~155
    4杨莉,张庆明.超空泡技术的应用现状和发展趋势.战术导弹技术. 2006, (5):6~10
    5 Jenkins A, Evans L T. Sea mine neutralization using the AN/AWS-2 rapid airborne mine clearance system. IEEE Aerospace Conference Proceedings. 2004:2999~3004
    6黄继汤.空化与空蚀的原理及应用.清华大学出版. 1991
    7 R. T. Knapp, J. T. Daily, F. G. Hammit. Cavitation. Mc Graw Hill, NewYork, 1970
    8 M. Wosnic, T. Schauer, R. Arndt. Experimental Study of A Ventilated Supercavitating Vehicle. Fifth International Symposium on itation. Osaka, Japan, 2003, Cav03-OS-7-008
    9李根生,沈晓明,施立德.空化和空蚀机理及其影响因素.石油大学学报(自然科学版), 1997, 21(1):97~102
    10 Ivan N. Kirschner, Thomas A. Gieseke, David R. Stinebring. Supercavitation research and development. Undersea Defense Technologies Hawaii, Waikiki, HI, 2001
    11 D. R. Stinebring, M. L. Billet, J. W. Lindau, et al. Developed Cavitation–Cavity Dynamics. VKI Special Course on Supercavitating Flows, Brussels, 2001: RTO-EN-010(5)
    12 Savchenko Y N. Supercavitation-problems and perspectives. 4th International Symposium on Cavitation, California, Cav2001, Lecture.003, 2001
    13 Logvinovich G V. Hydrodynamics of flow with free boundaries. Kiev:Naukova Dumka, 1969
    14 Merkle C L, Feng J, Buelow P E. Computational modeling of the dynamics ofsheet cavitation. In 3rd International Symposium on Cavitation, Grenoble, France, 1998
    15 M. P. Tulin. Steady Two-dimensional Cavity Flows about Slender Bodies. Technical Report 834, DTMB, 1953
    16 C. Brennen. A Numerical Solution of Axismmetric Cavity Flows. J Fluid Mech, 1969, 37(4):671~688
    17 H. Reichardt, H. Munzner. Rotationally Symmetric Source-sink Bodies with Predominantly Constant Pressure Distributions. Arm. Res. Est. Trans., 1950, 50(1)
    18 L. J. Doctors. Effects of a Finite Froude Number on a Supercavitating Hydrofoil. Journal of Ship Research, 1986, 30(1):1~11
    19 J. S. Uhlman. The Surface Singularity Method Applied to Partially Cavitating Hydrofoils. Journal of Ship Research, 1987, 31(2):107~124
    20 C. Pellone, A. Rowe. Supercavitating Hydrofoils in Non-linear Theory. In 3th International Conference on Numerical Ship Hydrodynamics, Paris, France, 1981
    21 S. A. Kinnas, N. E. Fine. A Numerical Nonlinear Analysis of the Flow around
    2-D and 3-D Partially Cavitating Hydrofoils. Journal of Fluid Mechanics, 1993, 254(9):151~181
    22 O. Boulon, G. L. Chahine. Numerical Simulation of Unsteady Cavitation on 3D Hydrofoil. In 3rd International Symposium on Cavitation, Grenoble, France, 1998
    23 Y. N. Savchenko, V. N. Semenenko. Unsteady Supercavitated Motion of Bodies. International Journal of Fluid Mechanics Research, 2000, 27(1):109~137
    24 V. Serebryakov. Problems of Hydrodynamics for High Speed Motion in Water with Supercavitation. Sixth International Symposium on Cavitation. Wageningern, Netherlands. 2006, Cav2006-134
    25 Y. N. Savchenko, Y. A. Semenko, S.I. Putilin. Some Problems of the Supercavitating Motion Management. Sixth International Symposium on Cavitation. Wageningen, Nethelands. 2006, Cav2006-15
    26 Wang Guoyu, I. Senocak, W. Shyy, et al. Dynamics of Attached Turbulent Cavitating. Progress in Aerospace Sciences. 2001, 37:551~581
    27 B. Stuz. Two-phase Flow Structure of Sheet Cavitation. Phys Fluids, 1997,9:3678~3686
    28 R. A. Furness, S. P. Hutton. Experimental and Theoretical Studies of Two-Dimensional Fixed-type cavities. Journal of Fluids Engineering, 1975, 97:515~522
    29 H. Lemonnier, A. Rowe. Another Approach in Modeling Cavitating flows. Journal of Fluid Mechanics, 1988, 195:557~580
    30 S. A. Kinnas, N. E. Fine. A Numerical Nonlinear Analysis of the Flow around 2-D and 3-D Partially Cavitating Hydrofoils. Journal of Fluid Mechanics, 1993, 254(9):151~181
    31 Y. Chen, S. D. Heister. A Numerical Treatment for Attached Cavitation. Journal of Fluids Engineering, 1994, 116:613~618
    32 M. Deshpande, J. Feng, C. L. Merkle. Nonlinear Euler Analysis of 2-D Cavity Flow. Cavitation and Multiphase Flow Forum FED, 1993, 135:149~155
    33 H. A. Grogger, A. Alajbegovic. Calculation of the Cavitating Flow in Venturi Geometries Using Two Fluid Models. Washington, USA, 1998, ASME FEDSM 99-7364
    34 C. L. Merkle, J. Feng, P E O Buelow. Computational Modeling of the Dynamics of Sheet Cavitation. In 3rd International Symposium on Cavitation, Grenoble, France, 1998
    35 R. F. Kunz, D. A. Boger, T. S. Chyczewski et al. Multi-phase CFD Analysis of Natural and Ventilated Cavitation about Submerged Bodies. San Francisco, USA, 1999, ASME FEDSM 99-7364
    36 I. Senocak. Computatuonal Methodology for the Simulation of Turbulent Cavitating Flows. PhD Dissertation, University of Florida, USA, 2002
    37 Y. Delannoy, J. L. Kueny. Two Phase Flow Approach in Unsteady Cavitation Modeling. Cavitation and Multiphase Flow Forum, ASME-FED, 1990, 98:153~158
    38 H. W. M. Hoeijmakers, M. E. Jasssens, W. Kwan. Numerical Simulation of Sheet Cavitation. In 3rd International Symposium on Cavtiation, Grenoble, France, 1998
    39 Y. Chen, S. D. Heister. Modeling Hydrodynamic Non-Equilibrium in Bubbly and Cavitating Flows. Journal of Fluids Engineering, 1995, 118:172~178
    40 B. R. Shin, Y. Wata, T. Ikohagi. Numerical Simulation of Unsteady Cavitating Flows Using a Homogenous Equilibrium Model. Comput Mech, 2003,30:388~395
    41 Y. Iga, M. Nohmi, A. Goto. Numerical analysis of cavitation instabilities arising in the three-blade cascade. Journal of Fluids Engineering, 2004, 126:419~429
    42 H. T. Chen, R. Colins. Shock wave propagation past an ocean surface. Journal of Computational Physics, 1971, 7:89~101
    43 O. Coutier-Delgosha, J. L. Reboud, Y. Delannoy. Numerical Simulation of the Unsteady Behaviour of Cavitating Flows. Int International Journal for Numerical Methods in Engineering, 2003, 42:527~548
    44 C. C. S. Song, Q. Qin. Numerical Simulation of Unsteady Cavitating Flow. In
    4th International Symposium on Cavitation, Pasadena, USA, 2001, Cav2001:Session B3. 004
    45 Q. Qin, C. C. S. Song, R. E. A. Arndt. A Virtual Single-phase Nature Cavitation Model and Its Application to Cav2003 Hydrofoil. In 5th International Symposium on Cavitation, Osaka, Japan, 2003, Cav03-OS-1-004
    46 J. R. Edwards, R. K. Franklin, M. S. Liou. Low-Diffusion Flux Splitting Methods for Real Fluid Flows with Phase Transitions. AIAA. 2000, 38(9):1624~1633
    47 Y. Ventikos, G. Tzabiras. A Numerical Method for the Simulation of Steady and Unsteady Cavitating Flows. Computers and Fluids. 2000, 29(1):63~88
    48 C. L. Merkle, J. Feng, P. O. Buelow. Computational Modeling of the Dynamics of Sheet Cavitation. Proc. 3rd International Symposium on Cavitation, Grenoble, France, 1998
    49 R. F. Kunz, D. A. Boger, D. R. Stinebring et al. A Preconditioned Navier-Stokes Method for Two-phase Flows with Application to Cavitation. Compute Fluids. 2000(29):849~875
    50 A. K. Singhal, N. Vaidya, A. D. Leonard. Multi-dimensional Simulation of Cavitating Flows Using a PDF Model for Phase Change. Proc. of 1997 ASME Fluids Engineering Division Summer Meeting.1997, ASME Paper FEDSM97-3272
    51 I. Senocak, W. Shyy. Evaluation of Cavitation Models for Navier-Stokes Computations. FEDSM2002-31011, Proc. of 2002 ASME Fluids Engineering Division Summer Meeting Montreal, 2002
    52 I. Senocak, W. Shyy. A Pressure-Based Method for Turbulent Cavitating FlowComputations. Journal of Computational Physics. 2002(176):363~383
    53 V. Ahuja, A. Hosangadi, S. Arunajatesan. Simulations of Cavitating Flows Using Hybrid Unstructured Meshes. Journal of Fluids Engineering. 2001(123):331~340
    54 S. Venkateswaran, J. W. Lindau, R. F. Kunz et al. Preconditioning Algorithms for the Computation of Multi-phase Mixtures Flows. AIAA 39th Aerospace Sciences Meeting and Exhibit. 2001, AIAA-2001-0125
    55 R. F. Kunz, D. A. Boger, D. R. Stinebring, et al. A Preconditioned Navier-Stokes Method for Two-Phase Flows with Application to Cavitation Prediction. Computer & Fluids. 2000, 29:849~875
    56 A. K. Singhal, M. M. Athavale, Li Huiying, et al. Mathematical Basis and Validation of the Full Cavitation Model. Journal of Fluids Engineering. 2002, 124(3):617~624
    57 F. M. Owis, A. H. Nayfeh. Computations of the Compressible Multiphase Flow Over the Cavitating High-Speed Torpedo. Journal of Fluids Engineering. 2003, 125(3):459~468
    58 Yuan Weixing, G. H. Schnerr. Numerical Simulation of Two-Phase Flow in Injection Nozzles:Interaction of Cavitation and External Jet Formation. Journal of Fluids Engineering. 2003, 125(6):963~969
    59 I. Senocak. Computational Methodology for the Simulation of Turbulent Cavitating Flows. Phd Dissertation, University of Florida, USA, 2002
    60 A. J. Chorin. A Numerical Method for Solving Incompressible Viscous Flow Problems. Journal of Computational Physics, 1967, 2:12~26
    61 E. Turkel. Preconditioning methods for solving the incompressible and low speed compressible equations. Journal of Computational Physics, 1987, 72:277~298
    62贾彩娟,张宇文.回转体局部空泡流的数值分析.西北工业大学学报. 2003, 21(3):273~276
    63李福新,傅慧萍.基于面元法回转体定长局部空泡的绕流计算.应用力学学报. 2002, 19(1):66~69
    64 Hu Chao, Yang Hong-lan. Unsteady Supercavitating Flow Past Cones. Journal of Hydrodynamics. 2006, 18(3):262~272
    65王国玉,方韬,曹树良.非定常粘性空化流动模型及其数值计算.工程热物理学报. 2004, 25:783~785
    66陈瑛,鲁传敬,吴磊.三维小空化数空泡流数值方法.计算物理. 2008, 25(2):163~171
    67汤继斌,钟诚文.空化、超空化流动的数值模拟方法研究.力学学报. 2005, 37 (5):640~644
    68刘巨斌,张志宏.基于传输方程空化模型的定常自然空化流场数值计算.海军工程大学学报. 2007, 19(1):35~38
    69熊永亮,郜冶,王革.水下超空泡航行体减阻能力的数值研究.弹道学报. 2007, 19(1):51~54
    70王海斌,张嘉钟,王聪,魏英杰,贾力平.加速度对自然超空泡特性影响的数值仿真研究.工程力学. 2007, 24(1):18~22
    71 Fu Hui-ping, Lu Chuan-jing, Li Jie. Numerical Research on Drag Reduction Characteristics of Supercavitating Body of Revolution. Journal of Ship Mechnics, 2004, 8(3):1~7
    72张学伟,张亮,于开平.通气超空泡形态稳定性的数值模拟研究.研究计算力学学报, 2010, 27(1):76~81
    73 Chen Xin, Lu Chuan-jing. Numerical Simulation of Ventilated Cavitating Flow around a 2D Foil. Journal of Hydrodynamics, Ser.B. 2005, 17(5):607~614
    74刘玉秋,张嘉钟,于开平,张学伟.非流线型航行体超空泡减阻的实验分析和数值模拟.哈尔滨工程大学学报. 2006, 27 (3):335~338
    75 Jia Li-ping, Wang Cong, Wei Ying-jie et al. Numerical simulation of artificial ventilated cavity. Journal of Hydrodynamics, Ser.B. 2006, 18(3):273~279
    76易文俊,熊天红.高速航行体的自然超空泡流阻力特性研究.舰船科学技术, 2008, 30(4):117~121
    77周家胜,易文俊,王中原.水下射弹的空泡形态特性研究.弹箭与制导学报. 2007, 27(3):173~178
    78张鹏,傅慧萍.跨超音速射弹的超空泡数值模拟.弹箭与制导学报, 2009, 29(5):166~169
    79冯光,颜开.超空泡航行体水下弹道的数值计算.船舶力学. 2005, 9 (2):1~8
    80 Savchenko Y N. Experimental investigation of supercavitating motion of bodies. VKI Special Course on Supercavitating Flows, 2001: RTO-EN-010, 43~66
    81 Kirschner I N, Results of selected experiments involving supercavitating flows. VKI Special Course on Supercavitating Flows, 2001: RTO-EN-010, 313~342
    82钱东,张起.欧洲反鱼雷鱼雷研发展望.鱼雷技术, 2006, 14(5):1~11
    83 Salil S. Kulkarni, Rudra Pratap. Studies on the dynamics of a supercavitating projectile. Applied Mathematical Modeling. 2000, 24:113~129
    84 Michel J M. Introduction to cavitationand supercavitation. VKI Special Course on Supercavitating Flows, 2001: RTO-EN-010,11~28
    85 Y. N. Savchenko. Control of Supercavitation Flow and Stability of Supercavitating Motion of Bodies. VKI Special Course on Supercavitating Flows, Brussels, 2001: RTO-EN-010(14)
    86 H. Reichardt. The Laws of Cavitation Bubbles as Axially Symmetrical Bodies in a Flow. Ministry of Aircraft Productuin(Great Britian), Reports and Translations. 1946, 766:322~326
    87 T. Ota, K. Ueda, H. Yoshikawa. Hysteresis of Flow Around an Elliptic Cylinder in Critical Reynolds Number Regime. ASME Heat Transfer/Fluids Engineering Summer Conference, Charlotte, North Carolina USA, 2004. HT-FED04-56141
    88 V. H. Arakeri, A. J. Acosta. Viscous Effects in Inception of Cavitation on Axisymmetric Bodies. Journal of Fluids Engineering. ASME. 1973. 95(4):519~527
    89 A. Kubota, H. Kato, H. Yamaguchi. Unsteady Structure Measurement of Cloud Cavitation on a Foil Section using Conditional Sampling Technique. Journal of Fluids Engineering. ASME, 1989, 111:204~210
    90 C. Y. Li, S. L. Ceccio. Interaction of Single Travelling Bubbles with the Boundary Layer and Attached Cavitation. Journal of Fluid Mechanics, 1996, 322:329~353
    91 B. Stutz, J. L. Reboud. Two-phase Flow Structure of Sheet Cavitation. Phys. Fluids. 1997, 9(12):3678~3686
    92 Wu Xiong-jun, L. C. Georges. Experimental Study of the Content of the Cavity behind a Highspeed Supercavitating Body. Sixth international symposium on cavitation., Wageningen, the Netherlands. 2006, Cav2006-116
    93 E. Silberman, C. S. Song. Instability of Ventilated Cavities. Journal of Ship Research, 1961, 13~33
    94 B. B. Phillip. Supercavitation. California State Science Fair 2002 Project Summary. Project Number:J0102, 2002
    95 Y. N Savchenko. Modeling the Supercavitation processes. International Journal of Fluid Mechanics Research, 2001, 28(5):644~659
    96 R. Kuklinski, C. Henoch, J. Castano. Experimental Study of Ventilated Cavities on Dynamic Test Model. Naval Undersea WarfareCenter, 2001, Cav2001: Session B3. 004
    97 V. N. Semenenko. Artificial Supercavitation Physics and Calculation. VKI Special Course on Supercavitating Flows, Brussels, 2001: RTO-EN-010(11)
    98 M. Wosnik, E. A. Arndt. Measurements in High Void-fraction Bubbly Wakes Created by Ventilated supercavitation. Sixth international symposium on cavitation. Wageningen, the Netherlands 2006, Cav2006-68
    99 Y. D. Vlasenko. Experimental Investigation of Supercavitation Flow Regimes at Subsonic and Transonic Speeds. Fifth Intermational Symposium on Cavitation, Osaka, 2003: Cav2003. GS-6-006
    100刘桦,朱世权,何友声等.系列头体的空泡试验研究—初生空泡与发展空泡形态.中国造船. 1995, 128(1):1~10
    101曹伟,王聪,魏英杰.自然超空泡形态特性的射弹试验研究.工程力学, 2006, 23(12):175~187
    102熊天红,易文俊.高速射弹超空泡减阻试验研究与数值模拟分析.工程力学, 2009, 26(8):174~178
    103 Feng Xuemei, Lu Chuanjing, Hu Tianqun. Experimental Research on A Supercavitating Slender Body of Revolution With Ventilation. Journal of Hydrodynamics, Ser. B ,2002, 2:17~23
    104谢正桐,何友声,朱世权.小攻角带空泡细长体的试验研究.水动力学研究与进展. 2001, 16(3):374~381
    105 Feng Xue-mei, Lu Chuan-jing, Hu Tian-qun. The Fluctuation Characteristics of Natural and Ventilated Cavities on an Axisymmetric Body. Journal of Hydrodynamics, Ser.B. 2005, 17(1):87~91
    106张宇文,王育才,党建军等.细长体空泡流型试验研究.水动力学研究与进展A辑, 2004, 19(3):394~400
    107袁绪龙,张宇文,王育才等.水下航行体通气超空泡非对称性研究.力学学报. 2004, 36(2):146~150
    108邓飞,张宇文,袁绪龙等.水下超空泡航行体流体动力设计原理研究.西北工业大学学报, 2004, 22(6):806~810
    109蒋洁明,鲁传敬,胡天群等.轴对称通气空泡的水动力试验研究.力学季刊. 2004, 25(4):450~456
    110王海斌,王聪,魏英杰等.水下航行体通气超空泡的实验研究.船舶力学.2007, 11(4):514~520
    111贾力平,王聪,于开平.空化器参数对通气超空泡形态影响的实验研究.工程力学. 2007, 24(3):159~164
    112蒋增辉,于开平,张嘉钟.水下航行体通气超空泡形态及阻力特性试验研究.工程力学, 2007, 24(4):152~158
    113张学伟,魏英杰,张嘉钟.模型结构对通气超空泡影响的实验研究工程力学, 2008, 25(9):203~208
    114顾建农,张志宏,高永琪.充气头型对超空泡轴对称体阻力特性影响的试验研究.兵工学报. 2004, 25(6):766~769
    115 S. B. Pope. Turbulent Flows. Cambridge University Press, Cambridge, UK, 2000
    116 P. Rollet-Miet, D.Laurence, J. Ferziger. LES and RANS of Turbulent Flow in Tube Bundles. International Journal of Heat and Fluid Flow, 1999, 20(3):241~254
    117 Singhal A.K, Athavale M.M, Huiying Li. Mathematical basis and validation of the full cavitation model. Journal of Fluids Engineering. 2002, 124:617~624
    118 E P Jones, B E Launder. The prediction of laminarization with a two equation model of turbulence.International Journal of Heat and Mass Transfer, 1972, 15(2):301~314
    119 Launder B E, SpaldingD B. Lectures in m ath em aticalm odels of turbulence. London, England: Academic Press, 1972
    120 D.C.Wilcox. Progress in hypersonic turbulence modeling. AIAA Paper 91-1785, 1991
    121 F.R.Menter. Influence of free stream values on turbulence model predictions. AIAA, 1992, 30(6):1651~1659
    122 Kolmogorov A N. Equarions of turbulent motion of an incmpressile fluid. Imperial College.Department of Mechanical Engineering, 1968
    123 P.R.Spalart, S.R.Allmaras. A one-equation turbulence model for aerodynamic flow. AIAA, 1992-0439, 1(1992):5~21
    124 Launder B E, Reece G J, Rodi W .Progress in the de velopment of a reynolds-stress turbulence closure. Journal of Fluid Mechanics. 1975, 68(3):537~566
    125王福军.计算流体动力学分析—CFD软件原理与应用.清华大学出版社. 2004
    126 H. K. Versteeg, W. Malalasekera. An Introduction to Computational FluidDynamics: The Finite Volume Method. Wiley, New York, 1995
    127 Y. Delannoy, Y., J. L. Kueny. Cavity Flow Predictions Based on the Euler Equations. ASME Cavitation and Multiphase Flow Forum, 1990
    128曹伟,魏英杰,韩万金.超空泡航行体阻力系数的数值模拟研究.工程力学, 2008, 25(12):208~212
    129 Birkhoff, G., Zarantonello, E.H., Jets, Wakes and Cavities, Academic Press Inc. Publishers, New York, 1957
    130石秀华.水中兵器概论(鱼雷部分).西安:西北工业大学出版社, 1995:28~32
    131宗云青,沈文杓.极品名枪.北京:海潮出版社, 2004
    132王东生.射击(训练和娱乐).北京:国防工业出版社, 1999
    133ЭпштейнЛ.А.Теченияоколотелвращенияпрималыхчислахкавитации.—Тр.ЦАГИ, 1961,вып. 817
    134 Hermann L Miskelly. Supercavitating underwater projectile. United States Patent. 2002, US6405653 B1
    135王致清.粘性流体动力学.哈尔滨,哈尔滨工业大学出版社, 1990
    136程文,周孝德,郭瑾珑.水中气泡上升速度的实验研究.西安理工大学学报, 2000, 16(1):57~60
    137 Ramakrishnana S, Kumara R, Kuloora N.R.Studies in bubble formation—I bubble formation under constant flow conditions.Chemical Engineering Science. 1969, 24(4):731~747

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700