液压挖掘机回转制动能量回收系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以液压蓄能器为储能元件的辅助式能量回收系统实现液压挖掘机回转制动能量的回收与再利用,是当前国内外工程机械领域的发展前沿课题。挖掘机作业时回转操作包含起动加速、匀速、减速制动三个连续的过程,其中在减速制动过程中能进行制动能量的回收。技术实现难点为:对减速制动阶段进入和终止的判定,在起动加速阶段液压储能器能量释放的控制。
     挖掘机回转制动能量回收液压辅助系统基于现有传统23吨级挖掘机平台展开研究。在不影响平台布局稳定性和尽可能少改动原有部件布置的前提下,提出了一种基于回转马达进/出口压力差实现回转马达起动加速与减速制动模式过程的液压自动识别与判断,决策系统进行制动能量回收的全液压自动控制系统。以蓄能器SOP(state of pressure)、液压泵出口压力与负流量反馈压力为输入信号,根据回转液压系统的实时需求功率,提出一种基于复合恒功率+负流量动力控制与正态分布函数的能量分配方法,综合决策液压泵与蓄能器两个主/辅动力源之间的能量分配比例,并保证挖掘机回转的操作习惯与性能。为保证控制器参数的合理性以及系统最高的节能率,引入了遗传算法对系统能量分配控制参数进行全局优化。结果表明,在回转转台单执行机构工作时,采用回转制动能量回收系统的液压挖掘机,能够实现再生制动能量回收利用率在50%左右,在同一工况下比同吨位挖掘机的节能率达到21%以上。
Utilizing hydraulic accumulator based assistant energy recovery system is the key research program in the engineering machinery at home and abroad, which could achieve energy recycle and reuse during hydraulic excavator swing stage. Once the excavator starts to swing, it contains three continue phases as follows:start-up acceleration, constant speed, and braking deceleration. And partial energy could be recycled in braking deceleration phase. The technical difficulties are listed below:switch conditions of entering and exiting braking deceleration phase, energy release control in hydraulic accumulator in start-up acceleration phase.
     The swing braking energy recovery research is based on the traditional 23-ton excavator platform. No impacts on the platform layout stability and less change to the original system layout as premises, an automatic hydraulic-controlled braking energy recovery system was proposed which can automatically identify the swing stage by the pressure difference between inlet and outlet of the swing pump and determining distribution algorithm of the recovering energy. The state of pressure(SOP) of the accumulator, the outlet pressure of the hydraulic pump and the feedback pressure from negative-flow control were considered as inputs. According to the real-time required power of the swing hydraulic system, the energy distribution algorithm along with one normal school function were proposed based on the comprehensive constant-power negative-flow control. It distributes energy ratio between the main power source and the auxiliary power source (that is engine and accumulator). And it ensures the normal operation of the swing mechanism. To gain better system efficiency and more suitable parameter settings in the controller, the genetic optimization algorithm was utilized to optimize the system energy distribution parameters globally. Results show that the hydraulic excavator equipped with the swing recovery system can achieve more than 21% energy saving compared with the baseline under the same working condition, and the overall chain efficiency from the total braking energy to the terminal swing mechanism is as much as 50.0% approximately while the swing is utilized as the actuator alone.
引文
[1]喻向阳,杨兰,孙君.中国挖掘机械行业年会:西部成挖掘机市场最大增长点[EB/OL].[2011-11-30].http://hn.rednet.cn/c/2011/11/30/2446765.htm.
    [2]高峰.液压挖掘机节能控制技术的研究[D]:[博士学位论文].杭州,浙江大学,2002,54-82.
    [3]夏兆沂,刘崇.小型液压挖掘机的节能设计[J].建筑机械化.2009(11):56-58.
    [4]任小青.液压挖掘机节能技术的发展综述[J].机床与液压.2009(8):248-250.
    [5]Takao N, Etsujiro I, Masayuki K. Power Simulation on the Actual Operation in Hybrid Excavator[J]. JSAE(Society of Automotive Engineers of Japan) Annual Congress.2003(86): 13-18.
    [6]郭刚,龚烈航.电液比例技术在液压挖掘机中的应用[J].建设机械技术与管理.1998(6):24-25.
    [7]刘琛,陈世教,洪昌银.现代全液压挖掘机多路阀的功能[J].重庆建筑大学学报.1999(3):23-25.
    [8]高峰,潘双夏.负流量控制模型与试验研究[J].机械工程学报.2005(7):107-111.
    [9]高峰,潘双夏.液压挖掘机负流量负荷传感控制策略[J].农业机械学报.2005(7):111-113.
    [10]Nakamura, Kazunori(Ibaraki-Ken). Engine control system for construction machine: US,6021756[P].2000-02-08.
    [11]刘彪,王立德,申萍等.内燃机车电控喷油系统模拟计算与实验[J].铁道学报.2008(5):25-30.
    [12]Bulter K L, Stavens K M. A versatile computer simulation tool for design and analysis of electric and hybrid drive trains[J]. Society of Automatic Engineers:970199.
    [13]Stefano B, Carmine M, Andrea P.A control strategy to minimize fuel consumption of series hybrid electric vehicles[J]. IEEE Trans. Energy Conversion.2004,19(1):187-195.
    [14]Morteza M, Amir P, Babak G. Application of genetic algorithm for optimization of control strategy in parallel hybrid electric vehicles[J].Jourrrnnnal of the Franklin Institute. 2006(343):420-435.
    [15]Delprat S,Guerra T M,Rimaux J.Optimal control of a parallel powertrain:from global optimization to real time control strategy[C]. Proc.18th Int. Electr. Vehicle Symp.,Berlin,Germany,Oct.:2001.
    [16]Pyung-Hun C, Soo-Jin L. A straight-line motion tracking control of hydraulic excavator system[J]. Mechatronics.2002,12:119-138.
    [17]Jorge M, Micah E O, Juan W D. Energy-management system for a hybrid electric vehicle,using ultracapacitors and neural networks[J]. IEEE Trans. Industrial Electronics. 2006,53(2):614-623.
    [18]赵丁选,陈明东,戴群亮等.油液混合动力液压挖掘机动臂势能回收系统[J].吉林大学学报(工学版).2011(S1):150-154.
    [19]Takao N, Etsujiro I, Masayuki K. Power simulation for energy saving in hybrid excavator[J]. Transaction of Society of Automotive Engineers of Japan.2004,35(4):101-106.
    [20]裴磊.混合动力挖掘机势能回收系统的研究[D]:[硕士学位论文].杭州,浙江大学,2008,29-31.
    [21]张敏杰.油液混合动力挖掘机动力系统研究[D]:[硕士学位论文].杭州,浙江大学,2010,29-36.
    [22]姜继海.液驱及电动混合动力在挖掘机的运用(上)[J].建设机械技术与管理.2010(10):72-74.
    [23]邓自刚,王家素,王素玉等.高温超导飞轮储能技术发展现状[J].电工技术学报.2008(12):1-10.
    [24]Gogoana M V, Whittaker J B. Hydraulic energy accumulator:US,912991[P]. 2010-10-27[2011-02-24].
    [25]刘海昌,姜继海.飞轮储能型二次调节流量耦联系统[J].华南理工大学学报(自然科学版).2009(4):75-79.
    [26]秦俊伟,张宝林.汽车新节能技术的展望[J].交通节能与环保.2006(1):36-38.
    [27]王卡,万里翔,尹怀仙.汽车制动能量回收系统的节能分析[J].交通节能与环保.2008(2):32-35.
    [28]Dongyun Wang, Cheng Guan, Shuangxia Pan, et al. Performance analysis of hydraulic excavator powertrain hybridization[J].Automation in Construction.2009,18(3):249-257.
    [29]Xiao Lin, Shuangxia Pan, Dongyun Wang. Dynamic simulation and optimal control strategy for a parallel hybrid hydraulic excavator[J].Journal of Zhejiang University SCIENCE A., 9(5):624-632.
    [30]Takao N, Etsujiro I, Kazuhiro O, et al. Simulation and Evaluation Technique for Power System and Related Energy Saving on Hydraulic Excavator[J]. Kobelco technology review. 2007,27:28-34.
    [31]Qing Xiao, Qingfeng Wang, Yanting Zhang. Control strategies of power system in hybrid hydraulic excavator[J]. Automation in Construction.2008,17(4):361-367.
    [32]Glenn B, Washington G, Rizzoni G. Operation and control strategies for hybrjd electric automobiles[J].SAE transactions.2000-01-1537.
    [33]肖清,王庆丰,张彦廷等.液压挖掘机混合动力系统建模及控制策略研究[J].浙江大学学报(工学版).2007(3):480-483.
    [34]王冬云,潘双夏,林潇等.基于混合动力技术的液压挖掘机节能方案研究[J].计算机集成制造系统.2009(1):188-196.
    [35]陆敏恂,李梦如,李万莉等.新型液压能量回收绞车试验台的设计研究[J].同济大学学报(自然科学版).2009(7):964-968.
    [36]赵俊,邓斌,柯坚.变量泵试验中的变工况能量回收技术研究[J].机床与液压.2007(9):151-152.
    [37]田联房,于慈远,李尚义等.能量回收技术在液压系统中的应用[J].工程机械.1997(4):31-32.
    [38]Schulze M, Kunze T. High demand for the secondary control-Dresden University of universal test-bed[J]. Rexroth Information Quarterly.1995,1:7-9.
    [39]李翔晟,常思勤.新型电控液驱车辆储能元件特性分析[J].中国机械工程.2007(10):1244-1247.
    [40]董宏林,姜继海,吴盛林.液压变压器与液压蓄能器串联使用的优化条件及能量回收研究[J].中国机械工程.2003(3),192-195.
    [41]林建杰,徐兵,杨华勇.配置蓄能器的变频驱动液压电梯能耗特性研究[J].机械工程学报.2003(7):63-67.
    [42]徐兵,林建杰,杨华勇等.液压电梯中的能量回收技术[J].液压与气动.2004(6):72-74.
    [43]Bing X, Jian Y, Huayong Y. Comparison of energy-saving on the speed control of the VVVF hydraulic elevator with and without the pressure accumulator[J]. Mechatronics.2005, 15(Issue 10).
    [44]魏英俊.液驱混合动力SUV制动能量回收研究[J].农业机械学报.2007(8):26-29.
    [45]Ping T S, Li P Y. Analysis and control design of a hydro-mechanical hydraulic hybrid passenger vehicle[C].2010.1579-1586.
    [46]Stelson K A, Meyer J J, Alleyne A G, et al. Optimization of a passenger hydraulic hybrid vehicle to improve fuel economy [C]. Proceedings of the 7th JFPS International, Symposium on Fluid Power,TOYAMA,2008:143-148.
    [47]Green Car Congress. Hydraulic Hybrid[EB/OL]. http://www.greencarcongress.com/ hydraulichybrid/index.html.
    [48]US Environment Protection Agency. Hydraulic hybrid technology-a proven approach[[EB/OL]. http://www.epa. ov/otaq/Technology/420f04024.pdf[J].2004.
    [49]Institute for the Analysis Security. EPA displays the first advanced hydraulic hybrid vehicle[EB/OL].http://www.iags.org/n033104t3.htm[J].2006.
    [50]陈杰.交大神舟-液压混合动力公交车”专家“[J].城市车辆.2008(2):16-17.
    [51]杜玖玉,苑士华,魏超等.车辆液压混合动力传动技术发展及应用前景[J].机床与液压.2009(2):181-184.
    [52]Malthew B. Hydraulic hybrids-cost effective clean urban vehicles[C]. Washington:US Environmental Protection Agency,2006.
    [53]Jackey R, Smith P, Bloxham S. Physical System Model of a Hydraulic Energy Storage Device for Hybrid Powertrain Applications [J]. SAE Paper.2009:2001-2005.
    [54]同济大学编.单斗液压挖掘机[M].2版.北京:中国建筑工业出版社1986,143-151,205-213.
    [55]黄宗益,范基,叶伟.挖掘机回转液压操纵回路(一)[J].建筑机械化.2004(1):55-57.
    [56]黄宗益,范基,叶伟.挖掘机回转液压操纵回路(二)[J].建筑机械化.2004(2):62-64.
    [57]赵岩.并联液压混合动力汽车制动系统建模和仿真研究[D].吉林大学,2009.
    [58]张彦廷,王庆丰,肖清.液压驱动惯性系统能量回收的节能试验研究[J].机床与液压.2007(7):91-92.
    [59]于安才,姜继海.液压混合动力挖掘机回转装置控制方式的研究[J].西安交通大学学报.2011(7):30-33.
    [60]Morteza M, Amir P, Babak G. Application of genetic algorithm for optimization of control strategy in parallel hybrid electric vehicles[J]. Jourrrnnnal of the Franklin Institute. 2006(343):420-435.
    [61]Stelson K A, Meyer J J, Alleyne A G. Optimization of a passenger hydraulic hybrid vehicle to improve fuel economy [J]. Proceedings of the 7th JFPS International, Symposium on Fluid Power.2008(9):143-148.
    [62]林潇,管成,潘双夏等.并联式混合动力液压挖掘机参数匹配方法[J].农业机械学报.2009(6):28-32.
    [63]代鑫,张承宁,梁新成.混合动力液压挖掘机能量回收系统仿真研究[J].北京工商大学学报(自然科学版).2010(1):43-47.
    [64]Nakazawa N, Kono Y, Takao E. Development of a braking energy regeneration system for city buses [J]. SAE transactions.1987,96(4):1050-1060.
    [65]Michael F. L. De Volder, Reynaerts Dominiek. A hybrid surface tension seal for pneumatic and hydraulic microactuators[J]. Microsystem Technologies.2009(15):739-744.
    [66]张庆永,常思勤.液驱混合动力车辆的制动能量回收研究[J].中国工程机械学报.2008(3):293-298.
    [67]Jorge M, Micah E O, Juan W D. Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks[J]. IEEE Trans. Industrial Electronics.2006, 53(2):614-623.
    [68]Sun H, Yang L, Jing J. Hydraulic/electric synergy system (HESS) design for heavy hybrid vehicles[J]. ENERGY.2010,35:5328-5335.
    [69]Sun H. Multi-objective optimization for hydraulic hybrid vehicle based on adaptive simulated annealing genetic algorithm[J]. Engineering Applications of Artificial Intelligence. 2010,23(1):27-33.
    [70]Ricardo C. A compromise solution for energy recovery in vehicle braking[J]. Energy-The International Journal.1999,24(12):1029-1034.
    [71]林潇.液压挖掘机并联式混合动力系统控制策略研究[D]:[博士学位论文].杭州,浙江大学,2010,70-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700