液压挖掘机工作装置势能回收系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节能减排技术是工程机械领域一个重要的研究方向,本文以23t液压挖掘机为研究对象,以蓄能器作为能量存储单元,提出了一种主/辅动力源流量直接耦合式的液压挖掘机工作装置势能回收系统,以改善挖掘机的燃油性和排放性,分析了影响系统势能回收利用的主要参数,建立了工作装置动力学模型和液压系统数学模型。基于主泵负载及储能装置压力状态,提出了一种液压挖掘机的差动能量回收与能量释放控制策略,仿真结果表明,具有势能回收系统的液压挖掘机其能量利用率得到了显著提高,且系统的动力性和操作性基本不受影响,也体现了势能回收系统研究的重要性和良好的应用前景。论文主要可分为以下几部分:
     (1)绪论。首先介绍了液压挖掘机工作装置势能回收系统的研究背景和研究意义,并阐述了液压挖掘机节能技术国内外的研究现状,针对现有研究的不足引入本论文的内容和重点。
     (2)液压挖掘机工作装置势能回收系统结构研究。比较分析不同方案的节能性和经济性,确定系统方案并设计液压原理图。根据液压挖掘机系统参数,对液压系统元件进行选型与参数匹配,充分发挥各部件性能,提高系统效率。
     (3)液压挖掘机工作装置势能回收系统建模研究。基于复合恒功率-负流量控制液压挖掘机结构特点和工作性能,在Matlab/Simulink中建立工作装置动力学模型和液压系统仿真模型,为继续研究系统控制策略奠定了良好的基础。
     (4)液压挖掘机工作装置势能回收系统控制策略研究。以系统节能为优化目标,分析了影响系统势能回收效率的关键控制参数,提出了一种基于主辅动力源出口压力的差动能量回收控制策略。仿真试验研究表明,具有势能回收系统的液压挖掘机提高了系统能量利用效率,且不影响系统动力性能和操作性能,同时也验证了控制策略的可行性。
     (5)液压挖掘机工作装置势能回收系统实验平台设计。设计了实验平台液压系统,并阐述了实验平台的系统功能、工作原理、结构布局和实验平台的结构设计情况,为进一步深入研究提供了良好试验平台。
To improve fuel economy as well as environmental performance of 23t traditional excavators, a scheme of boom potential energy recovery was proposed, considered energy saving technology as an important field of mechanical engineering research. The main design parameters of working equipment potential energy recovery were analyzed, and the virtual prototyping and the mathematic models of hydraulic components were established. Based on the approach that flow distribution is derived from the outlet differential pressure between main power source and auxiliary, an applicable control strategy of the hydraulic excavator was employed to satisfy the load power requirements, which took into concern of the recovery and reuse of working equipment potential energy. The simulation results manifested that the raise of energy utilization ratio was noticeable, while the operating and power performances were preserved. What's more, the importance and a good prospect of the system were reflected. The paper was divided into the following sections:
     (1) The research background and significance of the potential energy recovery system in hydraulic excavators were introduced. And based on the present study, the content and key points of this paper were drawed.
     (2) Comparatively analyzed the energy savings and economics among different options, the system was determined and designed, meanwhile, system components were selected and matched to full play the performance and improve the efficiency.
     (3) Based on the comprehensive constant-power and negative-flow control performance, the mathematic models of working devices and hydraulic components were built, which laid a good foundation for the further study of control strategy.
     (4) According to the key control parameters, an applicable control strategy of the hydraulic excavator was employed to optimize the energy efficiency, approaching that flow distribution is derived from the outlet differential pressure between main power source and auxiliary. The simulation results manifested that the raise of energy utilization ratio was noticeable, while the operating and dynamic performances were preserved, which verify the feasibility of the control strategy.
     (5) The hydraulic system of test bench was designed, meanwhile, the system function, working principle, structure and layout were described, providing a good foundation for the (?)ther study.
引文
[1]刘佳.2011年1季度中国工程机械主要机种市场观察[J].建筑机械.2011(11):45-47.
    [2]李宏宝.整体销量前高后低国产品牌占有率扩大[J].工程机械与维修.2011(9):77-80.
    [3]李宏宝.稳速增质谋求挖掘机械行业长远持续发展[J].工程机械.2011(6):94-95.
    [4]陈克然.挖掘机市场:民族品牌能否与洋品牌平分天下?[J].建筑.2010(2):69-70.
    [5]李伟雄,黄宗益.混合动力在工程机械中的应用[J].建筑机械化.2010(4):35-38.
    [6]王爽,李志远,余新旸.液压挖掘机负流量控制系统的节能分析与实现[J].合肥工业大学学报(自然科学版).2006(2):213-216.
    [7]张振兴.混合动力的时与势[J].工程机械与维修.2010(1):52-53.
    [8]林潇,管成,裴磊,等.混合动力液压挖掘机动臂势能回收系统[J].农业机械学报.2009(4):96-101.
    [9]任小青.液压挖掘机节能技术的发展综述[J].机床与液压.2009(8):248-250.
    [10]宋世鹏,朱新云,赵磊.液压挖掘机功率损失分析及节能控制技术研究[J].机床与液压.2008(11):80-81.
    [11]赵波,刘杰,戴丽,等.挖掘机液压系统的节能技术分析[J].流体传动与控制.2007(4):40-42.
    [12]谢习华,周亮,张大庆.液压挖掘机技术研究的发展现状[J].工程机械.2007(8):54-57.
    [13]Arun G, Ramesh C, Elayaraja R, et al. Improvement of Part Throttle Performance of Carburetor Used in a Two Wheeler Four Stroke Single Cylinder Engine[J]. SAE Technical Papers.2011(28):0004.
    [14]Haanstra J R, van Tuijl A. Kessler P, et al. Compartmentation prevents a lethal turbo-explosion of glycolysis in trypanosomes[J]. Proceedings of the national Academy Of Sciences Of The United States Of America.2008,105(46):17718-17723.
    [15]Rocca D, Gebauer R, Gebauer R, et al. Turbo charging time-dependent density-functional theory with Lanczos chains[J]. Journal of Chemical Physics.2008,128(15):154105-154119.
    [16]Gallagher K S, Muehlegger E. Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology [J]. Environmental Economics and Management.2011,61(1): 1-15.
    [17]Camara M B, Gualous H, Gustin F, et al. DC/DC Converter Design for Supercapacitor and Battery Power Management in Hybrid Vehicle Applications — Polynomial Control Strategy[J]. IEEE Industrial Electronics Society.2010,57(2):587-597.
    [18]Kisacikoglu M C, Uzunoglu M, Alam M S. Load sharing using fuzzy logic control in a fuel cell/ultracapacitor hybrid vehicle[J]. International Journal of Hydrogen Energy.2009,34(3): 1497-1507.
    [19]Fontaras G, Pistikopoulos P, Samaras Z. Experimental evaluation of hybrid vehicle fuel economy and pollutant emissions over real-world simulation driving cycles[J]. Atmospheric Environment.2008,42(18):4023-4035.
    [20]De Haan P, Peters A, Scholz R W. Reducing energy consumption in road transport through hybrid vehicles:investigation of rebound effects, and possible effects of tax rebates[J]. Jounial of Cleaner ProductionThe Automobile Industry & amp; Sustainability.2007, 15(11-12):1076-1084.
    [21]lin K, Park T, Lee H. A control method to suppress the swing vibration[C]. Proceedings of the Institution of Mechanical Engineers.2011:1-17.
    122] Choi J, Kim H, Yu S, et al. Development of integrated controller for a compound hybrid excavator[J]. MECHANICAL SCIENCE AND TECHNOLOGY.2011,25(6):1557-1563.
    [23]Kwon T, Lee S, Sul S, et al. Power control algorithm for hybrid excavator with supercapacitor[J]. IEEE Transactions on Industry Applications.2010,46(4):1447-1455.
    [24]Yoo S, An S, Park C, et al. Design and Control of Hybrid Electric Power System for a Hydraulically Actuated Excavator[J]. SAE International Journal of Commercial Vehicles. 2010,2(2):264-273.
    [25]Lee H, Sul S, Kwak S, et al. System configuration and control strategy for compound type hybrid excavator with ultra capacitor[C]. Proceedings of Association for Computing Machinery, Sapporo, Japan,2010:820-826.
    [26]Takao N, Etsujiro I, Masayuki K. Power Simulation for Energy Saving in Hybrid Excavator[J]. Transaction of Society of Automotive Engineers of Japan.2004,35(4): 101-106.
    [27]Naoki S, Takao N, Etsujiro I, et al. Swing System Development of Construction Machinery[J]. Proceedings of JSAE Annual Congress.2004,56(04):7-12.
    [28]K M Y K.S T, K M Y K. Development of hybrid power t rain control system for excavator[J]. Proceedings of JSAE.2003,86(03):1-6.
    [29]Akira T, Takao N, Hideaki Y, et al. Development of the Electro Hydraulic Actuator System on Hybrid Excavator[J]. Proceedings of JSAE.2003,86(03):7-12.
    [30]Takao N, Etsujiro I, Kagoshima, et al. Power Simulation on the Actual Operation in Hybrid Excavator[J]. Proceedings of JSAE Annual Congress.2003,86(03):13-18.
    [31]Masayuki K, Toshio S, Masayuki K. Development of Hybrid Power Train Control System for Excavator[J]. Proceedings of JSAE Annual Congress.2003,86(03):1-6.
    [32]Yanagisawa M, Manabe K. Hybrid type construction machine[P]. US NO.0280697 A1: 2007-12-28.
    [33]Naruse M, Tamaru M, Kimoto K. Hybrid construction equipment[P]. US NO.6678972 B2: 2004-1-20.
    [34]纪静.中国挖掘机行业未来发展趋势[J].工程机械.2010(1):74-75.
    [35]芃吟.打破国外技术垄断 山河智能自主研发混合动力挖掘机下线[J].工程机械.2010(10):102.
    [36]Lin T, Wang Q, Hu B, et al. Development of hybrid powered hydraulic construction machinery[J]. Automation in Construction.2010,19(1):11-19.
    [37]林潇,管成,潘双夏,等.并联式混合动力液压挖掘机参数匹配方法[J].农业机械学报.2009(6):28-32.
    [38]王冬云,潘双夏,林潇,等.基于混合动力技术的液压挖掘机节能方案研究[J].计算机集成制造系统.2009(1):188-196.
    [39]Lin X, Pan S, Wang D. Dynamic simulation and optimal control strategy for a parallel hybrid hydraulic excavator[J]. Zhejiang University SCIENCE.2008,9(5):624-632.
    [40]张彦廷,王庆丰,肖清.混合动力液压挖掘机液压马达能量回收的仿真及试验[J].机械工程学报.2007(8):218-223.
    [41]王冬云,潘双夏,林潇,等.并联混合动力挖掘机动力源匹配方法研究[J].浙江大学学报(工学版).2009(10):1783-1788.
    [42]刘刚,宋德朝,陈海明,等.并联混合动力挖掘机系统建模及控制策略仿真[J].同济大学学报(自然科学版).2010(7):1079-1084.
    [43]Deppen T O, Alleyne A G, Stelson K, et al. A model predictive control approach for a parallel hydraulic hybrid powertrain[C]. San Francisco, CA, USA:2011.
    [44]Tavares F, Johri R, Filipi Z. Simulation Study of Advanced Variable Displacement Engine Coupled to Power-Split Hydraulic Hybrid Powertrain[J]. Journal of Engineering for Gas Turbines and Power.2011,133(12):122803-122815.
    [45]Minarcin M A, Smith M R. Hybrid certification and controls considerations for a pathway to HiLS [C]. Chicago, IL:2011.
    [46]Li P Y, Van de Ven J D, Sancken C. Open accumulator concept for compact fluid power energy storage[C]. Proceedings of the 2007 ASME-IMECE, ASME, Seattle, USA,2007: IMECE2007-42580.
    [47]Institute for the Analysis of Global Security. EPA displays the first advanced hydraulic hybrid vehicle[EB/OL].2004-3:http://www.iags.org/n033104t3.htm.
    [48]United States Environment Protection Agency. Hydraulic hybrid technology a proven approach [EB/OL].2004-03:http://ww.epa.gov/oms/technology/420f04024.pdf.
    [49]Congress G C. Eaton and Partners Developing Full Diesel-Hydraulic series Hybrid for UPS[EB/OL].2005-10:http://www.epa.gov/otaq/technology.
    [50]Congress G C. Eaton and Peterbilt to Produce Hydraulic Hybrids[EB/OL].,2004-10: http://www.epa.gov/otaq/technology.gy.
    [51]Blohm T, Anderson S. Hybrid refuse truck study[C]. Hunting Beach.Califomia:2004.
    [52]Nguyen M, Elahinia M H. Vibration isolation for parallel hydraulic hybrid vehicles[J]. Shock and Vibration.2008,15(2):193-204.
    [53]Wua B, Lina C, Filipi Z, et al. Optimal Power Management for a Hydraulic Hybrid Delivery Truck[J]. Vehicle System Dynamics.2004,42(1-2):23-40.
    [54]Agency U E P. World'S First Full Hydraulic Hybrid in a Delivery Truck[EB/OL].2005-06: www.epa.gov/oms/technology/420f06054.pdf.
    [55]EPA. World's First Full Hydraulic Hybrid SUV Presented at 2004 SAE World Congress [EB/OL].2004:http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1001T88.txt.
    [56]肖华.上海交大神舟液压混合动力系统——城市公交的新选择[J].城市车辆.2007(5):24.
    [57]姜继海,孙辉,王昕.新型节能环保汽车——液驱混合动力汽车[J].流体传动与控制.2007(1):7-11.
    [58]易纲,常思勤.液驱混合动力车辆纵向运动控制策略[J].南京理工大学学报(自然科学版).2007(3):312-316.
    [59]张庆永,常思勤.液驱混合动力车辆液压系统建模及仿真[J].南京理工大学学报(自然科学版).2008(6):701-706.
    [60]刘刚,宋德朝,陈海明,等.并联混合动力挖掘机系统建模及控制策略仿真[J].同济大学学报(自然科学版).2010(7):1079-1084.
    [61]张敏杰,王庆九,管成.并联式油液混合动力挖掘机动力系统仿真研究[J].中国机械工程.2010(16):1932-1936.
    [62]姜继海,于安才,沈伟.基于CPR网络的全液压混合动力挖掘机[J].液压与气动.2010(9):44-49.
    [63]于安才,姜继海.液压混合动力挖掘机回转装置控制方式的研究[J].西安交通大学学报.2011(7):30-33.
    [64]臧发业.基于二次调节技术的立体车库提升系统性能仿真[J].农业机械学报.2005(6):82-86.
    [65]郭晋宇.混合动力起重机系统的研究[D].武汉理工大学,2008.
    [66]姜继海,谷峰,秦二卫,等.液压能回收的扭矩平衡游梁式抽油机[J].流体传动与控制.2009(2):4-7.
    [67]李云霞,王增才.电动叉车液压起升节能系统中液压蓄能器的选择计算[J].流体传动与控制.2009(2):40-42.
    [68]杨奇顺,侯波.剪叉式升降台节能液压系统设计[J].煤矿机械.2009(9):42-43.
    [69]高峰,潘双夏.负流量控制模型与试验研究[J].机械工程学报.2005(7):107-111.
    [70]杨华勇,曹剑,徐兵,等.多路换向阀的发展历程与研究展望[J].机械工程学报.2005(10):1-5.
    [71]魏英俊.液驱混合动力SUV制动能量回收研究[J].农业机械学报.2007(8):26-29.
    [72]张四军.快关阀蓄能器的设计计算与选用[J].机械.2009(6):23-25.
    [73]孔祥东,权凌霄,姚静,等.基于力学分析的蓄能器数学模型建立及实验研究[J].液压与气动.2006(7):31-34.
    [74]柳俊忻,马彪,李和言,等.基于吸收压力冲击的蓄能器参数设计及其仿真研究[J].车辆与动力技术.2009(2):6-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700