超级电容器复合电极材料制备及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据储能机理,超级电容器分为双电层电容器和法拉第电容器。前者电极通常采用高比表面积和高电导率的碳材料,虽循环寿命很长,但比电容较小。后者电极主要采用二氧化锰或聚苯胺,虽然这些材料理论比电容很高,但因导电性能、本身结构等原因限制了其电化学性能的充分发挥。
     二氧化锰(聚苯胺)/碳材料复合能够实现材料性能的合理平衡,碳材料提供大比表面积和高导电性,二氧化锰(聚苯胺)提供高比电容。然而实际获得比电容和循环性能仍不理想,研究发现主要存在以下问题:(1)二氧化锰(聚苯胺)分散度不够;(2)界面接触电阻较大;(3)电极结构不合理。为改善上述问题,本论文将以熔融硝酸盐法制备的裁短碳纳米管和电化学电解法制备的石墨烯为载体,使二氧化锰均匀分散在其表面,制备了二氧化锰/裁短碳纳米管(石墨烯)复合材料,该复合材料电极具有高比电容和优异循环性能。采用真空微蒸发镀法制备了金属锰/碳化锰/碳纳米管复合材料,改善了复合材料界面接触电阻高的缺点。采用电泳沉积技术,以柔性石墨纸为集流体制备了3种柔性薄膜电极,优化了电极结构。本文具体研究内容和结果如下:
     (1)利用熔融硝酸盐法,刻蚀裁短碳纳米管,并研究反应温度与时间对刻蚀裁短的影响。反应温度越高、时间越长刻蚀裁短效果越明显。对其形貌和结构进行分析,发现碳纳米管的长度变短,部分端帽被打开,管壁内外表面均被刻蚀,结构并没有被破坏。裁短碳纳米管具有好的悬浮稳定性和高比电容。以微波法制备了二氧化锰/裁短碳纳米管复合材料,二氧化锰纳米片能够均匀涂覆在管外表面。该复合材料电极在2mV/s时比电容为475.8F/g。在50mV/s,循环扫描1000圈后,比电容衰减幅度仅为0.8%。
     (2)通过电化学电解法,利用石墨纸制备了褶皱、透明的片状石墨烯。经电化学测试,在20mV/s时,该电极比电容为28.6F/g,等效串联电阻值为6.75。以微波法制备了二氧化锰/石墨烯复合材料,二氧化锰纳米片也均匀涂覆在石墨烯表面。复合材料电极在2mV/s时比电容为357F/g、等效串联电阻值为7.9。在50mV/s,循环扫描1000圈后,比电容衰减幅度为4.5%。
     (3)采用真空微蒸发镀法制备了金属锰/碳化锰/碳纳米管复合材料。金属锰纳米层均匀地涂覆在碳纳米管表面,同时在它们之间出现碳化锰层,形成低电阻欧姆接触。电极在2mV/s时比电容为378.9F/g、等效串联电阻约为5.3、且具有优异的循环性能。
     (4)首次以柔性石墨纸为集流体,采用微波法和电泳沉积技术制备了二氧化锰/碳纳米管/石墨纸柔性薄膜电极。电极未使用粘结剂,并具有柔韧性,在2mV/s时比电容为442.9F/g。在50mV/s时,循环扫描1000圈后,比电容仅衰减1.1%。
     (5)通过电泳沉积和恒电位沉积技术,制备两种聚苯胺基柔性薄膜电极。电极未使用粘结剂,柔韧性更佳。聚苯胺/碳纳米管/石墨纸柔性薄膜电极在20mV/s时比电容为521F/g。在50mV/s,循环扫描1000圈后,比电容衰减幅度为12%;聚苯胺/核壳碳化硅晶须/石墨纸柔性薄膜电极在50mV/s时,比电容为190F/g,循环扫描1000圈后,比电容衰减幅度为9.5%。
There are two kinds of supercapacitors depending on charge storage mechanism,namely electrochemical double layer capacitors and pseudo-capacitors. The former oftenuse carbon-based materials with a high surface area and high conductivity as electrodematerials. Despite they have long cycle-life, a major shortcoming is their low specificcapacitance. On the other hand, the pseudo-capacitorsas use MnO_2/PANI as electrodematerials. They have high theoretical specific capacitances, but, low specific capacitancesare exhibited owing to their intrinsically electronic conductivity and structure.
     The MnO_2(PANI)/carbon-based material composites combine the excellentconducting and mechanical properties of carbon-based materials and highpseudocapacitance property of MnO_2(PANI). However, the actual specific capacitanceand cycle performance is not ideal. There are mainly three problems:(1) the poordispersity of MnO_2/PANI;(2) the large contact resistance of the interface;(3) theunreasonable structure of the electrodes. In order to slove these problems, we developsome active composite electrodes material with high electrochemical performance, suchas MnO_2/short multi-walled carbon nanotubes (s-MWNT) composite electrode,MnO_2/Graphenes (GNs) composite electrode, Manganese(manganous oxide)/manganesecarbide/CNTs (Mn(MnO)/Mn_5C_2/CNTs) electrode, MnO_2-coated CNTs-flexible graphitesheet (FGS) electrode, PANI/CNTs/FGS electrode and PANI/G-βSiCw/FGS electrode.The specific research contents are as follows:
     (1) Selective etching in molten nitrate was used to cut MWNTs. MWNTs were cutinto different lengths by controlling the etching temperature and time. The cuttingproduced s-MWNTs were opened ends and rough surfaces. The present method did notintroduce any more destruction to the intrinsic graphitic structure of MWNTs. Thes-MWNTs formed more stable suspensions than did the pristine MWNTs, and showing anenhancement of the capacitive performance. MnO_2/s-MWNT composite was synthesizedby microwave irradiation. Uniform and conformal MnO_2coatings were formed on thesurfaces of individual s-MWNTs. The specific capacitance of MnO_2/s-MWNT compositewas475.8at2mV/s. After1000cycles at50mV/s, it lossed no more than0.8%of initial capacitance, showing good cycling stability.
     (2) GNs with the thin wrinkled structure were prepared by electrolytic exfoliationfrom FGS. The specific capacitance of GNs electrode was28.6at20mV/s and the EISwas6.75. MnO
     2/GNs composite electrode was synthesized by microwave irradiation.MnO_2coatings were formed on the surfaces of individual GNs. The specific capacitanceof MnO_2/GNs electrode was442.9at2mV/s. After1000cycles at50mV/s, it lossed nomore than4.5%of initial capacitance, showing good cycling stability
     (3)Mn(MnO)/Mn_5C_2/CNTs composite was prepared by vacuum evaporationmethod for supercapacitors. The carbide Mn_5C_2interlayer obtained by in-situ reactionprovided a low-resistance ohmic contact and a strong interface bonding between CNTsand Mn(MnO), and consequently enhanced the conductivity and stability of thecomposite. The Mn(MnO)/Mn_5C_2/CNTs composite displayed maximum specificcapacitance of378.9F/g at2mV/s, and the EIS was5.3. The Mn(MnO)/Mn
     5C2/CNTselectrode also had an excellent cycling stability.
     (4) A flexible electrode was prepared by microwave heating deposition of MnO_2onCNTs followed by electrophoretic deposition of the MnO_2-coated CNTs on an FGS. Auniformly thin nano-scale MnO_2coating was formed on the surface of the CNTs. TheMnO_2-coated CNTs-FGS electrode showed highly capacitive behaviour with a specificcapacitance of442.9F/g at2mV/s. It exhibited an excellent cycling stability with nomore than1.1%capacitance loss after1000cycles at50mV/s.
     (5) Two flexible electrodes were prepared by electrophoretic deposition and directeletrodeposition of polyaniline method. The PANI/CNTs/FGS electrode displayed highspecific capacitances of521F/g at20mV/s and good cycling stability with no more than12%capacitance loss after1000cycles at50mV/s. The PANI/G-βSiCw/FGS electrodedisplayed the specific capacitance as high as190F/g at50mV/s. It exhibited an excellentcycling stability with no more than9.5%capacitance loss after1000cycles at50mV/s.
引文
[1] M. Winter, R. J. Brodd. What are batteries, fuel cells, and supercapacitors?[J]. ChemInform,2004,35(50):4245-4269.
    [2] B. Conway. Electrochemical supercapacitors: scientific fundamentals and technologicalapplications (POD)[M]. Kluwer Academic/plenum. New York,1999.1-200.
    [3] E. Faggioli, P. Rena, V. Danel, et al. Supercapacitors for the energy management of electricvehicles [J]. Journal of Power Sources,1999,84(2):261-269.
    [4] L. Bonnefoi, P. Simon, J. Fauvarque, et al. Electrode compositions for carbon powersupercapacitors [J]. Journal of Power Sources,1999,80(1):149-155.
    [5] W. G. Pell, B. E. Conway, W. A. Adams, et al. Electrochemical efficiency in multipledischarge/recharge cycling of supercapacitors in hybrid EV applications [J]. Journal of PowerSources,1999,80(1):134-141.
    [6] G. Gutmann. Hybrid electric vehicles and electrochemical storage systems-a technology push-pullcouple [J]. Journal of Power Sources,1999,84(2):275-279.
    [7] L. Lam, R. Newnham, H. Ozgun, et al. Advanced design of valve-regulated lead-acid battery forhybrid electric vehicles [J]. Journal of Power Sources,2000,88(1):92-97.
    [8] A. J. Bard, L. R. Faulkner(谷林瑛等译).电化学方法原理及应用[J].北京:化学工监出版杜,1986,373-400.
    [9]李荻.电化学原理[M].北京航空航天大学出版社,1989,59-60.
    [10] D. C. Grahame. The electrical double layer and the theory of electrocapillarity [J]. ChemicalReviews,1947,41(3):441-501.
    [11] A. Pandolfo, A. Hollenkamp. Carbon properties and their role in supercapacitors [J]. Journal ofPower Sources,2006,157(1):11-27.
    [12]查全胜,物理化学.电极过程动力学导论[M].科学出版社,2002,33-44.
    [13]张晶.基于介孔碳载体的高容量超级电容器复合电极材料的制备及性能研究[D];兰州理工大学,2010,3-4.
    [14]朱磊,吴伯荣,陈晖等.超级电容器研究及其应用[J].稀有金属,2003,27(3):385-390.
    [15]李荐,钟晖,钟海云等.超级电容器应用设计[J].电源技术,2004,28(006):388-391.
    [16]张慧妍,韦统振,齐智平.超级电容器储能装置研究[J].电网技术,2006,30(8):92-96.
    [17] P. Wingelaar, J. Duarte, M. Hendrix. Computer controlled linear regulator for characterization ofpolymer electrolyte membrane fuel cells (PEMFC)[C]. Proceedings of the Industrial Electronics,2004IEEE International Symposium on, IEEE,2004:821-826.
    [18] H.-S. Kim, T. Itoh, M. Nishizawa, et al. Microvoltammetric study of electrochemical properties ofa single spherical nickel hydroxide particle [J]. International journal of hydrogen energy,2002,27(3):295-300.
    [19] R. Selander. K, and Baker, I K (1957) The Cave Swallow in Texas [J]. Condor,59:345-363.
    [20] A. M. Fenelon, C. B. Breslin. Polyaniline-coated iron: studies on the dissolution andelectrochemical activity as a function of pH [J]. Surface and Coatings Technology,2005,190(2):264-270.
    [21] T. Girija, M. Sangaranarayanan. Investigation of polyaniline-coated stainless steel electrodes forelectrochemical supercapacitors [J]. Synthetic Metals,2006,156(2):244-250.
    [22] K. G. Conroy, C. B. Breslin. The electrochemical deposition of polyaniline at pure aluminium:electrochemical activity and corrosion protection properties [J]. Electrochimica Acta,2003,48(6):721-732.
    [23] H. Guo, Q. Gao. Porous carbon synthesized through chemical vapor deposition of ferrocene andits electrochemical capacitance behavior [J]. Rare Metals,2011,30:35-37.
    [24] H. Kim, M. E. Fortunato, H. Xu, et al. Carbon Microspheres as Supercapacitors [J]. The Journalof Physical Chemistry C,2011,115(42):20481-20486.
    [25] F. Du, D. Yu, L. Dai, et al. Preparation of tunable3D pillared carbon nanotube-graphene networksfor high-performance capacitance [J]. Chemistry of Materials,2011,23(21):4810-4816.
    [26] P. Yu, X. Zhang, Y. Chen, et al. Preparation and pseudo-capacitance of birnessite-type MnO2nanostructures via microwave-assisted emulsion method [J]. Materials Chemistry and Physics,2009,118(2):303-307.
    [27] Y.-j. Yang, E.-h. Liu, L.-m. Li, et al. Nanostructured amorphous MnO2prepared by reaction ofKMnO4with triethanolamine [J]. Journal of Alloys and Compounds,2010,505(2):555-559.
    [28] J. Wei, N. Nagarajan, I. Zhitomirsky. Manganese oxide films for electrochemical supercapacitors[J]. Journal of materials processing technology,2007,186(1):356-361.
    [29] X.-M. Liu, X.-G. Zhang, S.-Y. Fu. Preparation of urchinlike NiO nanostructures and theirelectrochemical capacitive behaviors [J]. Materials Research Bulletin,2006,41(3):620-627.
    [30] F.-b. Zhang, Y.-k. Zhou, H.-l. Li. Nanocrystalline NiO as an electrode material forelectrochemical capacitor [J]. Materials Chemistry and Physics,2004,83(2):260-264.
    [31]王兴磊,何宽新,张校刚.层状Co3O4的制备及其电化学电容行为[J].无机化学学报,2006,22:1019-1022
    [32] V. Shinde, S. Mahadik, T. Gujar, et al. Supercapacitive cobalt oxide (Co3O4) thin films by spraypyrolysis [J]. Applied Surface Science,2006,252(20):7487-7492.
    [33] Y. Cao, T. E. Mallouk. Morphology of template-grown polyaniline nanowires and its effect on theelectrochemical capacitance of nanowire arrays [J]. Chemistry of Materials,2008,20(16):5260-5265.
    [34] K. S. Ryu, S. K. Jeong, J. Joo, et al. Polyaniline doped with dimethyl sulfate as a nucleophilicdopant and its electrochemical properties as an electrode in a lithium secondary battery and aredox supercapacitor [J]. The Journal of Physical Chemistry B,2007,111(4):731-739.
    [35] S. I. Cho, S. B. Lee. Fast electrochemistry of conductive polymer nanotubes: synthesis,mechanism, and application [J]. Accounts of chemical research,2008,41(6):699-707.
    [36] S. Sadki, P. Schottland, N. Brodie, et al. The mechanisms of pyrrole electropolymerization [J].Chem Soc Rev,2000,29(5):283-293.
    [37] R. Waltman, J. Bargon. Electrically conducting polymers: a review of the electropolymerizationreaction, of the effects of chemical structure on polymer film properties, and of applicationstowards technology [J]. Canadian journal of chemistry,1986,64(1):76-95.
    [38] V. Gupta, N. Miura. Electrochemically Deposited Polyaniline Nanowire’s Network AHigh-Performance Electrode Material for Redox Supercapacitor [J]. Electrochemical andSolid-State Letters,2005,8(12): A630-A632.
    [39] V. Gupta, N. Miura. High performance electrochemical supercapacitor from electrochemicallysynthesized nanostructured polyaniline [J]. Materials Letters,2006,60(12):1466-1469.
    [40] R. Sharma, A. Rastogi, S. Desu. Pulse polymerized polypyrrole electrodes for high energy densityelectrochemical supercapacitor [J]. Electrochemistry Communications,2008,10(2):268-272.
    [41]江奇,瞿美臻,张伯兰等.电化学超级电容器电极材料的研究进展[J].无机材料学报,2002,17(4):649-656.
    [42] E. Frackowiak, F. Beguin. Carbon materials for the electrochemical storage of energy incapacitors [J]. Carbon,2001,39(6):937-950.
    [43]侯朝辉,李新海,刘恩辉等.同步合成模板炭化法制备双电层电容器电极用中孔炭材料的研究[J].新型炭材料,2004,19(1):11-15.
    [44] S. Yoon, J. Lee, T. Hyeon, et al. Electric double-layer capacitor performance of a newmesoporous carbon [J]. Journal of The Electrochemical Society,2000,147(7):2507-2512.
    [45]何月德,刘洪波.活化剂用量对无烟煤基高比表面积活性炭电容特性的影响[J].新型炭材料,2002,17(4):18-22.
    [46]文越华,曹高萍,程杰等.纳米孔玻态炭一超级电容器的新型电极材料[J].新型炭材料,2003,18(3):219-224.
    [47] C. Niu, E. K. Sichel, R. Hoch, et al. High power electrochemical capacitors based on carbonnanotube electrodes [J]. Applied Physics Letters,1997,70(11):1480-1482.
    [48] M. Kaempgen, C. K. Chan, J. Ma, et al. Printable thin film supercapacitors using single-walledcarbon nanotubes [J]. Nano Letters,2009,9(5):1872-1876.
    [49] F. Picó, J. Rojo, M. Sanjuan, et al. Single-walled carbon nanotubes as electrodes insupercapacitors [J]. Journal of The Electrochemical Society,2004,151(6): A831-A837.
    [50] X. Ji, R. O. Kadara, J. Krussma, et al. Understanding the physicoelectrochemical properties ofcarbon nanotubes: current state of the art [J]. Electroanalysis,2009,22(1):7-19.
    [51] D. Park, Y. Hoon Kim, J. Kee Lee. Synthesis of carbon nanotubes on metallic substrates by asequential combination of PECVD and thermal CVD [J]. Carbon,2003,41(5):1025-1029.
    [52] P. Sharma, P. Ahuja. Recent advances in carbon nanotube-based electronics [J]. MaterialsResearch Bulletin,2008,43(10):2517-2526.
    [53] C. Emmenegger, P. Mauron, A. Züttel, et al. Carbon nanotube synthesized on metallic substrates[J]. Applied Surface Science,2000,162(452-456.
    [54]王敏炜,李凤仪.碳纳米管-新型的催化剂载体[J].新型炭材料,2002,17(3):75-79.
    [55] P. Serp, M. Corrias, P. Kalck. Carbon nanotubes and nanofibers in catalysis [J]. Applied CatalysisA: General,2003,253(2):337-358.
    [56] J. Li, C. Papadopoulos, J. Xu, et al. Highly-ordered carbon nanotube arrays for electronicsapplications [J]. Applied Physics Letters,1999,75(3):367-369.
    [57] S. M. Yoon, J. Chae, J. S. Suh. Comparison of the field emissions between highly ordered carbonnanotubes with closed and open tips [J]. Applied Physics Letters,2004,84(5):825-827.
    [58] C.-T. Hsieh, J.-M. Chen, R.-R. Kuo, et al. Fabrication of well-aligned carbon nanofiber array andits gaseous-phase adsorption behavior [J]. Applied Physics Letters,2004,84(7):1186-1188.
    [59] N. Grossiord, J. Loos, L. Van Laake, et al. High-conductivity polymer nanocomposites obtainedby tailoring the characteristics of carbon nanotube fillers [J]. Advanced Functional Materials,2008,18(20):3226-3234.
    [60] C. Klumpp, K. Kostarelos, M. Prato, et al. Functionalized carbon nanotubes as emergingnanovectors for the delivery of therapeutics [J]. Biochimica et Biophysica Acta(BBA)-Biomembranes,2006,1758(3):404-412.
    [61] K. J. Ziegler, Z. Gu, J. Shaver, et al. Cutting single-walled carbon nanotubes [J]. Nanotechnology,2005,16(7): S539-S544.
    [62] S. Wang, R. Liang, B. Wang, et al. Dispersion and thermal conductivity of carbon nanotubecomposites [J]. Carbon,2009,47(1):53-57.
    [63] Y. Liu, L. Gao, J. Sun, et al. A multi-step strategy for cutting and purification of single-walledcarbon nanotubes [J]. Carbon,2007,45(10):1972-1978.
    [64] J. Lee, S. Kim. Manufacture of a nanotweezer using a length controlled CNT arm [J]. Sensors andActuators A: Physical,2005,120(1):193-198.
    [65] N. Pierard, A. Fonseca, J.-F. Colomer, et al. Ball milling effect on the structure of single-wallcarbon nanotubes [J]. Carbon,2004,42(8):1691-1697.
    [66]A. K. Singh, X.-m. Hou, K.-C. Chou. The oxidation kinetics of multi-walled carbon nanotubes [J].Corrosion Science,2010,52(5):1771-1776.
    [67] C. Kim, B. Lim, B. Kim, et al. Strengthening of copper matrix composites by nickel-coatedsingle-walled carbon nanotube reinforcements [J]. Synthetic Metals,2009,159(5):424-429.
    [68] Y. Li, X. Zhang, J. Luo, et al. Purification of CVD synthesized single-wall carbon nanotubes bydifferent acid oxidation treatments [J]. Nanotechnology,2004,15(11):1645.
    [69] P.-X. Hou, C. Liu, H.-M. Cheng. Purification of carbon nanotubes [J]. Carbon,2008,46(15):2003-2025.
    [70]丛秋滋,欧阳明安,王毅等.天然石墨的组成和结构研究[J].摩擦学学报,1992,12(3):275-284.
    [71] T. J. Aitchison, M. Ginic-Markovic, J. G. Matisons, et al. Purification, cutting, and sidewallfunctionalization of multiwalled carbon nanotubes using potassium permanganate solutions [J].The Journal of Physical Chemistry C,2007,111(6):2440-2446.
    [72] P. M. Ueland, P. I. Holm, S. Hustad. Betaine: a key modulator of one-carbon metabolism andhomocysteine status [J]. Clinical Chemical Laboratory Medicine,2005,43(10):1069-1075.
    [73] K. Novoselov, A. Geim, S. Morozov, et al. Electric field effect in atomically thin carbon films [J].science,2004,306(5696):666-669.
    [74] D. F. Perepichka, F. Rosei. Chemistry. Extending polymer conjugation into the second dimension[J]. Science (New York, NY),2009,323(5911):216.
    [75]M. Pumera. Graphene-based nanomaterials for energy storage [J]. Energy Environ Sci,2010,4(3):668-674.
    [76] M. Pumera. Graphene-based nanomaterials and their electrochemistry [J]. Chemical SocietyReviews,2010,39(11):4146-4157.
    [77] A. Davies, A. Yu. Material advancements in supercapacitors: From activated carbon to carbonnanotube and graphene [J]. The Canadian Journal of Chemical Engineering,2011,89(6):1342-1357.
    [78] K. R. Ratinac, W. Yang, J. J. Gooding, et al. Graphene and related materials in electrochemicalsensing [J]. Electroanalysis,2011,23(4):803-826.
    [79]温祝亮,杨苏东,宋启军等.石墨烯负载高活性Pd催化剂对乙醇的电催化氧化[J].物理化学学报,2010,26(6):1570-1157.
    [80] M. Pumera, A. Ambrosi, A. Bonanni, et al. Graphene for electrochemical sensing and biosensing[J]. TrAC Trends in Analytical Chemistry,2010,29(9):954-965.
    [81]傅强,包信和.石墨烯的化学研究进展[J].科学通报,2009,54(18):2657-2666.
    [82] Y. Chen, X. Zhang, D. Zhang, et al. High performance supercapacitors based on reducedgraphene oxide in aqueous and ionic liquid electrolytes [J]. Carbon,2011,49(2):573-580.
    [83] S. Vivekchand, C. S. Rout, K. Subrahmanyam, et al. Graphene-based electrochemicalsupercapacitors [J]. Journal of Chemical Sciences,2008,120(1):9-13.
    [84] Y. Zhu, S. Murali, M. D. Stoller, et al. Carbon-based supercapacitors produced by activation ofgraphene [J]. science,2011,332(6037):1537-1541.
    [85] X. Kang, J. Wang, H. Wu, et al. A graphene-based electrochemical sensor for sensitive detectionof paracetamol [J]. Talanta,2010,81(3):754-759.
    [86]王霖,田林海,尉国栋等.石墨烯外延生长及其器件应用研究进展[J].无机材料学报,2011,26(10):1009-1019.
    [87]袁小亚.石墨烯的制备研究进展[J].无机材料学报,2011,26(6):561-570.
    [88] Q. Cheng, J. Tang, J. Ma, et al. Graphene and nanostructured MnO2composite electrodes forsupercapacitors [J]. Carbon,2011,49(9):2917-2925.
    [89] J. Yan, Z. Fan, T. Wei, et al. Fast and reversible surface redox reaction of graphene-MnO2composites as supercapacitor electrodes [J]. Carbon,2010,48(13):3825-3833.
    [90] S. Chen, J. Zhu, X. Wu, et al. Graphene Oxide-MnO2Nanocomposites for Supercapacitors [J].Acs Nano,2010,4(5):2822-2830.
    [91] D.-W. Wang, F. Li, J. Zhao, et al. Fabrication of graphene/polyaniline composite paper via in situanodic electropolymerization for high-performance flexible electrode [J]. Acs Nano,2009,3(7):1745-1752.
    [92] J. Lu, J.-x. Yang, J. Wang, et al. One-pot synthesis of fluorescent carbon nanoribbons,nanoparticles, and graphene by the exfoliation of graphite in ionic liquids [J]. Acs Nano,2009,3(8):2367-2375.
    [93] J. C. Meyer, A. Geim, M. Katsnelson, et al. The structure of suspended graphene sheets [J].Nature,2007,446(7131):60-63.
    [94] Y. Gamo, A. Nagashima, M. Wakabayashi, et al. Atomic structure of monolayer graphite formedon Ni (111)[J]. Surface Science,1997,374(1):61-64.
    [95] K. Wu, W. Chen, J. Hwang, et al. Structure modification of highly ordered pyrolytic graphite byAr plasma beam scanning at different incident angles [J]. Applied Physics A: Materials Science&Processing,2009,95(3):707-712.
    [96] Z. Li, C. Lu, Z. Xia, et al. X-ray diffraction patterns of graphite and turbostratic carbon [J].Carbon,2007,45(8):1686-1695.
    [97] H. Nishihara, H. Harada, M. Tateishi, et al. New approach to graphite synthesis: electrochemicalcarbonization of hexachlorobuta-1,3-diene [J]. J Chem Soc, Faraday Trans,1991,87(8):1187-1192.
    [98] K. Luo, X. Guo, N. Shi, et al. Synthesis and characterization of core–shell nanocomposites ofpolyaniline and carbon black [J]. Synthetic Metals,2005,151(3):293-296.
    [99]文潮,李迅,孙德玉等.炸药爆轰法制备的纳米石墨粉的拉曼光谱[J].光谱学与光谱分析,2005,25(1):54-57.
    [100]常建平,薛理辉.碳素墨迹中石墨粒度的Raman光谱研究[J].武汉工业大学学报,2000,4:25-27.
    [101] Y. Wong, W. Kang, J. Davidson, et al. Performance enhancement of carbon nanotubes vacuumfield emission triode amplifier by post-synthesis treatment [J]. Diamond and related materials,2007,16(4):1403-1407.
    [102] S. Reich, C. Thomsen. Raman spectroscopy of graphite [J]. Philosophical Transactions of theRoyal Society of London Series A: Mathematical, Physical and Engineering Sciences,2004,362(1824):2271-2288.
    [103] A. C. Ferrari, J. Robertson. Raman spectroscopy of amorphous, nanostructured, diamond–likecarbon, and nanodiamond [J]. Philosophical Transactions of the Royal Society of London SeriesA: Mathematical, Physical and Engineering Sciences,2004,362(1824):2477-2512.
    [104] F. Mata-Perez, J. F. Perez-Benito. Identification of the product from the reduction ofpermanganate ion by trimethylamine in aqueous phosphate buffers [J]. Canadian journal ofchemistry,1985,63(4):988-992.
    [105] H.-S. Nam, J.-K. Yoon, J. M. Ko, et al. Electrochemical capacitors of flower-like and nanowirestructured MnO2by a sonochemical method [J]. Materials Chemistry and Physics,2010,123(1):331-336.
    [106] M.-W. Xu, W. Jia, S.-J. Bao, et al. Novel mesoporous MnO2for high-rate electrochemicalcapacitive energy storage [J]. Electrochimica Acta,2010,55(18):5117-5122.
    [107] X. He, M. Yang, P. Ni, et al. Rapid synthesis of hollow structured MnO2microspheres and theircapacitance [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2010,363(1):64-70.
    [108] H. Xia, Y. Wang, J. Lin, et al. Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNTcore/porous MnO2sheath hierarchy architecture for supercapacitors [J]. Nanoscale ResearchLetters,2012,7(1):33.
    [109] A. T. Mutlu. Characterization of CNTs and CNTs/MnO2composite for supercapacitorapplication [J].2010,
    [110] F. Teng, S. Santhanagopalan, Y. Wang, et al. In-situ hydrothermal synthesis of three-dimensionalMnO2-CNT nanocomposites and their electrochemical properties [J]. Journal of Alloys andCompounds,2010,499(2):259-264.
    [111] S.-B. Ma, K.-Y. Ahn, E.-S. Lee, et al. Synthesis and characterization of manganese dioxidespontaneously coated on carbon nanotubes [J]. Carbon,2007,45(2):375-382.
    [112] D. Dubal, D. Dhawale, R. Salunkhe, et al. A novel chemical synthesis of Mn3O4thin film and itsstepwise conversion into birnessite MnO2during super capacitive studies [J]. Journal ofElectroanalytical Chemistry,2010,647(1):60-65.
    [113] B. Djurfors, J. Broughton, M. Brett, et al. Electrochemical Oxidation of Mn/MnO Films:Mechanism of Porous Film Growth [J]. Journal of The Electrochemical Society,2006,153(1):A64-A68.
    [114] C. Meng, C. Liu, L. Chen, et al. Highly flexible and all-solid-state paperlike polymersupercapacitors [J]. Nano Letters,2010,10(10):4025-4031.
    [115] J. Yan, Z. Fan, T. Wei, et al. Carbon nanotube/MnO2composites synthesized bymicrowave-assisted method for supercapacitors with high power and energy densities [J]. Journalof Power Sources,2009,194(2):1202-1207.
    [116] X. Xie, L. Gao. Characterization of a manganese dioxide/carbon nanotube composite fabricatedusing an in situ coating method [J]. Carbon,2007,45(12):2365-2373.
    [117] A. Zolfaghari, F. Ataherian, M. Ghaemi, et al. Capacitive behavior of nanostructured MnO2prepared by sonochemistry method [J]. Electrochimica Acta,2007,52(8):2806-2814.
    [118] M. Ghaemi, F. Ataherian, A. Zolfaghari, et al. Charge storage mechanism of sonochemicallyprepared MnO2as supercapacitor electrode: Effects of physisorbed water and proton conduction[J]. Electrochimica Acta,2008,53(14):4607-4614.
    [119] V. Presser, L. Zhang, J. J. Niu, et al. Flexible nano-felts of carbide-derived carbon with ultra-highpower handling capability [J]. Advanced Energy Materials,2011,1(3):423-430.
    [120] S.-L. Chou, J.-Z. Wang, S.-Y. Chew, et al. Electrodeposition of MnO2nanowires on carbonnanotube paper as free-standing, flexible electrode for supercapacitors [J]. ElectrochemistryCommunications,2008,10(11):1724-1727.
    [121] A. E. Fischer, M. P. Saunders, K. A. Pettigrew, et al. Electroless deposition of nanoscale MnO2on ultraporous carbon nanoarchitectures: correlation of evolving pore-solid structure andelectrochemical performance [J]. Journal of The Electrochemical Society,2008,155(3):A246-A252.
    [122] G. Lv, D. Wu, R. Fu. Preparation and electrochemical characterizations of MnO2-dispersedcarbon aerogel as supercapacitor electrode material [J]. Journal of Non-Crystalline Solids,2009,355(50):2461-2465.
    [123] G.-R. Li, Z.-P. Feng, Y.-N. Ou, et al. Mesoporous MnO2/carbon aerogel composites as promisingelectrode materials for high-performance supercapacitors [J]. Langmuir,2010,26(4):2209-2213.
    [124] H. Zhang, G. Cao, Z. Wang, et al. Growth of manganese oxide nanoflowers on vertically-alignedcarbon nanotube arrays for high-rate electrochemical capacitive energy storage [J]. Nano Letters,2008,8(9):2664-2668.
    [125] Z. Fan, Z. Qie, T. Wei, et al. Preparation and characteristics of nanostructured MnO2/MWCNTsusing microwave irradiation method [J]. Materials Letters,2008,62(19):3345-3348.
    [126] Y. Lei, C. Fournier, J.-L. Pascal, et al. Mesoporous carbon-manganese oxide composite asnegative electrode material for supercapacitors [J]. Microporous and Mesoporous Materials,2008,110(1):167-176.
    [127] L. L. Zhang, T. Wei, W. Wang, et al. Manganese oxide-carbon composite as supercapacitorelectrode materials [J]. Microporous and Mesoporous Materials,2009,123(1):260-267.
    [128] Y. Qian, S. Lu, F. Gao. Preparation of MnO2/graphene composite as electrode material forsupercapacitors [J]. Journal of materials science,2011,46(10):3517-3522.
    [129] R. Amade, E. Jover, B. Caglar, et al. Optimization of MnO2/vertically aligned carbon nanotubecomposite for supercapacitor application [J]. Journal of Power Sources,2011,196(13):5779-5783.
    [130] Y. Wang, I. Zhitomirsky. Electrophoretic deposition of manganese dioxide-multiwalled carbonnanotube composites for electrochemical supercapacitors [J]. Langmuir,2009,25(17):9684-9689.
    [131]何忠效,生物技术,张树政.电泳[M].科学出版社,1990,296-298.
    [132] S. W. Lee, J. Kim, S. Chen, et al. Carbon nanotube/manganese oxide ultrathin film electrodes forelectrochemical capacitors [J]. Acs Nano,2010,4(7):3889-3896.
    [133] T. Brousse, M. Toupin, R. Dugas, et al. Crystalline MnO2as possible alternatives to amorphouscompounds in electrochemical supercapacitors [J]. Journal of The Electrochemical Society,2006,153(12): A2171-A2180.
    [134] C. Du, J. Yeh, N. Pan. High power density supercapacitors using locally aligned carbon nanotubeelectrodes [J]. Nanotechnology,2005,16(4):350.
    [135] L. Ci, S. M. Manikoth, X. Li, et al. Ultrathick freestanding aligned carbon nanotube films [J].Advanced Materials,2007,19(20):3300-3303.
    [136] M. Deng, B. Yang, Y. Hu. Polyaniline deposition to enhance the specific capacitance of carbonnanotubes for supercapacitors [J]. Journal of materials science,2005,40(18):5021-5023.
    [137] H. Wang, Q. Hao, X. Yang, et al. Graphene oxide doped polyaniline for supercapacitors [J].Electrochemistry Communications,2009,11(6):1158-1161.
    [138]杨红生,周啸,张庆武.以多层次聚苯胺颗粒为电极活性物质的超级电容器的电化学性能[J].物理化学学报,2005,21(4):414-418.
    [139]李晶,赖延清,李颉等.导电聚苯胺电极材料在超级电容器中的应用及研究进展[J].材料导报,2007,20(12):20-23.
    [140] C. Liu, Z. Yu, D. Neff, et al. Graphene-based supercapacitor with an ultrahigh energy density [J].Nano Letters,2010,10(12):4863-4868.
    [141] M. N. Hyder, S. W. Lee, F. C. Cebeci, et al. Layer-by-Layer assembled polyanilinenanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storageapplications [J]. Acs Nano,2011,5(11):8552-8561.
    [142] Y.-k. Zhou, B.-l. He, W.-j. Zhou, et al. Electrochemical capacitance of well-coated single-walledcarbon nanotube with polyaniline composites [J]. Electrochimica Acta,2004,49(2):257-262.
    [143] V. Gupta, N. Miura. Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites forhigh performance supercapacitors [J]. Electrochimica Acta,2006,52(4):1721-1726.
    [144] C. Peng, S. Zhang, D. Jewell, et al. Carbon nanotube and conducting polymer composites forsupercapacitors [J]. Progress in Natural science,2008,18(7):777-788.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700